Zircon Geochronology and Hf Isotope Compositions of Biotite Granite in Southeast Ore Section of Zijinshan Ore Field, Fujian Province
-
摘要: 紫金山矿田位于华南褶皱系东部,闽西南凹陷西南部,是我国大型-超大型浅成低温热液铜金矿床,区内发现多个与岩浆活动密切相关的金、银、铜等金属矿床.对紫金山矿田东南矿段与成矿密切相关的细粒黑云母花岗岩开展了详细野外地质调查、岩相学和锆石稀土元素、U-Pb年代学和Hf同位素研究.LA-ICP-MS法获得细粒黑云母花岗岩中岩浆结晶锆石206Pb/238U-207Pb/235U谐和年龄为109.5±1.9 Ma(MSWD=0.74,N=16),206Pb/238U加权平均年龄为107.44±0.94 Ma(MSWD=1.06,N=16),二者在误差范围内结果一致,结合锆石稀土元素和岩浆振荡环带特征及Th/U比值,上述年龄结果可代表岩石的结晶年龄,表明细粒黑云母花岗岩侵位于燕山期早白垩世.细粒黑云母花岗岩锆石Hf同位素初始比值εHf(t)均为负,介于-4.99~-1.06(平均值为-2.99);两阶段Hf模式年龄(tDM2)介于1 233.7~1 485.4 Ma(平均值为1 362.4 Ma).样品的εHf(t)、Hf同位素地壳模式年龄分布范围变化较小,暗示岩体的岩浆来源具有较为均一的锆石Hf同位素组成.紫金山矿田东南矿段早白垩世花岗岩体的锆石U-Pb年龄和Hf同位素特征,反映了闽西南早白垩世的岩浆成矿活动时间和源区特征,其成因与中国东南部岩石圈伸展减薄和壳源物质参与岩浆形成演化密切相关.Abstract: Zijinshan ore field is located in the eastern part of South China fold system, belonging to the Southwest Fujian depression, where develops many large and super-large epithermal Au-Cu-Ag deposits which are closely related with magmatic activities. The study in this paper is based on a detailed research of the fine-grained biotite granite in the southeastern ore section including field geological survey and petrography, zircon rare earth elements, in-situ zircon U-Pb chronology and Hf isotope et al.. The LA-ICP-MS zircon U-Pb dating shows that the 206Pb/238U-207Pb/235U correlated age of the biotite granite is 109.5±1.9 Ma (MSWD=0.74, N=16), and 206Pb/238U weighed age is 107.44±0.94 Ma(MSWD=1.06, N=16), and the two ages are within the error range. According to zircon REE and magmatic oscillatory zoning characteristics and the Th/U ratios, the age can represent the rock crystallization age, which suggests fine-grained biotite granite emplaced in the Early Cretaceous of the Yanshanian epoch. The Hf isotope initial ratio εHf(t) values are negative, ranging from -4.99 to -1.06 (mean value is -2.99). Two stage Hf model ages (tDM2) range from 1 233.7 Ma to 1 485.4 Ma (mean value is 1 362.4 Ma). The εHf(t) and Hf values show small variations in distribution, which implies that magmatic rocks having a more uniform zircon Hf isotope composition. The in-situ zircon U-Pb chronology and Hf isotope show time and source characteristics of Early Cretaceous magmatic activity in south-western part of Fujian Province, which results from the evolution of the extension and thinning, and crust-derived magma substance involved from lithosphere are closely related. In this paper, it provides new evidence on the mineralization and tectonic evolution of the Zijinshan ore field.
-
福建省紫金山矿田位于华南褶皱东部,闽西南坳陷的西南部,行政区域上处于福建省龙岩市上杭县,是我国著名的大型-超大型Cu-Au多金属矿田,矿床面积约4.3 km2.紫金山矿田在中生代发生拉张、地幔上涌的构造作用下,燕山期花岗岩侵入作用过程中形成了大规模的构造-岩浆-成矿活动,形成了由英安玢岩、石英斑岩、英安质、花岗质隐爆角砾岩和角砾状凝灰岩等为中心的火山岩-次火山侵入岩,形成了一套斑岩-浅成低温热液成矿系统(张德全等, 2001, 2003, 2005;毛建仁等,2002;黄仁生,2008;王少怀等,2009;邱小平等,2010;胡春杰等,2012;黄文婷等,2013;Jiang et al., 2013).紫金山矿田自西南向北东方向,发育了悦洋大型Ag多金属矿(低硫化)、紫金山大型-超大型Cu-Au矿(高硫化)浅成低温热液型矿床以及斑岩型罗卜岭Cu-Mo矿床,在中间地带出现过渡型矿床,包括了罗卜岭、悦洋、五子骑龙、大岩里、二庙沟、龙江亭等与矿床成因密切相关的一系列中、小型矿床(图 1)(张德全等, 2001, 2003;王少怀等,2009;胡春杰等,2012;黄文婷等,2013;李斌等,2013).前人对紫金山矿田开展过大量的岩石学、岩石地球化学及年代学研究,众多学者对不同岩体的年代学特征、分布范围,以及岩体对矿床的控制和影响作用方面的认识存在着一定的差异(张德全等,2001;毛建仁等,2002;胡春杰等,2012;肖爱芳等,2012;黄文婷等,2013;李斌等, 2013, 2015;王翠芝,2013;于波等,2013).总体看来, 前人针对与成矿矿体密切相关的花岗岩围岩的锆石开展了U-Pb和Hf同位素测试工作,但是对与成矿关系密切的黑云母花岗岩研究相对欠缺.因此,为了更好地讨论和约束紫金山矿田花岗岩体对不同类型矿床成矿的控制、影响作用,本文选取了紫金山矿田东南矿段与成矿密切相关的黑云母花岗岩进行了精确的LA-ICP-MS锆石U-Pb测年和Hf同位素组成研究,不仅有助于加深紫金山矿田基础地质研究程度,也能有效讨论和约束岩体对矿床的成矿作用和成矿时代,对讨论矿田内中生代岩浆源区及演化特征,和识别紫金山矿田的构造属性和多金属矿床形成和演化过程也有重要意义.
