Neoproterozoic (~800 Ma) Subduction of Ocean-Continent Transition: Constraint from Arc Magmatic Sequence in Kaihua, Western Zhejiang
-
摘要: 浙西开化地区处于江南造山带东段,沿下庄-树范断裂北西侧发育一套浅变质的玄武岩-安山岩-英安岩-流纹岩组合.地球化学分析结果显示,玄武岩、安山岩和英安岩、流纹岩表现为连续演化的岩浆序列,岩石多富集Ba、K、Rb,亏损Sr等大离子亲石元素,富集Pb,亏损P、Ti、Ta、Nb等高场强元素.玄武岩Nb含量介于11.8×10-6~15.2×10-6,Nb/Ta=15.36~18.10,Nb/U=8.90~19.32,具有富Nb特点;安山岩MgO含量为5.31%~8.56%,Mg#值为56.89~68.83,FeOT/MgO介于0.82~1.36,显示高Mg特征;英安岩和流纹岩Ga/Al比值高,且FeOT/MgO多介于5.66~18.50,锆石饱和温度为837~920℃,表现出A型酸性火山岩特征.锆石U-Pb定年结果表明,玄武岩、安山岩和流纹岩的成岩年龄分别为800.5±9.2 Ma、799.3±7.1 Ma和798.3±6.2 Ma,均系新元古代(~800 Ma)构造岩浆活动的产物.富Nb玄武岩和高Mg安山岩组合为活动陆缘弧的典型代表,而英安岩和流纹岩则可能形成于俯冲机制下的拉张环境,进一步表明新元古代(~800 Ma)左右,古华南洋北西向扬子陆块的俯冲仍在继续.Abstract: As a record of the process for ocean-continent transition related oceanic subduction, the magmatic rocks consisting of the basalts, andesites, dacites and rhyolites, were identified near the northwastern Xiazhuang-Shufan fault in Kaihua County, western Zhejiang, which is the eastern segment of Jiangnan orogeny. Geochemical analyses indicate that the basalts and andesites are mostly enriched in Ba, K, Rb, Th, U, Pb, but depleted in Sr, P, Nb, Ta, Ti. The basalts show high Nb contents of 11.8×10-6 to 15.2×10-6, Nb/Ta=15.36-18.10, and Nb/U=8.90-19.32. The andesites have higher Mg values with MgO contents ranging from 5.31% to 8.56%, Mg# ranging from 56.89 to 68.83, and FeOT/MgO=0.82-1.36. The dacites and rhyolites have higher Ga/Al ratios, FeOT/MgO ranging from 5.66 to 18.50 mostly, and high magma temperatures (837-920℃), reflecting the characteristics of A-type rhyolites. The U-Pb dating of zircon yields age of 800.5±9.2 Ma for the Nb-enriched basalt, 799.3±7.1 Ma for the high-Mg andesite, and 798.3±6.2 Ma for the A-type rhyolite, confirming that the magmatic activity of continental marginal arc occurred when the paleo-South-China Plate subducted northwestwardly in Neoproterozoic, and suggesting that the subducting movement continued to 800 Ma or later.
-
Key words:
- Nb-enriched basalt /
- high-Mg andesite /
- geochronology /
- geochemistry /
- Neoproterozoic /
- western Zhejiang
-
华南新元古代的大地构造演化一直存在两种不同的观点:(1)华南陆块的形成源于四堡期(0.9 Ga)华夏-扬子块体的拼合,随后的大规模板内裂谷岩浆作用与Rodinia超大陆的聚合和裂解密切相关(王剑等, 2001; Li et al., 2003, 2008, 2009, 2010a, 2010b; 李献华等, 2008, 2012).(2)华南陆块可能位于Rodinia超大陆的边缘或不是超大陆的一部分,在扬子东南缘存在岩浆弧,其造山作用可能持续到0.8 Ga或更晚(Wang et al., 2004; 周金城等, 2009),大规模的花岗岩(0.82 Ga)可能与造山带伸展-垮塌有关(吴荣新等, 2005, 2007; Zheng et al., 2008).
近年,笔者在浙西开化地区对玄武岩-安山岩和英安岩-流纹岩等火山岩系进行了野外实地调查,通过岩石学、地球化学和同位素年代学等方面的研究,为浙皖赣相邻区新元古代大地构造研究增添了新的材料.
1. 地质概况
研究区地处浙皖赣三省交界区,大地构造位置属江南造山带北东段(图 1).区内出露新元古代青白口系-震旦系、早古生代寒武系-奥陶系和中生代白垩系.新元古代地层以下庄-树范断裂为界,逆冲推覆于早古生代地层之上.新元古代岩浆活动频繁,形成一系列中基性、中酸性-酸性火成岩,受后期构造影响,变形强烈.
1.1 苏庄玄武岩地质特征
苏庄玄武岩沿苏庄-高岭断裂北西侧呈条带状分布(图 1).岩石由斑晶、基质组成,变余少斑状结构,杏仁状构造.斑晶为斜长石,半自形板状,大小在0.3~0.5 mm,星散状定向分布.基质为斜长石(50%~55%)、绿泥石(40%~45%),显微鳞片粒状变晶结构.斜长石呈他形粒状,大小在0.03~ 0.10 mm,具定向分布.绿泥石呈片状,直径在0.01~0.05 mm,部分呈集合体条纹状定向分布.杏仁体呈椭圆形、透镜状定向分布,成分主要为石英、绿泥石等,大小在3~5 mm.
1.2 高岭玄武岩-安山岩组合地质特征
高岭玄武岩-安山岩组合亦沿苏庄-高岭断裂北西侧呈带状分布(图 1).玄武岩除杏仁体不甚发育以外,其他特征与苏庄地区玄武岩基本相同.安山岩呈灰绿色层状产出,偶夹薄-中层状碧玉岩,岩石呈似斑状结构,主要矿物为长石(45%~55%)、绿泥石(30%~35%)、方解石(5%~10%),及少量绿帘石和角闪石.长石为他形-半自形,简单双晶可见;绿泥石为浅绿色集合体,多呈定向排列;方解石多与长石伴生.
1.3 树范英安岩-流纹岩组合地质特征
树范流纹岩沿下庄-树范断裂断续分布于下庄、石龙头、树范一带(图 1).岩石呈灰绿色,斑状结构,块状构造,局部流纹构造发育.斑晶成分主要为石英和长石,多呈半自形-他形,大小在0.1~0.5 mm之间,少量大于0.5 mm,基质主要由隐晶的长英质(60%~65%)和蚀变的绢云母(35%~40%)组成.
2. 样品采集与测试
笔者对浙西开化地区苏庄玄武岩和高岭安山岩进行了岩石地球化学分析和高精度的LA-ICP-MS锆石U-Pb年龄测定,对树范流纹岩进行了SHRIMP锆石U-Pb年龄测定.用于开展岩石地球化学分析和挑选锆石单矿物进行U-Pb同位素定年的样品均采自地表新鲜露头.
全岩主量、微量元素在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成.主量元素含量利用原子吸收分光光度计日立ZA3000和紫外分光光度计TU-1901测试;微量元素含量利用Agilent 7500a ICP-MS分析,样品处理过程、分析精密度和准确度参见Govindaraju(1994)和Liu et al.(2008).
所有样品锆石分选在廊坊市诚信地质服务有限公司完成.苏庄玄武岩和高岭安山岩锆石阴极发光显微照相、透射光及反射光照相在武汉上谱分析科技有限责任公司完成.锆石U-Pb同位素定年在中国地质大学(武汉)地质过程与矿产资源国家重点实验室利用LA-ICP-MS同时分析完成,激光剥蚀系统为GeoLas 2005,ICP-MS为Agilent 7500a,详细的仪器操作条件和数据处理方参见Liu et al.(2010)和Hu et al.(2012).树范流纹岩锆石U-Pb年龄测试之前,在北京离子探针中心按常规方法分选出晶形完好、无裂纹和包体少的锆石与标准锆石样品(91500)一起制靶,并对待测样品进行透射光、反射光和阴极发光分析,选定所测锆石微区分析靶位.锆石SHRIMP U-Pb年龄分析采用宋彪等(2002)和简平等(2003)所报道的实验流程.锆石微区原位U-Pb同位素定年在北京离子探针中心的SHRIMPⅡ上完成,对测定结果用SHRIMP定年标准物质对U、Th和Pb含量及年龄作了校正.普通铅根据实测204Pb校正.
3. 测试结果
3.1 锆石U-Pb年龄
浙西开化地区苏庄玄武岩(SZ04,坐标E118° 07′05″,N29°10′36″)和高岭安山岩(GL03,坐标E118°22′58″,N29°22′01″)锆石的LA-ICP-MS U-Pb测年数据见附表1,树范流纹岩(SF01, 坐标E118° 18′36″,N29°13′57″)锆石的SHRIMP U-Pb测年数据见附表2.本次所测锆石均呈半透明短柱状,自形-半自形晶,长150~200 μm,长宽比约为2:1.锆石晶体柱面平直,玄武岩大多数锆石环带结构模糊,安山岩和流纹岩锆石环带结构清晰,为典型岩浆结晶锆石(图 2).
分析结果表明,苏庄玄武岩(SZ04)锆石的17个测点U含量为122×10-6~690×10-6,Th为136×10-6~851×10-6,Th/U为0.64~3.17,除SZ04-5.1、6.1、9.1、11.1等锆石测点因数据谐和度较差外,图 3a中其余13个测点均落在谐和线之上,其中206Pb/238U加权平均年龄为800.5±9.2 Ma(MSWD=1.9),表明岩浆结晶年龄下限可能为800 Ma左右.
高岭安山岩(GL03)锆石的17个测点U含量为56×10-6~510×10-6,Th为106×10-6~626×10-6,Th/U为0.65~3.44,其中GL03-6.1年龄数据为1 757±15 Ma,显示为继承锆石,GL03-16.1测点数据为723±7 Ma,可能指示其遭受后期岩浆热事件的影响.在图 3b上,其余15个测点均落在谐和线之上,并给出两组相对集中的年龄区间,即828~824 Ma和810~786 Ma,其中206Pb/238U加权平均的年龄分别为826.4±8.9 Ma(MSWD=0.04)和799.3±7.1 Ma(MSWD=0.63),表明岩浆结晶年龄在799.3 Ma左右.
树范流纹岩(SF01)锆石的18个测点U含量为53×10-6~669×10-6,Th为24×10-6~388×10-6,Th/U为0.19~1.18,除SF01-6.1测点获得877± 13 Ma的较老年龄值,暗示其可能为继承锆石外,其余17个锆石测点均落在谐和线之上(图 3c),其206Pb/238U加权平均年龄为798.3±6.2 Ma(MSWD=0.93),可代表岩浆结晶年龄.
综上所述,浙西开化地区苏庄玄武岩和高岭玄武岩—安山岩组合,以及树范地区流纹岩均形成于800 Ma左右,系新元古代早、中期同期构造岩浆活动的产物.
3.2 地球化学特征
开化地区新元古代火山岩的化学成分见附表3、附表4.
3.2.1 主量元素
开化地区新元古代玄武岩SiO2含量分布于43.86%~50.43%之间,平均为46.79%;MgO含量为4.26%~12.1%,平均值7.54%,Mg#值为49.83~62.59,平均值58.78.TiO2为1.02%~1.85%,平均值为1.35%;Na2O为3.40%~5.52%,平均含量为4.13%;K2O为0.72%~3.06%,平均含量为1.62%;P2O5含量为0.12%~0.53%,平均值为0.24%.安山岩SiO2含量分布于52.54%~62.76%之间,平均为56.21%;MgO含量为5.31%~8.56%,平均值7.13%,Mg#值为56.89~68.83,平均值63.43;FeOT/MgO介于0.82~1.36,显示高Mg特征.TiO2为0.82%~1.21%,平均值为0.97%;Na2O为3.41%~5.05%,平均值为4.20%;K2O为0.79%~1.20%,平均值为0.98%;P2O5含量为0.08% ~0.13%,平均值为0.11%.
英安岩-流纹岩SiO2含量为63.11%~76.38%,K2O+Na2O含量为3.82%~8.12%,K2O为1.68%~5.18%,K2O/Na2O比值为0.46~2.36,由钙碱性向高钾钙碱性转变;铝饱和指数A/CNK值为1.08~1.33,为准铝质-过铝质特征,里特曼指数(σ)为0.67~1.99,赖特碱度率(A.R.)为1.47~4.22,镁指数(Mg#)为8.87~42.96,分异指数DI=66.24~94.21.
在图 4中,开化地区新元古代火山岩随SiO2含量的增加,K2O含量亦随之增高,TiO2、Al2O3、MgO、CaO、P2O5等则均表现出明显的负相关性.由此可知,它们在岩浆演化方面必然存在着内在的成因联系.
由于样品遭受了不同程度的蚀变作用,利用不活泼元素(Zr、Ti、Nb、Y)对新元古代火山岩进行分类,在图 5a上,玄武岩、安山岩样品多落在亚碱性玄武岩范围内,英安岩、流纹岩样品则多落入英安岩区;而在图 5b上,样品则分别落入亚碱性玄武岩、安山岩、英安岩和流纹岩区域,与前人研究的“双峰式”火山岩特征不同,它们构成了一个由基性向酸性连续演化的岩浆系列.