近年来,随着现代地球化学测试技术的日益提升,运用高精度离子探针质谱仪(SHRIMP)和激光剥蚀电感耦合等离子质谱仪(LA-ICP-MS)等技术方法对紫金山的部分岩体进行了锆石U-Pb定年,厘定了多个岩体的年龄(赵希林,2007;胡春杰等,2012;黄文婷等,2013;李斌等, 2013, 2015;Jiang et al., 2013;于波等,2013;Li and Jiang, 2014;Zhong et al., 2014;Sun et al., 2015;Li et al., 2017;Duan et al., 2017;Jiang et al., 2017;Wang et al., 2017, 2018).为了有效地约束紫金山矿田东南矿段成矿矿体花岗岩围岩的成岩时代与岩浆来源,本文对紫金山矿田东南矿段PT-720平台开展了详细的野外地质调查,并对平台中发育的浅肉红色细粒黑云母花岗岩开展了锆石原位U-Pb测年和Hf同位素分析等研究工作,初步确定东南矿段细粒黑云母花岗岩体的侵位时代为早白垩世,岩浆来源主体为壳源,成因可能是在中国东南部受太平洋动力学体系的相互作用下,在东南沿海地区发生拉张伸展、地壳减薄、下部地壳部分熔融形成花岗质岩浆.
1. 区域地质概况
福建省紫金山金铜矿田位于华夏地块闽西南坳陷带的西南部,处于北东向宣和复背斜和云霄-上杭北西向深断裂交汇处,区域上受到北西向深断裂的影响,不同期次的构造和岩浆活动控制和影响了区内的成矿、蚀变作用(王少怀等,2009;张文媛和王翠芝,2014).区内出露地层自下而上包括:新元古界楼子坝群浅海相粉砂质、绢云母千枚岩,晚泥盆统天瓦岽组和桃子坑组浅海-滨海相碎屑岩沉积地层、早石炭世林地组下段海相石英砂砾岩和晚石炭世船山组海相泥晶灰岩,下白垩统石帽山群下段喷发火山碎屑、英安岩和复成分砂砾岩,第四系砂砾岩.
紫金山矿田构造主要受控于北西向宣和复式背斜,由震旦系和古生界地层组成,整体呈北东向展布(王少怀和裴荣富,2007),区内断裂构造较发育,主要为北东向和北西向两组,其次为北北东向、近东西向次级断裂和少量近东西向、南北向次一级断裂,整体上处于武夷山成矿带中生代陆缘岩浆弧构造环境(图 1)(邱小平等,2010).矿田内主要发育了两期侵入体,晚侏罗世侵入体的分布主要受控于前白垩纪具陡倾性质的复背斜轴向断裂及其控制的次级断裂(张德全等,2003),白垩纪火山岩-侵入岩岩浆作用和成矿活动主要受控于北西向断裂(陈静等,2011).矿田内发育的断裂和岩浆活动,是矿床形成过程中重要的导矿和容矿构造(王少怀等,2009;Zhong et al., 2014;Sun et al., 2015; Wang et al., 2017, 2018).紫金山东南矿段矿床容矿构造主要由紫金山复式岩体组成,由早-中侏罗世的中酸性岩浆侵入到北西向上杭-云霄与北东向宣和复背斜交汇处,而形成规模较大的岩基(图 2a).晚侏罗世-早白垩世,不同规模和岩性的花岗岩体侵入到受北西向、北东向断裂(图 2b, 2c)与火山机构双重控制的岩体中,形成了紫金山铜多金属高硫浅成低温热液矿床.经过前期的勘探和开采证实,铜金矿床位于紫金山复式岩体的中部,与二庙沟岩体、迳美岩体以及矿区中不同期次的岩体侵入到断裂交汇部分密切相关;由于受多期岩浆、矿化热液的共同作用,成矿条件复杂,由此所产生的围岩蚀变也很强烈.金矿床主要分布于浅水面以上(>600 m),与低温硅化密切相关,大部分金矿体的分布受控于硅化帽,而少量的原生金呈分散状态分布于硫化物中;紫金山金铜矿受多期矿化热液作用,围岩蚀变强烈.金矿主要分布于潜水面以上,与区内低温硅化密切相关,大部分金矿体的空间分布受硅化帽控制,部分原生金矿呈分散状态赋存于硫化矿物中;铜矿主要分布于潜水面以下,与明矾石化、硅化关系密切,形成“上金下铜”的局面,截至目前其底界尚未得到很好的约束(张文媛和王翠芝,2014).
图 2 紫金山矿田东南矿段细粒黑云母花岗岩的野外宏观露头照片(a~d)和镜下照片(e, f)a.紫金山矿田东南矿段整体状况;b.蓝辉铜矿化、黄铁矿矿化花岗岩体,发育一组北北西向节理;c.岩体中发育北北西-北北东向两组近垂直节理;d.浅肉红色细粒黑云母花岗岩;e.花岗岩,细粒花岗结构;f.具环带结构的斜长石交代聚片双晶斜长石.矿物缩写:Qtz.石英;Kfs.钾长石;Pl.斜长石;Bt.黑云母;Chl.绿泥石;Zr.锆石;Ap.磷灰石Fig. 2. Outcrop (a-d) and microscope images (e, f) the granite in southeast ore section of Zijinshan ore field矿区内花岗岩体露头发育良好,侵入体与围岩的内接触带发生强烈矿化,接触面呈港湾状,矿石矿物主要由铜矿、蓝辉铜矿、黄铁矿和褐铁矿化等组成,次要矿物由铜蓝、斑铜矿、闪锌矿和方铜矿等组成;侵入体与围岩外接触带发生强烈蚀变,主要由硅化、地开石化、明矾石化、绢云母化等组成;岩体发育了北北西节理和北北西-北北东向两组近垂直的节理(图 2b, 2c).本次采集的岩石标本为外接触带未发生蚀变且与蓝辉铜矿密切相关的细粒黑云母花岗岩,岩石整体呈现为浅肉红色,细粒花岗结构,块状构造(图 2d).矿物粒径在0.5~1.5 mm不等,主要矿物成分为斜长石15%~28%、钾长石34%~ 50%、石英20%~28%和黑云母7%~10%,副矿物主要有锆石、磷灰石等(图 2d).
岩体的围岩地层主要为区域伸展地球动力学机制下形成的白垩纪岩浆岩(张德全等, 2001, 2003;Sun et al., 2015;Jiang et al., 2017),在地表先后形成了早白垩世石帽山群火山岩、紫金山火山岩筒中的英安玢岩、隐爆角砾岩和浅成的四坊岩体,以及在紫金山-罗卜岭地区形成的铜钼矿化的花岗闪长斑岩(肖爱芳等,2012).在不同构造位置上,二者的接触界面和界线都有一定的差异,在露天采场西南部可见紫金山东南矿段花岗岩体不整合下伏于石帽山群下段流纹岩和熔结火山角砾岩;在二庙沟剖面东北侧,石帽山群不整合覆于下震旦统楼子坝群之上,而花岗岩体不整合侵入到石帽山群上段肉红色流纹岩、流纹斑岩(张德全等,2003;肖爱芳等,2012).
2. 样品描述及分析方法
紫金山矿田东南矿段细粒黑云母花岗岩样品的采样位置为东南矿段PT-720平台,因为矿区位置为保密地点,因此经纬度坐标不能公开公布.细粒黑云母花岗岩为紫金山矿田成矿元素的主要富矿围岩,隐爆角砾岩沿着北北东-北北西两组断裂、及其相互交叉部分和次一级裂隙充填,形成了一系列透镜状、脉状和条带状矿体.岩石薄片磨制在紫金矿业集团低品位难处理黄金资源综合利用国家重点实验室完成,在福州大学福建省矿产资源中心实验室蔡司Axioskop40偏光显微镜下进行薄片鉴定、照相等.区内断裂构造较发育,主要为北东向和北西向两组,其次为北北东向、近东西向次级断裂和少量近东西向、南北向次一级断裂.
样品薄片下定名为细粒黑云母花岗岩.岩石呈浅肉红色碎裂状细粒花岗岩,块状构造,主要矿物成分为石英13%~18%,钾长石38%~43%,斜长石20%~25%,黑云母1%~5%及少量副矿物.石英呈他形粒状,粒度较小,不均匀分布于其他矿物颗粒之间,因为磨制后的薄片厚度超过0.3 mm,部分石英的干涉色呈现为黄色(图 2e, 2f);钾长石呈半自形-自形结构,内部含少量石英颗粒和斜长石,主要为条纹长石和正长石(图 2e, 2f);斜长石主要成分为An牌号在30~33的中长石,少量为30左右的更长石,多呈半自形板片状-长柱状,粒径0.6~2.0 mm之间,聚片双晶发育,环带结构少见,表面发育不同程度的绢云母化和绿泥石化(图 2e, 2f).黑云母呈细粒他形集合体条带状分布在斜长石和钾长石矿物颗粒之间,边部受到不同程度的绿泥石化.矿物粒径2~6 mm,均值为3 mm,副矿物组合为磁铁矿、榍石、锆石、磷灰石等.用于U-Th-Pb同位素测定的锆石单矿物分选由河北省区域地质矿产调查研究所完成,原岩样品新鲜,重约5 kg.将分离出来的锆石在双目镜下挑出无裂隙、无包体、透明度好的颗粒,用环氧树脂固定、打磨、抛光至锆石中心部位暴露出来,然后透射光、背射光照相和阴极发光(CL)显微结构照相均在南京大学内生金属矿床成矿机制研究国家重点实验室完成.通过CL镜下对比和分析,选择锆石晶形完好、无裂隙、环带清晰的颗粒进行锆石U-Pb年龄和Hf同位素组成的测试分析.
锆石U-Pb同位素测试分析在南京大学内生金属矿床成矿机制研究国家重点实验室完成,仪器为第二代LA-ICP-MS测试仪,激光剥蚀系统为GeoLas 2005,激光束斑直径为32 μm,激光剥蚀样品的深度为20~40 μm,详细的实验原理和流程参数见袁洪林等(2003)和Yuan et al.(2004).进行锆石同位素比值和年龄计算时,采用与未知样品交替测得的标准锆石91500的值为外标进行校正(Wiedenbeck et al., 1995),元素含量采用美国国家标准物质局人工合成的硅酸盐玻璃NIST SRM610作为外标.采样方式为单点剥蚀,数据采集选用一个质量峰一个点的跳峰方式(peak jumping),每测试5个样品分析点重新测试一次标准样,以此保证标样和样品的仪器条件一直处于良好的状态.以29Si作为内标元素进行校正,样品的同位素比值和元素含量数据处理采用GLITTER(4.0版,Macquarie University)软件,并采用Andersen程序(Andersen,2002)软件对测试数据进行普通铅校正,年龄计算及谐和图绘制采用ISOPLOT(2.49版,Ludwing,2003)软件完成.