3.2.2 稀土元素
在稀土元素组成方面,苏庄-高岭地区玄武岩和安山岩总体特征相似,稀土元素总量(ΣREE)为59.35×10-6~146.0×10-6,平均值为102.34×10-6;轻稀土较富集(LREE/HREE=4.19~7.15),轻、重稀土之间分馏程度较强((La/Yb)N=3.71~8.16,(Ce/Yb)N =3.43~6.23,(La/Sm)N=2.15~3.87,(Gd/Yb)N=1.11~2.04);样品Eu多数呈负异常,δEu为0.79~1.25,少数样品呈弱正异常可能为斜长石堆晶所致.下庄-树范地区英安岩和流纹岩稀土总量介于205.50×10-6~320.65×10-6,轻、重稀土之间分馏程度呈减弱态势((La/Yb)N=4.31~13.51,(Ce/Yb)N= 2.36~9.78,(La/Sm)N =2.65~4.56,(Gd/Yb)N为1.29~3.33);样品Eu负异常逐渐增强,δEu为0.34~0.80.在球粒陨石标准化稀土配分图上,开化新元古代火山岩均表现为向右弱倾的分配型式(图 6a、6c),显示活动陆缘弧岩浆岩的特征.
图 6 新元古代火山岩稀土元素球粒陨石标准化曲线和微量元素蛛网图标准值据Sun and McDonough(1989);大陆弧安山岩蛛网曲线据Zheng et al.(2012)Fig. 6. Chondrite-normalized REE patterns and trace element spider diagram for the Neoproterozoic volcanic rocks in Kaihua area3.2.3 微量元素
在微量元素方面,苏庄-高岭地区玄武岩和安山岩La/Nb=0.76~2.26,平均值为1.54;Zr/Nb=7.66~14.95,平均值为10.06;Y/Nb=1.28~2.52,平均值为1.91,Th/Yb=0.84~2.99,平均值为2.08;Zr/Y=3.62~7.76,平均值为5.35;La/Ta=13.65~34.64,平均值为24.94,显示活动陆缘弧玄武岩的特征(Pearce,1983;李玉琼等,2017).下庄-树范地区英安岩和流纹岩具有高Ba(280×10-6~1 000×10-6)、Sr(17×10-6~137×10-6)和低Rb(92.4×10-6~168×10-6)特征,表明岩浆结晶过程未经过高度的分异(McCarthy and Hasty, 1976;King et al., 2001;李小伟等,2010).此外,随SiO2的增加,新元古代火山岩Hf/Sm比值逐渐增高,而Zr/Hf和Nb/Ta比值呈现递减趋势(图 4).在微量元素蛛网图上,开化新元古代火山岩均表现为相对富集Th、Hf、Zr,亏损P、Sr、Nb、Ta、Ti等元素(图 6b、6d),显示与俯冲作用有关的火成岩特征(Condie,2001),也与大陆弧安山岩相类似(Zheng et al., 2008).
4. 岩石时代、成因和构造环境
4.1 岩石时代
吴荣新等(2007)获取开化霞乡地区井潭组安山质凝灰岩锆石U-Pb年龄为779±7 Ma,休宁龙田地区井潭组英安岩的锆石U-Pb年龄介于820~773 Ma;韩瑶等(2016)获得开化苏庄地区流纹岩锆石U-Pb年龄为777.1±3.6 Ma;贾锦生等(2016)获得开化石龙头地区流纹英安岩锆石U-Pb年龄为781±10 Ma和784.7±5.2 Ma.王存智等(2016)在赣东北樟树墩发现新元古代(794.8±6.0 Ma)的高Mg安山岩.
本次获取苏庄-高岭地区玄武岩和安山岩组合年龄为800.5±9.2 Ma与799.3±7.1 Ma,下庄-树范地区流纹岩年龄为798.3±6.2 Ma.在时序上,玄武岩和安山岩组合先于流纹岩(或英安岩)形成,表明该期构造岩浆活动时限为新元古代约810~790 Ma,与皖赣相邻区域保持一致.
4.2 岩石成因
苏庄-高岭地区玄武岩有较高的Nb含量(11.8×10-6~15.2×10-6),Nb/Ta=15.36~18.10,Nb/U=8.90~19.32,与正常岛弧玄武岩相比,明显具有富Nb的特征.在图 7a、7b上,玄武岩样品多落入富Nb玄武岩区.高岭地区安山岩多表现为高MgO特征,在图 7c、7d中,均落入HMA区域及强CA与LA-CA区域.下庄-树范地区低分异英安岩和流纹岩FeOT/MgO多集中于5.66~18.50,兼具高的Zr、Ce、Y含量和Ga/Al比值,锆石饱和温度为837~920 ℃,显示A型酸性火山岩的特征(图 7e、7f).
图 7 开化地区新元古代火山岩岩石类型图解图a据Defant et al.(1992);图b据赵振华等(2004);图c、d据Deng et al.(2009);图e、f据Whalen(1987).HMA.高镁安山岩/闪长岩类;MA.镁安山岩/闪长岩类;LF.低铁钙碱性系列;CA.钙碱性系列;FG.分异的长英质花岗岩;OGT.未分异的I、S和M型花岗岩;I & S.I和S型花岗岩;A.A型花岗岩Fig. 7. Diagrams of rock types for the Neoproterozoic volcanic rocks in Kaihua area在图 8a中,玄武岩和安山岩样品多分布于下地壳(LC)与上地壳(UC)之间,表明它们可能受到地壳的混染.而在图 8b中,玄武岩及安山岩则同样分布于上地壳(UC)周边,并显示非地幔柱源成因.由此说明,玄武岩及安山岩均由地幔源区岩浆经部分熔融形成,并在岩浆上升过程中遭受了弱的地壳同化混染影响.在图 8c上,英安岩和流纹岩主要为下地壳熔融的产物,同时成岩过程中兼有亏损地幔物质的贡献(图 8d).
图 8 开化地区新元古代火山岩成因判别图解图a据Pearce(2008);图b据Condie(2005);图c据马芳和薛怀民(2017);图d据孙赛军等(2015).LC.下地壳;MC.中地壳;UC.上地壳;OIB.洋岛玄武岩;E-MORB.富集型洋中脊玄武岩;N-MORB.正常型洋中脊玄武岩;PM.原始地幔;DM.亏损地幔;HIMU.高μ(U/Pb)源区;EM1.Ⅰ型富集地幔源区;EM2.Ⅱ型富集地幔源区;DEP.深部亏损地幔;EN.富集端元;REC.循环端元;BCC.平均大陆地壳;LCC.大陆下地壳;DMM.亏损地幔Fig. 8. Discrimination diagrams for the Neoproterozoic volcanic rocks in Kaihua area4.3 大地构造环境
对于江南中、新元古代岛弧的构造演化研究,郭令智等(1996)认为古华南洋壳于中元古代13(17)~9.8亿年时向北(或西北)俯冲于扬子板块东南边缘之下,形成江南火山岛弧和弧后盆地,在东北段是皖-浙-赣火山岛弧和樟树墩-伏川弧后盆地;新元古代9.8~7.7亿年时发生了陈蔡弧(或浙东地体)与皖-浙-赣弧的弧-弧碰撞造山作用,并导致樟树墩-伏川边缘海的崩塌和陆-弧弧后碰撞造山过程.薛怀民等(2010)研究认为江南造山带造山过程具有多岛弧拼贴、多缝合的特点,只是不同缝合带上洋盆闭合的时间存在着差异.姜杨等(2014, 2015)认为金华罗店地区富Nb辉长岩、高Mg闪长岩以及花岗岩TTG组合等典型弧岩浆岩的形成时限为848~793 Ma,即江南造山带北东段该时期仍存在陆缘弧岩浆活动.王存智等(2016)依据樟树墩新元古代高Mg安山岩提出赣东北地区(~800 Ma左右)洋壳俯冲仍然存在,扬子和华夏陆块尚未碰撞拼合.上述观点虽然有一定差异,但均体现了在新元古代早中期,江南造山带东段多岛-弧-盆体系的构造格局,只是关于洋盆闭合的时间问题未能达成一致.
近年来,赣东北双桥山群的时代被限定于832~821 Ma之间(高林志等,2008;周效华等,2012),皖南溪口岩群时代介于840~830 Ma(张彦杰等,2010),两者与浙西骆家门组(或陈塘坞组)形成时代(855~820 Ma)基本一致(张恒等,2015;韩瑶等,2015;Zhang et al., 2017;唐增才等,2018),表明它们均为新元古代盆地的同期沉积.与此同时,浙皖赣相邻区鄣源基性岩、泗州基性岩、解元岭辉绿岩、伏川辉长岩的依次出现也证实新元古代早中期(约844~824 Ma)存在弧后盆地扩张(陆慧娟等,2007;张彦杰等,2011;Zhang et al., 2012;周效华等,2014;唐增才等,2018),与溪口岩群(约840~830 Ma)向上变细的沉积序列一致(廖圣兵等,2014),也间接表明浙皖赣弧后盆地南东侧该期可能仍然存在一系列岩浆弧,这与金华罗店地区存在青白口纪晚期的陆缘弧型TTG以及富Nb辉长岩和高Mg闪长岩相耦合(姜杨等, 2014, 2015).其后皖赣相邻区双桥山群(约832~821 Ma)及浙西骆家门组碎屑颗粒向上变粗的沉积特征反映浙皖赣弧后洋盆不断狭缩闭合(廖圣兵等,2016),这可能与南东侧岩浆弧遭受古华南洋向北西持续俯冲的驱动力并不断向北西迁移有关,也进一步暗示导致弧后盆地闭合的构造事件可能是弧陆拼贴.
图 9 开化地区新元古代火山岩构造环境判别图解图a、b、c据Pearce(2008, 2014);图d据Batchelor and Bowden(1985);图e据Pearce(1996);图f据Eby(1992).SHO.钾玄岩系列;CA.钙碱性系列;TH.拉斑系列;ICA.岛弧钙碱系列;IAT.岛弧拉斑系列;TR.过渡玄武岩系列;ALK.碱性玄武岩系列;IAB.岛弧玄武岩;MORB.洋中脊玄武岩;WPB.板内玄武岩;BABB.弧后盆地玄武岩;FAB.弧前玄武岩Fig. 9. Tectonic discrimination diagrams for the Neoproterozoic volcanic rocks in Kaihua area富Nb玄武岩和高Mg安山岩组合是成熟岩浆弧的标志性产物(邓晋福等, 2010, 2015),在图 9a、9b上,苏庄-高岭地区玄武岩和安山岩样品均落入活动大陆边缘弧区域;在图 9c中,显示为前弧(FAB)的产物.与此同时,在图 9d中,下庄-树范地区英安岩和流纹岩样品均落入造山晚期至后造山阶段,而在图 9e、9f中,所有样品也相应落入后碰撞或后造山花岗岩区域,可能是古华南洋俯冲机制下活动陆缘拉张环境的产物.
至此,笔者认为新元古代(~800 Ma)左右,赣东北樟树墩高Mg安山岩、浙西苏庄-高岭富Nb玄武岩和高Mg安山岩组合,及下庄-树范英安岩和流纹岩组合的相继出现,表明洋陆俯冲仍在持续,浙皖赣相邻区此时处于活动陆缘环境.也更进一步说明,导致浙皖赣弧后盆地(约820 Ma)关闭的构造事件可能是弧陆拼贴,而非华夏地块与扬子陆块的碰撞拼贴.
5. 结论
(1) 苏庄-高岭地区玄武岩Nb含量介于11.8×10-6~15.2×10-6,Na2O/K2O介于1.27~5.61,Nb/Ta=15.36~18.10,Nb/U=7.68~19.32,表现为富Nb玄武岩;安山岩MgO含量为5.31%~8.56%,Mg#值为56.89~68.83,FeOT/MgO介于0.82~1.36,显示高Mg安山岩的特征.
(2) 下庄-树范地区英安岩和流纹岩FeOT/MgO多集中于5.66~18.50,兼具高的Zr、Ce、Y含量和Ga/Al比值,锆饱和温度为837~920 ℃,为A型酸性火山岩.
(3) 浙赣相邻区具有大陆弧构造属性的富Nb玄武岩和高Mg安山岩分别形成于新元古代800.5±9.2 Ma和799.3±7.1 Ma,A型酸性火山岩形成于798.3 ±6.2 Ma,指示该时期江南造山带东段仍然处于与俯冲作用有关的活动陆缘环境,华夏地块与扬子陆块尚未完成碰撞拼贴.