锆石Hf同位素分析在南京大学内生金属矿床成矿机制研究国家重点实验室完成,采用Neptune多接收ICP-MS配套的New wave UP-213+Geolas193激光剥蚀系统.分析时采用激光的束斑直径为44 μm,激光脉冲频率为8 Hz,以氦气作为载气.为了校正176Lu和176Yb对176Hf的干扰,取176Lu/175Lu=0.026 58和176Yb/173Yb=0.796 218作为定值,分别采用172Yb/173Yb=1.352 74,179Hf/177Hf=0.732 5对Yb和Hf的同位素比值进行指数归一化质量歧视校正,Lu的质量歧视和Yb一致(Chu et al., 2002).详细分析步骤可参见Wu et al.(2006)和侯可军等(2007).
3. 锆石U-Pb测年及Hf同位素特征
通过详细对比分析锆石的透射光、反射光和阴极发光照片,选择了锆石样品中晶体形态相似、晶体形态发育完整,并且内部结构形态清晰、振荡环带发育的长柱状、粒状自形锆石颗粒,并且锆石测试部分无包裹体、无裂隙以及无杂质的部位进行U-Th-Pb同位素测试分析.锆石LA-ICP-MS U-Th-Pb同位素测试分析的阴极发光图像见图 3,同位素测试分析结果见附表1,锆石206Pb/238U-207Pb/235U同位素谐和年龄图见图 4a,锆石稀土元素的球粒陨石标准化图见图 4b(锆石中稀土元素含量未在本文中列出).锆石Hf同位素测试点的分布位置见阴极发光图 3,为了保证Hf同位素分析数据的代表性,选择测点时尽量邻近U-Th-Pb同位素测试点,Hf同位素分析结果见表 1.
图 4 紫金山矿田东南矿段花岗岩锆石U-Pb谐和图(a)和锆石稀土元素球粒陨石标准化图(b)球粒陨石标准数据采用Sun and McDonough(1989)Fig. 4. Zircon 207Pb/235U-206Pb/238U concordia diagram and 206Pb/238U weighed average age (a), chondrite-normalized REE patterns diagram (b) of southeast ore section in Zijinshan ore field表 1 闽西南紫金山矿田花岗岩LA-MC-ICP-MS锆石原位Lu-Hf同位素组成分析结果Table Supplementary Table LA-MC-ICP-MS in-situ analyses of zircon Lu-Hf isotopic composition of the Zijinshan granites, Southwest Fujian Province测点 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(t) tDM1(Ma) tDM2(Ma) fLu/Hf 比值 2σ 比值 2σ 比值 2σ 14CL01 171.9 0.025 621 0.000 265 0.001 236 0.000 013 0.282 609 0.000 019 -2.1 916.0 1 353.8 -0.96 14CL02 107.8 0.030 448 0.000 585 0.001 439 0.000 022 0.282 590 0.000 019 -4.2 947.3 1 433.9 -0.96 14CL03 110.8 0.032 544 0.000 463 0.001 500 0.000 020 0.282 607 0.000 023 -3.5 925.4 1 395.4 -0.95 14CL04 108.5 0.040 784 0.001 013 0.001 881 0.000 040 0.282 624 0.000 023 -3.0 910.5 1 360.1 -0.94 14CL05 106.6 0.031 269 0.000 428 0.001 504 0.000 020 0.282 594 0.000 020 -4.1 943.7 1 426.6 -0.95 14CL06 107.1 0.028 901 0.000 232 0.001 341 0.000 011 0.282 665 0.000 021 -1.5 838.3 1 265.2 -0.96 14CL07 106.7 0.023 936 0.000 467 0.001 166 0.000 020 0.282 626 0.000 019 -2.9 889.6 1 352.5 -0.96 14CL08 106.5 0.040 713 0.003 581 0.001 753 0.000 138 0.282 568 0.000 021 -5.0 987.1 1 485.7 -0.95 14CL09 104.1 0.045 229 0.000 987 0.002 071 0.000 044 0.282 644 0.000 021 -2.4 885.4 1 317.2 -0.94 14CL10 108.7 0.056 805 0.004 055 0.002 553 0.000 170 0.282 625 0.000 022 -3.0 925.8 1 360.4 -0.92 14CL11 110.5 0.025 336 0.000 206 0.001 187 0.000 010 0.282 608 0.000 021 -3.5 916.4 1 392.2 -0.96 14CL12 105.1 0.029 219 0.000 678 0.001 394 0.000 037 0.282 679 0.000 021 -1.1 819.4 1 234.8 -0.96 14CL13 109.4 0.033 660 0.000 467 0.001 630 0.000 025 0.282 631 0.000 021 -2.7 894.2 1 342.6 -0.95 14CL14 106.1 0.039 611 0.000 532 0.001 825 0.000 024 0.282 604 0.000 021 -3.7 937.8 1 406.0 -0.95 14CL15 109.2 0.026 562 0.000 930 0.001 251 0.000 041 0.282 636 0.000 021 -2.5 878.6 1 330.7 -0.96 14CL16 104.4 0.018 377 0.000 226 0.000 879 0.000 009 0.282 595 0.000 019 -4.0 926.8 1 423.1 -0.97 14CL17 108.2 0.031 557 0.001 055 0.001 520 0.000 044 0.282 661 0.000 020 -1.7 848.6 1 275.1 -0.95 3.1 锆石晶体形态及阴极发光照片特征
阴极发光照片显示细粒黑云母花岗岩样品锆石颗粒(图 3)颜色近于无色,锆石颗粒绝大部分是自形程度较好的长柱状,少部分为粒状,锆石形态相似,具有明显的核部和较好的岩浆振荡环带结构,为典型岩浆成因(简平等,2001;Belousova et al., 2002;Wu and Zheng, 2004;Harley and Kelly, 2007).锆石核部成因较复杂,主要由岩浆成因、变质作用等复杂原因形成,如3,4和14号锆石.极少部分锆石发生了后期破碎作用,如9,11~13号锆石.锆石粒径多在120~150 μm之间,部分粒径可达200 μm以上,如1,4,10和14号锆石.锆石长短轴比一般在2:1~1:1之间,少量的锆石颗粒长短轴比达到3:1.反射光下显示大部分锆石颗粒表面较为干净,部分锆石颗粒含有矿物包裹体,如2,10号锆石;部分锆石有裂隙,如8号锆石.