致谢: 锆石年龄测试与数据处理得到中国地质大学(武汉)地质过程与矿产资源国家重点实验室胡兆初教授和中国地质科学院北京离子探针中心颉颃强博士的指导与帮助,全岩主量、微量元素分析由中国地质大学(武汉)地质过程与矿产资源国家重点实验室陈海红、肖红艳老师完成,一并表示感谢;审稿专家诸多建设性的意见提升了文章质量,在此致以衷心的谢意! 附表见本刊官网(http://www.earth-science.net). -
图 5 开化地区新元古代火山岩岩石分类图解
Fig. 5. Classification diagrams for the Neoproterozoic volcanic rocks in Kaihua area
图 6 新元古代火山岩稀土元素球粒陨石标准化曲线和微量元素蛛网图
标准值据Sun and McDonough(1989);大陆弧安山岩蛛网曲线据Zheng et al.(2012)
Fig. 6. Chondrite-normalized REE patterns and trace element spider diagram for the Neoproterozoic volcanic rocks in Kaihua area
图 7 开化地区新元古代火山岩岩石类型图解
图a据Defant et al.(1992);图b据赵振华等(2004);图c、d据Deng et al.(2009);图e、f据Whalen(1987).HMA.高镁安山岩/闪长岩类;MA.镁安山岩/闪长岩类;LF.低铁钙碱性系列;CA.钙碱性系列;FG.分异的长英质花岗岩;OGT.未分异的I、S和M型花岗岩;I & S.I和S型花岗岩;A.A型花岗岩
Fig. 7. Diagrams of rock types for the Neoproterozoic volcanic rocks in Kaihua area
图 8 开化地区新元古代火山岩成因判别图解
图a据Pearce(2008);图b据Condie(2005);图c据马芳和薛怀民(2017);图d据孙赛军等(2015).LC.下地壳;MC.中地壳;UC.上地壳;OIB.洋岛玄武岩;E-MORB.富集型洋中脊玄武岩;N-MORB.正常型洋中脊玄武岩;PM.原始地幔;DM.亏损地幔;HIMU.高μ(U/Pb)源区;EM1.Ⅰ型富集地幔源区;EM2.Ⅱ型富集地幔源区;DEP.深部亏损地幔;EN.富集端元;REC.循环端元;BCC.平均大陆地壳;LCC.大陆下地壳;DMM.亏损地幔
Fig. 8. Discrimination diagrams for the Neoproterozoic volcanic rocks in Kaihua area
图 9 开化地区新元古代火山岩构造环境判别图解
图a、b、c据Pearce(2008, 2014);图d据Batchelor and Bowden(1985);图e据Pearce(1996);图f据Eby(1992).SHO.钾玄岩系列;CA.钙碱性系列;TH.拉斑系列;ICA.岛弧钙碱系列;IAT.岛弧拉斑系列;TR.过渡玄武岩系列;ALK.碱性玄武岩系列;IAB.岛弧玄武岩;MORB.洋中脊玄武岩;WPB.板内玄武岩;BABB.弧后盆地玄武岩;FAB.弧前玄武岩
Fig. 9. Tectonic discrimination diagrams for the Neoproterozoic volcanic rocks in Kaihua area
-
Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8 Condie, K. C., 2001. Mantle Plume and Their Record in Earth History. Cambridge University Press, London. Condie, K. C., 2005. High Field Strength Element Ratios in Archean Basalts: A Window to Evolving Sources of Mantle Plumes?. Lithos, 79(3-4): 491-504. https://doi.org/10.1016/j.lithos.2004.09.014 Defant, M. J., Jackson, T. E., Drummond, M. S., et al., 1992. The Geochemistry of Young Volcanism Throughout Western Panama and Southeastern Costa Rica: An Overview. Journal of the Geological Society, 149(4): 569-579. https://doi.org/10.1144/gsjgs.149.4.0569 Deng, J. F., Feng, Y. F., Di, Y. J., et al., 2015. Magmatic Arc and Ocean-Continent Transition: Discussion. Geological Review, 61(3):473-484 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzlp201503001 Deng, J. F., Flower, M. F. J., Liu, C., et al., 2009. Nomenclature, Diagnosis and Origin of High-Magnesian Andesits (HMA) and Magnesian Andesits (MA): A Review from Petrographic and Experimental Data. Geochimica et Cosmochimica Acta, 73(13): A279. http://cn.bing.com/academic/profile?id=f66b40703444b68a91f11b711c00f26e&encoded=0&v=paper_preview&mkt=zh-cn Deng, J.F., Liu, C., Feng, Y.F., et al., 2010. High Magnesian Andesitic/Dioritic Rocks (HMA)and Magnesian Andesitic/Dioritic Rocks (MA): Two Igneous Rock Types Related to Oceanic Subduction. Geology in China, 37(4):1112-1118 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=9cd4bb0eb757170f16b82ba4483fdb7f&encoded=0&v=paper_preview&mkt=zh-cn Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 Gao, L. Z., Yang, M. G., Ding, X. Z., et al., 2008. SHRIMP U-Pb Zircon Dating of Tuff in the Shuang qiaoshan and Heshangzhen Groups in South China: Constraints on the Evolution of the Jiangnan Neoproterozoic Orogenic Belt. Geological Bulletin of China, 27(10): 1744-1751 (in Chinese with English abstract). Govindaraju, K., 1994. 1994 Compilation of Working Values and Sample Description for 383 Geostandards. Geostandards and Geoanalytical Research, 18: 1-158. https://doi.org/10.1111/j.1751-908x.1994.tb00526.x Guo, L. Z., Lu, H. F., Shi, Y. S., et al., 1996. On the Meso-Neoproterozoic Jiangnan Island Arc: Its Kinematics and Dynamics. Geological Journal of China Universities, 2(1): 1-13 (in Chinese with English abstract). Han, Y., Zhang, C. H., Jiang, X. Q., et al., 2016. LA-ICP-MS Zircon U-Pb Dating of the Rhyolite from the Zhonglü Group, Northwestern Zhejiang Province, and Its Chronostratigraphic Significance. Science & Technology Review, 34(2): 104-109 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjdb201602021 Han, Y., Zhang, C. H., Liu, Z. H., et al., 2015. Study on Sedimentary Characteristics, Detrital Zircon Ages and Tectono-Paleogeographic Setting of Neopro-Terozoic Pingshui Group in Pujiang Area, Zhejiang Province. Geological Review, 61(6): 1270-1280 (in Chinese with English abstract). Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50-57. https://doi.org/10.1016/j.sab.2012.09.007 Jia, J. S., Cao, S. Q., Li, H. M., et al., 2016. Zircon U-Pb Age and Geochemistry of the Rhyolites in Kaihua, Western Zhejiang Province and Their Geological Implications. Geotectonica et Metallogenia, 40(4):787-797 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201604011 Jian, P., Liu, D. Y., Sun, X. M., et al., 2003. SHRIMP Dating of Carbpniferous Jinshajiang Ophiolite in Western Yunnan and Sichuan: Geochronological Constraints on the Evolution of the Paleo-Tethys Oceanic Crust. Acta Geologica Sinica, 77(2):217-228 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=cf904a96b0786f0450d918144caa4fad&encoded=0&v=paper_preview&mkt=zh-cn Jiang, Y., Zhao, X. L., Lin, S. F., et al., 2014. Identification