3.2 锆石U-Pb年代学特征
阴极发光照片显示,U-Pb同位素测试点全部清晰且具有均一的岩浆振荡环带(图 3),为典型的岩浆成因锆石(简平等,2001;Belousova et al., 2002;Wu and Zheng, 2004;Harley and Kelly, 2007).除掉由于锆石形成过程中Pb不同程度丢失而造成206Pb/238U-207Pb/235U年龄谐和度较差,以及锆石核部成因较复杂的测点数据后,对所有数据处理采用Glitter 4.0软件,206Pb/238U-207Pb/235U谐和年龄和206Pb/238U加权平均年龄均使用ISOPLOT(2.49版,Ludwing,2003)软件处理.
对东南矿段细粒黑云母花岗岩样品中的17颗锆石进行U-Th-Pb同位素测试(加权平均年龄排除了核部年龄1个点,见图 3中的测点1,测点数据见附表1中的14CL01点),锆石中Th、U含量变化范围不大,Th含量为327×10-6~923×10-6,平均为482×10-6; U含量为552×10-6~1 426×10-6,平均为792×10-6(附表1);Th/U比值平均值为0.61,只有一个值小于0.51(为0.35),其他值介于0.51~0.94(附表1),具有岩浆锆石的特点,Th和U的相关系数为0.54(图略).锆石稀土元素与球粒陨石标准化图显示(图 4b),稀土元素分布较为均一,并且HREE较为富集,具有明显的正Ce异常和适度的Eu负异常.校正后获得锆石的206Pb/238U年龄在104.1~110.8 Ma之间,年龄数据比较集中,206Pb/238U加权平均年龄为107.44±0.94 Ma(MSWD=1.06,N=16)(图 4a);在206Pb/238U-207Pb/235U一致曲线上均接近于谐和线,交点年龄为109.5±1.9 Ma(MSWD=0.74,N=16)(图 4a);在误差范围内,二者的年龄基本一致.结合岩浆振荡环带特征(图 3),锆石稀土元素数据成图(图 4b)和U-Pb同位素年龄,上述年龄结果代表了岩体的结晶年龄,为早白垩世阿尔布期.
3.3 锆石的稀土元素特征
在完成锆石U-Th-Pb含量测试之后,结合锆石阴极发光图像,对该测点的邻近区域也测试了锆石颗粒的稀土元素(微量元素)含量(表 2).锆石样品所有测点的稀土含量在626.25×10-6~1 700.56×10-6之间,重稀土元素含量总体较高,轻重稀土元素比值在0.03~0.13之间,平均值为0.05,轻重稀土比值为明显的Ce正异常,均值为146.97,中等的负Eu异常,均值为0.45(表 2).在稀土元素球粒陨石标准化图解上显示出较陡左倾的图谱特征(图 4b),重稀土元素从Gd到Yb呈现出递增的特征.所有的数据都具有明显的Ce元素正异常,中等的Eu元素负异常,这些特征与典型的岩浆锆石稀土元素组成特征一致(耿元生和周喜文,2011).一般认为,锆石样品稀土元素中Ce元素正异常与岩浆在氧化状态中该元素较其他元素更易进入晶格密切相关,Ce异常也与成矿环境中氧逸度和锆石结晶温度有关(Pettke et al., 2005; Liang et al., 2006;Bolhar et al., 2008;Trail et al., 2012;Burnham and Berry, 2012).Eu的负异常则与锆石形成过程中长石的结晶作用相关,先结晶的长石斑晶优先获得了岩浆熔体中的Eu,因此后结晶的锆石中Eu元素含量减少(Hoskin and Schaltegger, 2003;耿元生和周喜文,2011).
表 2 闽西南紫金山矿田东南矿段花岗岩锆石LA-ICP-MS稀土元素数据Table Supplementary Table Rare earth elements measured by LA-ICP-MS from southeast ore field of Zijinshan granite zircons, Southeast Fujian Province测点 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 14CL01 0.09 39.63 0.38 6.35 11.44 2.31 52.59 18.17 208.44 77.48 340.77 74.99 740.58 127.34 14CL02 19.06 64.24 4.83 20.19 4.53 1.58 13.28 5.00 64.77 28.73 152.12 40.63 473.54 100.59 14CL03 1.05 25.40 0.30 1.93 1.53 0.71 9.40 3.34 45.30 20.29 109.88 28.99 343.53 72.92 14CL04 0.01 32.78 0.05 0.69 1.81 1.03 11.96 4.54 56.03 23.25 119.09 30.58 349.96 71.39 14CL05 0.01 22.92 0.02 0.71 1.39 0.76 9.33 3.53 46.53 20.43 105.34 27.14 321.66 66.47 14CL06 0.02 20.10 0.02 0.31 1.30 0.72 8.09 3.26 44.02 19.42 104.37 28.32 328.81 70.64 14CL07 0.14 23.93 0.08 0.50 1.63 0.64 8.86 3.65 48.97 21.58 115.54 30.40 355.93 76.69 14CL08 0.01 26.29 0.02 0.56 1.68 0.70 9.66 4.14 55.71 25.12 134.03 35.37 412.69 90.32 14CL09 0.01 32.52 0.03 0.60 1.94 1.03 12.44 5.16 69.38 32.40 172.63 44.97 524.85 113.56 14CL10 0.01 22.30 0.03 0.63 1.05 0.68 9.16 3.41 46.87 19.90 102.18 26.68 308.49 65.70 14CL11 0.06 29.08 0.05 0.65 1.42 0.96 11.25 4.29 59.90 27.13 145.66 38.45 455.44 99.39 14CL12 0.02 22.65 0.02 0.53 1.13 0.70 9.55 3.65 48.37 21.14 114.12 29.24 352.29 76.63 14CL13 0.04 23.58 0.02 0.59 1.22 0.67 9.50 3.52 47.74 21.33 113.13 29.28 343.91 76.52 14CL14 0.72 38.14 0.27 1.44 2.71 1.16 16.72 6.49 85.44 37.32 195.60 49.63 554.49 119.83 14CL15 0.26 22.56 0.15 1.18 1.42 0.78 9.57 4.09 55.63 24.38 132.97 35.64 423.28 93.75 14CL16 0.03 25.25 0.04 1.04 2.45 1.26 14.66 5.63 73.90 32.88 174.94 46.04 539.69 124.65 14CL17 0.01 30.33 0.03 0.80 1.74 0.74 9.70 3.93 52.39 22.63 119.27 30.76 356.40 80.34 3.4 锆石Hf同位素
对细粒黑云母花岗岩锆石样品U-Th-Pb同位素测试的邻近点也进行了Lu-Hf同位素分析,εHf(t)值和两阶段模式年龄用岩体的谐和年龄计算.样品17个测点的176Lu/177Hf比值介于0.000 879~0.002 553,平均值为0.001 537,平均值小于0.002,表明锆石在形成之后具有极低的放射性成因Hf积累,因此测定的176Hf/177Hf比值基本可以代表锆石结晶时体系的Hf同位素组成(吴福元等,2007;孙金凤等,2009).样品的176Hf/177Hf值介于0.282 568~0.282 679,加权平均值为0.282 621±0.000 015,锆石Hf同位素初始值εHf(t=107.1 Ma)均为负值,介于-5~-1.1,平均值为-2.99,显示了较为均一的Hf同位素组成;锆石Hf同位素单阶段“亏损地幔”模式年龄(tDM1)介于819.4~987.1 Ma,平均年龄为905.35 Ma;锆石Hf同位素两阶段“地壳”模式年龄(tDM2)介于1 234.8~1 485.7 Ma,平均年龄为1 362.08 Ma.由两阶段Hf模式年龄(tDM2)和εHf(t)直方图可以看出(图 5),εHf(t)主体分布于-4~-2范围区间,tDM2主体分布1 300~1 500 Ma范围区间,源岩时代为中元古代.
4. 讨论
4.1 岩体形成与成矿年代学讨论
前人对紫金山矿田不同地区的岩体开展过研究,认为矿田主要经历了以下几个构造阶段的岩浆活动和成矿阶段.早古生代(>154 Ma)的陆内挤压阶段,元古代基底发生重熔形成岩浆房(陈国能, 1998, 2011;于波等,2013;陈国能等, 2015a, 2015b;Duan et al., 2017;Jiang et al., 2017).随着挤压应力造成上地壳褶皱变形,岩浆房内的岩浆多次向上侵位,形成了不同期次和不同规模的岩体.岩浆可以分为两个体系,分别为晚侏罗世花岗岩和白垩纪火山-侵入杂岩,其中晚侏罗世花岗岩形成于陆内挤压造山构造背景(张旗, 2013, 2014).前人通过锆石TIMS U-Pb法获得迳美岩体年龄为145±12 Ma(毛建仁等,1998),全岩Rb-Sr等时线法为157±7.3 Ma(张德全等,2001),锆石SHIMP法获得的年龄为154±2 Ma(于波等,2013)和150±3 Ma(赵希林等,2007),锆石LA-ICP-MS法获得的年龄为163.5±1.8 Ma(李斌等,2015).紫金山岩体SHRIMP U-Pb年龄为168 ±9.6 Ma(赵希林等,2008),才溪岩体锆石的SHRIMP U-Pb年龄和LA-ICP-MS U-Pb年龄分别为150±3 Ma(赵希林等,2007)和146.4±8.6 Ma(胡春杰等,2012),基本处于同一阶段.
前人曾对区内矿物的成矿年代进行了一定程度的研究,获得了近矿围岩全岩Rb-Sr等时线年龄为127±3 Ma,钻孔内中粗粒花岗岩Rb-Sr年龄为118±2 Ma,为第1期矿化作用年龄(陈好寿,1996).前人曾对二庙沟的英安玢岩锆石进行U-Pb年代学研究,证实其形成年龄为105.7±1.5 Ma(邱检生等,2008;李斌等,2013);五子骑龙矿区钾硅酸盐化蚀变及Cu(Mo)矿化年龄,其蚀变绢云母坪年龄记录了铜-硫化物矿化的年龄为102.53±1.50 Ma(张德全等,2005),紫金山金铜矿与金矿化相关的石英流体包裹体Rb-Sr年龄约为100±3 Ma(陈好寿,1996).同时,也证实了罗卜岭斑岩体的辉钼矿形成年龄为104.9±1.6 Ma(梁清玲等,2012);与铜伴生的明矾石K-Ar年龄为103.86 Ma(周肃和陈好寿,1996),石英闪长岩、钻孔中的英安玢岩等的Rb-Sr等时线年龄为102±9 Ma,二长花岗岩年龄为105 Ma,本文测试的黑云母细粒花岗岩的锆石LA-ICP-MS U-Pb结晶年龄为107.3 ±1.3 Ma,二者形成年龄处于同一阶段.