and Tectonic Implication of Neoproterozoic Continental Margin-Arc TTG Assemblage in Southeastern Margin of the Yangtze Carton. Acta Geologica Sinica, 88(8):1461-1474 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201408008 Jiang, Y., Zhao, X. L., Xing, G. F., et al., 2015. Arc Magmatic Activity of Qingbaikou Period along the Southeastern Margin of Yangtze Block: Implications from the Zircon U-Pb Age and Geochemical Characteristics of Nb-Enriched Gabbro and High-Mg Diorite in the Jinhua Plutonic Complex. Geological Bulletin of China, 34(8):1550-1561 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=b1fbea0532e0652bd66e8b1ea1e5dcb3&encoded=0&v=paper_preview&mkt=zh-cn King, P. L., Chappell, B. W., Allen, C. M., et al., 2001. Are A-Type Granites the High‐temperature Felsic Granites? Evidence from Fractionated Granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4): 501-514. https://doi.org/10.1046/j.1440-0952.2001.00881.x Li, W. X., Li, X. H., Li, Z. X., 2010a. Ca. 850 Ma Bimodal Volcanic Rocks in Northeastern Jiangxi Province, South China: Initial Extension during the Breakup of Rodinia?. American Journal of Science, 310(9): 951-980. https://doi.org/10.2475/09.2010.08 Li, X. H., Li, W. X., He, B., 2012. Building of the South China Block and Its Relecance to Assembly and Breakup of Rodinia Supercontinent: Observations, Inter- Prettations and Tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543-559 (in Chinese with English abstract). Li, X. H., Li, W. X., Li, Q. L., et al., 2010b. Petrogenesis and Tectonic Significance of the ∼850 Ma Gangbian Alkaline Complex in South China: Evidence from in Situ Zircon U-Pb Dating, Hf-O Isotopes and Whole-Rock Geochemistry. Lithos, 114(1-2): 1-15. https://doi.org/10.1016/j.lithos.2009.07.011 Li, X. H., Li, W. X., Li, Z. X., et al., 2008. 850-790 Ma Bimodal Volcanic and Intrusive Rocks in Northern Zhejiang, South China: A Major Episode of Continental Rift Magmatism during the Breakup of Rodinia. Lithos, 102(1-2): 341-357. https://doi.org/10.1016/j.lithos.2007.04.007 Li, X. H., Li, W. X., Li, Z. X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1-2): 117-128. https://doi.org/10.1016/j.precamres.2009.07.004 Li, X. H, Wang, X. C., Li, W. X., et al., 2008. Petrogenesis and Tectonic Significance of Neoproterozoic Basaltic Rocks in South China: From Orogenesis to Intracontinental Rifting. Geochimica, 37(4):382-398 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=02c7c89066668b374044ba3690a31840&encoded=0&v=paper_preview&mkt=zh-cn Li, X. W., Mo, X. X., Zhao, Z. D., et al., 2010. A Discussion on How to Discriminate A-Type Granite. Geological Bulletin of China, 29(2-3):278-285 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201002012 Li, Y. Q., Zhang, Q., Wang, J. R., et al., 2017. Global Active Continental Margin Arc Basalt (CAB) Characteristics: Compared with Island Arc Basalt (IAB) and Back-Arc Basin Basalt (BAB). Chinese Journal of Geology, 52(3): 693-713 (in Chinese with English abstract). Li, Z. X., Li, X. H., Kinny, P. D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122(1-4): 85-109. https://doi.org/10.1016/s0301-9268(02)00208-5 Liao, S. B., Zhang, Y. J., Zhou, X. H., et al., 2014. Sedimentary Sequence and Sedimentary Environment of Xikou Group in the Adjoining Areas of Anhui and Jiangxi. Mineral Resources and Geology, 28(6):660-667 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcydz201406002 Liao, S. B., Zhang, Y. J., Zhou, X. H., et al., 2016. Sedimentary Sequence and Environment of Shuangqiaoshan Group from the Adjacent Area between Anhui and Jiangxi. Geoscience, 30(1):130-143 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201601014 Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082 Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2): 133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016 Lu, H. J., Hua, R. M., Mao, G. Z., et al., 2007. Isotope Geochronological Study of Igneous Rocks in Northeastern Jiangxi Province and Its Implication to Geologic Evolution. Geological Review, 53(2):207-216 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200702008 Ma, F., Xue, H. M., 2017. Huzhou-Anji Volcanic Basin of Northern Zhejiang Province: Zircon U-Pb Dating, Geochemistry and Magma Genesis. Acta Geologica Sinica, 91(2): 334-361 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201702004.htm McCarthy, T. S., Hasty, R. A., 1976. Trace Element Distribution Patterns and Their Relationship to the Crystallization of Granitic Melts. Geochimica et Cosmochimica Acta, 40(11): 1351-1358. https://doi.org/10.1016/0016-7037(76)90125-3 Pearce, J. A., 1983. Role of the Sub-Continental Lithosphere in Magema Genesis at Active Continental Margine. In: Hawkesworth, C. J., Norry, M. J., eds., Continental Basalts and Mantle Xenolites. Shiva Publishing Limited, Nantwich. Pearce, J. A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005 Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016 Pearce, J. A., 2014. Immobile Element Fingerprinting of Ophiolites. Elements, 10(2): 101-108. https://doi.org/10.2113/gselements.10.2.101 Song, B., Zhang, Y. H., Wan, Y. S., et al., 2002. Mount Making and Procedure of the SHRIMP Dating. Geological