因此,可以推测矿床主要包括两期岩浆活动,成岩作用分别发生于晚侏罗世和早白垩世,而成矿作用发生在早白垩世.因此,厘定早白垩世紫金山东南矿段成岩成矿作用序列如下:在107 Ma左右黑云母花岗岩侵入,并随后发生强烈的蚀变和矿化;100 Ma左右,石英闪长岩、英安玢岩等的侵入,成岩成矿作用近乎结束.因此,成岩岩体的形成年龄要早于两期矿化蚀变的年龄,进一步证实了区内早白垩世岩体对成岩成矿的控制影响作用.
4.2 岩体部分熔融条件讨论
在岩浆结晶过程中,可以利用锆石饱和温度计计算锆石饱和岩石的初始岩浆温度(Miller et al., 2003).根据锆石微量元素测试中获得Ti元素的含量可以有效计算初始岩浆的温度(Watson and Harrison, 2005; Watson et al., 2006; Ferry and Watson, 2007).同时,锆石微量元素测试中获得REE和Y等提供锆石形成的环境信息、重建岩浆历史、反演岩浆源区性质.而锆石Ti含量温度计则是近几年刚提出的微量元素温度计,并被应用于不同成因的锆石中(Watson and Harrison, 2005;Watson et al., 2006;Ferry and Watson, 2007;Page et al., 2007;Baldwin et al., 2007;Harrison et al., 2007;Hiess et al., 2008;Fu et al., 2008;Anderson et al., 2008;Liu et al., 2010;Zheng, 2011;Sun et al., 2015;Duan et al., 2017).前人根据锆石中Ti含量分别计算出了二庙沟岩体的形成温度分布区间介于567~969 ℃,平均值为728 ℃(中值为757 ℃);迳美岩体的形成分布区间比较大,介于634~831 ℃,中值为770 ℃(平均值为780 ℃)(李斌等,2013);而紫金山矿区东南矿段中细粒黑云母花岗岩的形成温度介于591~716 ℃,中值为633 ℃(平均值为634 ℃),明显要低于二庙沟、迳美岩体的形成温度,岩体形成温度可能代表了紫金山东南矿段矿体的围岩温度,由此可能揭示东南矿段黑云母花岗岩的低成岩温度有利于矿床形成.
锆石矿物最高的封闭温度可达900 ℃,并且在岩浆结晶的早期形成,因此可利用锆石的饱和温度来探讨岩浆形成的早期温度.在CL图像扫描和同位素测年工作中发现,紫金山矿田各个岩体锆石中都存在继承锆石或独立的锆石核部现象,说明紫金山东南矿段岩体的形成温度相对较低,早期形成的锆石矿物只是发生了部分熔融(Chen et al., 2003;陈国能,2011;阮诗昆和曾文灿,2014;Li and Jiang, 2014;Zhong et al., 2014).因此,紫金山东南矿段中细粒黑云母花岗岩锆石所计算出来的岩体温度即可代表形成温度.本文所测试的Hf同位素结果也揭示了岩体主要来自于地壳组分的部分熔融条件.
4.3 岩石成因及成矿
锆石是花岗岩中常见的副矿物,不但具有封闭温度高、抗风化能力强的特点,而且是研究U-Pb、Hf同位素定年和岩浆来源的重要对象.紫金山矿田各个岩体的花岗岩中,含少量或不含黑云母,含白云母居多,同时未见堇青石矿物,通过锆石饱和温度计算的温度介于633~770 ℃,主要来源为陆壳岩石的含水深熔作用,表明其属于白云母花岗岩(李斌等,2015).紫金山岩体的Hf模式年龄比较年轻,印证了华夏古老变质岩参与岩浆的形成过程(赵希林等,2013;李斌等,2015;Duan et al., 2017).主量元素(FeO、MgO)、微量元素(Ni、Cr和V)和Nd同位素特征也揭示,紫金山岩体没有接受幔源组分的参与,主要受到了后期热液蚀变作用(Rollinson, 1993;Frietsch and Perdahl, 1995; Zhou and Li, 2000;Zhou et al., 2006; Chen et al., 2008; He and Xu, 2012;Meng et al., 2013;李斌等,2013; 赵禹等,2014;李斌等,2015;Duan et al., 2017).紫金山矿田各个岩体的物质来源可能相同,但是主量元素、微量元素受到分离结晶的控制和影响作用(李斌等, 2013, 2015;赵禹等,2014;张旗,2014;Li et al., 2017).而岩浆演化过程中,紫金山岩体发生不同程度的钾长石分离结晶作用,并且褐帘石和独居石控制了岩体的轻稀土含量变化(李斌等, 2013, 2015).
紫金山地区的岩浆活动与成矿作用密切相关,前人对此做出了卓有成效的研究.研究表明,紫金山矿床与早白垩世岩体侵入及次火山活动相关,形成了典型的浅成低温热液高硫化物多金属矿床(张德全等,2003;毛建仁等,2004;毛景文等,2004;Jiang et al., 2013;王翠芝,2013;张文媛和王翠芝,2014;Duan et al., 2017).Sr-Nd-Pb同位素测试表明,早白垩世花岗闪长岩和火山岩主要来源于壳幔熔体混合产物(沈渭洲等,2000;谢昕等,2005;徐夕生和谢昕,2005;Jiang et al., 2013).本文锆石Hf同位素特征表明,二阶段模式年龄显示为中元古生代基底,与前人通过火山岩测试所获得的结果一致(梁清玲等,2013;李斌等,2013).二阶段模式年龄是岩浆发生壳幔分异的时代的重要依据(吴福元等,2007),本文认为紫金山地区中生代岩浆源区与中元古代基底物质密切相关,岩浆的侵入作用对矿床的形成影响重大,同时也揭示了Hf同位素特征对岩体源区的示踪具有较大的优越性.