Review, 48(S1): 26-30 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005931 Sun, S. J., Zhang, L. P., Ding, X., et al., 2015. Zircon U-Pb Ages, Hf Isotopes and Geochemical Characteristics of Volcanic Rocks in Nagqu Area, Tibet and Their Petrogenesis. Acta Petrologica Sinica, 31(7):2063-2077 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507020 Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Tang, Z. C., Chen, Z. D., Hu, K. M., et al., 2018. Neoproterozoic (~828 Ma) Expansion of Back-Arc Basin: Implications from Geochronology and Geochemistry of the Diabase and Flyschoids in Kaihua Area, Western Zhejiang. Earth Science, 43(S2):1-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S2001.htm Wang, C. Z., Yu, M. G., Huang, Z. Z., et al., 2016. Recognition and Significance of Neoproterozoic (ca. 800 Ma) High Mg Andesites in the NE Jiangxi Ophiolite Belt. Geological Review, 62(5): 1185-1200 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201605007 Wang, J., Liu, B. J., Pan, G. T., 2001. Neoproterozoic Rifting History of South China Significance to Rodinia Breakup. Journal of Mineralogy and Petrology, 21(3):135-145 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=bb3454e29ba7d9df074c99b19600c4c4&encoded=0&v=paper_preview&mkt=zh-cn Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2004. Geochemistry of the Meso- to Neoproterozoic Basic-Acid Rocks from Hunan Province, South China: Implications for the Evolution of the Western Jiangnan Orogen. Precambrian Research, 135(1-2): 79-103. https://doi.org/10.1016/j.precamres.2004.07.006 Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202 Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2 Wu, R. X., Zheng, Y. F., Wu, Y. B., 2005. Zircon U-Pb Age, Element and Oxygen Isotope Geochemisty of Neoproterozoic Granites at Shiershan in South Anhui Province. Geological Journal of China Universities, 11(3):364-382 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503008 Wu, R. X., Zheng, Y. F., Wu, Y. B., 2007. Zircon U-Pb Age and Isotope Geochemistry of Neoproterozoic Jingtan Volcanics in South Anhui. Geological Journal of China Universities, 13(2):282-296 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200702012 Xue, H. M., Ma, F., Song, Y. Q., et al., 2010. Geochronology and Geochemisty of the Neoproterozoic Granitoid Association from Eastern Segment of the Jiangnan Orogen, China: Constraints on the Timing and Process of Amalgamation between the Yangtze and Cathaysia Blocks. Acta Petrologica Sinica, 26(11):3215-3244 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=eec42af0c5520693687b8dd6b6c6ec01&encoded=0&v=paper_preview&mkt=zh-cn Zhang, F. F., Wang, X. L., Wang, D., et al., 2017. Neoproterozoic Backarc Basin on the Southeastern Margin of the Yangtze Block during Rodinia Assembly: New Evidence from Provenance of Detrital Zircons and Geochemistry of Mafic Rocks. Geological Society of America Bulletin, 129(7-8): 904-919. https://doi.org/10.1130/b31528.1 Zhang, H., Gao, L. Z., Li, T. D., et al., 2015. SHRIMP Zircon U-Pb Dating of the Luojiamen Formation in Western Zhejiang Province and Its Geological Implications. Geological Bulletin of China, 34(2-3):447-455 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=40da5f70994ce5d0c101b6947972311b&encoded=0&v=paper_preview&mkt=zh-cn Zhang, S. B., Wu, R. X., Zheng, Y. F., 2012. Neoproterozoic Continental Accretion in South China: Geochemical Evidence from the Fuchuan Ophiolite in the Jiangnan Orogen. Precambrian Research, 220-221: 45-64. https://doi.org/10.1016/j.precamres.2012.07.010 Zhang, Y. J., Zhou, X. H., Liao, S. B., et al., 2010. Neoproterozoic Crustal Composition and Orogenic Process of the Zhanggongshan Area, Anhui-Jiangxi. Acta Geologica Sinica, 84(10):1401-1427 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201010003 Zhang, Y. J., Zhou, X. H., Liao, S. B., et al., 2011. Geological and Geochemical Characteristics and Petrogenesis of the Mafic Rocks from Zhangyuan, Northern Jiangnan Orogen. Geological Journal of China Universities, 17(3):393-405 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201103004 Zhao, Z. H., Wang, Q., Xiong, X. L., 2004. Complex Mantle-Crust Interaction in Subduction Zone. Bulletin of Mineralogy, Petrology and Geochemistry, 23(4):277-284 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=770c4df868d05715e61c4895fef6275d&encoded=0&v=paper_preview&mkt=zh-cn Zheng, Y. F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328: 5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005 Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3-4): 351-383. https://doi.org/10.1016/j.precamres.2008.01.004 Zhou, J. C., Wang, X. L., Qiu, J. S., 2009. Some Neoproterozoic Geological Events Involved in the Development of the Jiangnan Orogen. Geological Journal of China Universities, 15(4):453-459 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200904003 Zhou, X. H., Gao, T. S., Ma, X., et al., 2014. Study on Geochronology and Structural Properties of Pillow Basalts in Zhangyuan Region, Eastern Section of the Jiangnan Orogen. Resources Survey & Environment, 35(4):235-244 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hsdzykc201404001 Zhou, X. H., Zhang, Y. J., Liao, S. B., et al., 2012. LA- ICP-MS Zircon U-Pb Geochronology of Volcanic Rocks in the Shuangqiaoshan Group at Anhui-Jiangxi Boundary Region and Its Geological Implication. Geological Journal of China Universities, 18(4): 609-622 (in Chinese with English abstract). 邓晋福, 冯艳芳, 狄永军, 等, 2015.岩浆弧火成岩构造组合与洋陆转换.地质论评, 61(3): 473-484. http://d.old.wanfangdata.com.cn/Periodical/dzlp201503001 邓晋福, 刘翠, 冯艳芳, 等, 2010.高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相关的两类典型的火成岩类.中国地质, 37(4): 1112-1118. http://www.cnki.com.cn/Article/CJFDTotal-DIZI201004027.htm 高林志, 杨明桂, 丁孝忠, 等, 2008.华南双桥山群和河上镇群凝灰岩中的锆石SHRIMP U-Pb年龄——对江南新元古代造山带演化的制约.地质通报, 27(10): 1744-1751. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200810017 郭令智, 卢华复, 施央申, 等, 1996.江南中、新元古代岛弧的运动学和动力学.高校地质学报, 2(1): 1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600146084 韩瑶, 张传恒, 蒋先强, 等, 2016.浙西北钟吕群流纹岩锆石U-Pb年龄及其年代地层学意义.科技导报, 34(2): 104-109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjdb201602021 韩瑶, 张传恒, 刘子荟, 等, 2015.浙江浦江新元古界平水群沉积特征、碎屑锆石年龄及构造古地理格局探讨.地质论评, 61(6): 1270-1280. http://d.old.wanfangdata.com.cn/Periodical/dzlp201506007 贾锦生, 曹素巧, 李汉明, 等, 2016.浙西开化地区流纹岩锆石U-Pb年代学、地球化学特征及其地质意义.大地构造与成矿学, 40(4): 787-797. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201604011 简平, 刘敦一, 孙晓猛, 2003.滇川西部金沙江石炭纪蛇绿岩SHRIMP测年:古特提斯洋壳演化的同位素年代学制约.地质学报, 77(2):217-228. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200302010 姜杨, 赵希林, 林寿发, 等, 2014.扬子克拉通东南缘新元古代陆缘弧型TTG的厘定及其构造意义.地质学报, 88(8): 1461-1474 http://d.old.wanfangdata.com.cn/Periodical/dizhixb201408008 姜杨, 赵希林, 邢光福, 等, 2015.扬子陆块东南缘浙江金华地区青白口纪晚期岛弧岩浆活动——来自富铌辉长岩和高镁闪长岩锆石U-Pb年龄和地球化学证据.地质通报, 34(8): 1550- 1561 http://d.old.wanfangdata.com.cn/Periodical/zgqydz201508014 李献华, 李武显, 何斌, 2012.华南陆块的形成与Rodinia超大陆聚合-裂解——观察、解释与检验.矿物岩石地球化学通报, 31(6): 543-559. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201206002 李献华, 王选策, 李武显, 等, 2008.华南新元古代玄武质岩石成因与构造意义:从造山运动到陆内裂谷.地球化学, 37(4): 382-398. http://d.old.wanfangdata.com.cn/Periodical/dqhx200804012 李小伟, 莫宣学, 赵志丹, 等, 2010.关于A型花岗岩判别过程中若干问题的讨论.地质通报, 29(2-3): 278-285. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201002012 李玉琼, 张旗, 王金荣, 等, 2017.全球大陆弧玄武岩(CAB)的特征——与岛弧玄武岩(IAB)和弧后玄武岩(BAB)的对比.地质科学, 52(3): 693-713. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx201703004 廖圣兵, 张彦杰, 周效华, 等, 2014.皖赣相邻地区溪口岩群沉积序列及沉积环境分析.矿产与地质, 28(6): 660-667. http://d.old.wanfangdata.com.cn/Periodical/kcydz201406002 廖圣兵, 张彦杰, 周效华, 等, 2016.皖赣相邻地区双桥山群沉积序列及沉积环境分析.现代地质, 30(1): 130-143. http://d.old.wanfangdata.com.cn/Periodical/xddz201601014 陆慧娟, 华仁民, 毛光周, 等, 2007.赣东北地区岩浆岩同位素年代学研究及地质演化.地质论评, 53(2): 207-216. http://d.old.wanfangdata.com.cn/Periodical/dzlp200702008 马芳, 薛怀民, 2017.浙北湖(州)-安(吉)火山岩盆地:锆石U-Pb年代学、地球化学与岩浆成因.地质学报, 91(2): 334-361. http://www.cnki.com.cn/Article/CJFDTotal-DZXE201702004.htm 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 48(S1):26-30. http://d.old.wanfangdata.com.cn/Periodical/OA000005931 孙赛军, 张丽鹏, 丁兴, 等, 2015.西藏那曲中酸性火山岩的锆石U-Pb年龄、Hf同位素和地球化学特征及岩石成因.岩石学报, 31(7): 2063-2077. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507020 唐增才, 陈忠大, 胡开明, 等, 2018.浙西开化地区新元古代(~828 Ma)弧后盆地扩张——来自类复理石和辉绿岩墙的年代学和地球化学证据.地球科学, 43(S2):1-15. http://www.cnki.com.cn/Article/CJFDTotal-DQKX2018022700A.htm 王存智, 余明刚, 黄志忠, 等, 2016.赣东北蛇绿岩带新元古代(~800 Ma)高镁安山岩的发现及其意义.地质论评, 62(5): 1185-1200. http://d.old.wanfangdata.com.cn/Periodical/dzlp201605007 王剑, 刘宝珺, 潘桂棠, 2001.华南新元古代裂谷盆地演化——Rodinia超大陆解体的前奏.矿物岩石, 21(3): 135-145. http://d.old.wanfangdata.com.cn/Periodical/kwys200103021 吴荣新, 郑永飞, 吴元保, 2005.皖南石耳山新元古代花岗岩锆石U-Pb定年以及元素和氧同位素地球化学研究.高校地质学报, 11(3):364-382. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200503008 吴荣新, 郑永飞, 吴元保, 2007.皖南新元古代井潭组火山岩锆石U-Pb定年和同位素地球化学研究.高校地质学报, 13(2): 282-296. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200702012 薛怀民, 马芳, 宋永勤, 等, 2010.江南造山带东段新元古代花岗岩组合的年代学和地球化学:对扬子与华夏地块拼合时间与过程的约束.岩石学报, 26(11): 3215-3244. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201011006 张恒, 高林志, 李廷栋, 等, 2015.浙西地区新元古代骆家门组SHRIMP锆石U-Pb年龄及其地质意义.地质通报, 34(2-3):447-455. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201502021 张彦杰, 周效华, 廖圣兵, 等, 2010.皖赣鄣公山地区新元古代地壳组成及造山过程.地质学报, 84(10): 1401-1427. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201010003 张彦杰, 周效华, 廖圣兵, 等, 2011.江南造山带北缘鄣源基性岩地质-地球化学特征及成因机制.高校地质学报, 17(3): 393-405. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201103004 赵振华, 王强, 熊小林, 2004.俯冲带复杂的壳幔相互作用.矿物岩石地球化学通报, 23(4): 277-284 http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb200404001 周金城, 王孝磊, 邱检生, 2009.江南造山带形成过程中若干新元古代地质事件.高校地质学报, 15(4): 453-459. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200904003 周效华, 高天山, 马雪, 等, 2014.江南造山带东段鄣源枕状玄武岩的年代学与构造属性研究.资源调查与环境, 35(4): 235-244. http://d.old.wanfangdata.com.cn/Periodical/hsdzykc201404001 周效华, 张彦杰, 廖圣兵, 等, 2012.皖赣相邻地区双桥山群火山岩的LA-ICP-MS锆石U-Pb年龄及其地质意义.高校地质学报, 18(4): 609-622. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201204003 期刊类型引用(4)
1. 朱清波,王存智,靳国栋,赵希林,高天山. 赣东北樟树墩蛇绿构造混杂岩露头解剖及其对华南新元古代洋盆演化的启示. 地质通报. 2022(Z1): 388-397 . 百度学术
2. 麻艺超,蔡永丰,马莉燕,周云,赵锴. 滇西点苍山新元古代斜长角闪岩的成因:来自锆石U-Pb年龄和全岩地球化学的证据. 地球科学. 2021(08): 2860-2872 . 本站查看
3. 张继彪,刘燕学,丁孝忠,张恒,石成龙. 江南造山带东段新元古代登山群年代学及大地构造意义. 地球科学. 2020(06): 2011-2029 . 本站查看
4. 张继彪,丁孝忠,刘燕学,张恒. 扬子西南缘中-新元古代两期岩浆活动年代学及地质意义. 地球科学. 2020(07): 2452-2468 . 本站查看
其他类型引用(2)
-
dqkx-45-1-180-Table1-4.pdf
-