研究认为,紫金山地区经历了中-晚侏罗世、早白垩世期间复杂的构造运动控制和影响作用,普遍认为古太平洋板块向欧亚板块俯冲经历了中-晚侏罗世和早白垩世两期古洋壳自西南向东北方向的俯冲作用,第1阶段的俯冲作用使地幔物质上涌和古洋壳物质加入,并与古元古代基底物质形成混合岩浆区;第2阶段古洋壳继续俯冲,形成了复杂的壳幔作用过程,具有幔源物质和古元古代物质随岩体侵入年代变新而逐渐减少的特征(谢昕等,2005;徐夕生和谢昕,2005;Zhou et al., 2006;Li et al., 2007;舒良树,2012;李斌等,2013;Li and Jiang, 2014;Jiang et al., 2017;Duan et al., 2017).而紫金山黑云母花岗岩的形成阶段就处于后期作用阶段,缺少了幔源物质的加入,完全是在岩浆的原地重熔作用下形成(陈国能,2011; 陈国能等, 2015a, 2015b).源区物质的变化说明了紫金山矿田在早白垩世期间,俯冲作用减弱或者古洋壳向陆壳俯冲方向、角度或者速率发生了较大规模的改变(Engebretson et al., 1985;Northrup et al., 1995; Ren et al., 2002; 舒良树,2012).
紫金山矿田东南矿段黑云母花岗岩结晶形成于早白垩世,具有火山弧花岗岩或活动大陆边缘花岗岩的特征,与矿田内的多金属矿产成矿事件密切相关,可能与早期地幔物质的上涌相关.前人研究证实,紫金山地区的多金属元素的成矿物质主要来源于地幔,而早白垩世的花岗质岩体是含矿母岩,或者说成矿年代与岩体的结晶年代基本一致(毛建仁等,2004;毛景文等,2004;谢昕等,2005;李斌等,2013;Zhong et al., 2014;Li et al., 2017;Jiang et al., 2017;谢其锋等,2017).研究同时表明,福建省东南沿海地区在燕山晚期遭受了古太平洋板块向欧亚板块不同规模、不同阶段的多期次俯冲作用,导致欧亚板块弧拉张、岩石圈减薄和地幔物质上涌(徐夕生和谢昕,2005;陈国能等,2015a),形成大规模的岩浆活动以及Au、Cu和Ag等大规模的多金属矿产(毛景文等,2004).因此,本文认为紫金山矿田东南矿段早白垩世的成矿作用与幔源物质的上涌密切相关,幔源物质上涌过程携带的大量Au、Cu和Ag等元素是成矿物质来源,早白垩世所发育的北西西向和北东东向两组断裂、裂隙是矿床的容矿空间,而幔源物质的上涌是由古太平洋板块的俯冲作用引起.
5. 结论
(1) 紫金山矿田东南矿段黑云母花岗岩锆石LA-ICP-MS法获得206Pb/238U-207Pb/235U年龄为109.5±1.9 Ma(MSWD=0.74,N=16),206Pb/238U加权平均年龄为107.44±0.94 Ma(MSWD=1.06,N=16),表明岩体侵位于燕山期早白垩世.锆石Hf同位素分析表明岩体源区与中元古代基底物质的原地熔融密切相关.
(2) 紫金山东南矿段早白垩世花岗质岩体与古太平洋向欧亚板块俯冲作用密切相关,紫金山矿田的大规模成矿事件与燕山期幔源物质的上涌过程提供矿源,以及北西西向和北东东向断裂、裂隙形成容矿空间等条件密切相关.
附表1见本刊官网(http://www.earth-science.net).
致谢: 锆石样品的CL图像扫描、LA-ICP-MS测试U-Pb和MC-ICP-MS测试Lu-Hf分别得到了南京大学内生金属矿床成矿机制研究国家重点实验室李娟老师、王孝磊教授、武兵工程师和孙盼工程师的指导和支持;测试过程中受到南京大学地球科学与工程学院张阳博士、张贺博士的帮助;匿名审稿专家和编委的诸多审阅意见非常有益于稿件质量的提高;论文修改过程中受到编辑部老师给予的诸多指导和帮助,在此一并表示衷心的感谢. -
图 1 紫金山矿田中生代岩浆岩及矿床分布
Fig. 1. Distribution of Mesozoic magmatic rocks and ore deposits in the Zijinshan ore field
图 2 紫金山矿田东南矿段细粒黑云母花岗岩的野外宏观露头照片(a~d)和镜下照片(e, f)
a.紫金山矿田东南矿段整体状况;b.蓝辉铜矿化、黄铁矿矿化花岗岩体,发育一组北北西向节理;c.岩体中发育北北西-北北东向两组近垂直节理;d.浅肉红色细粒黑云母花岗岩;e.花岗岩,细粒花岗结构;f.具环带结构的斜长石交代聚片双晶斜长石.矿物缩写:Qtz.石英;Kfs.钾长石;Pl.斜长石;Bt.黑云母;Chl.绿泥石;Zr.锆石;Ap.磷灰石
Fig. 2. Outcrop (a-d) and microscope images (e, f) the granite in southeast ore section of Zijinshan ore field
图 4 紫金山矿田东南矿段花岗岩锆石U-Pb谐和图(a)和锆石稀土元素球粒陨石标准化图(b)
球粒陨石标准数据采用Sun and McDonough(1989)
Fig. 4. Zircon 207Pb/235U-206Pb/238U concordia diagram and 206Pb/238U weighed average age (a), chondrite-normalized REE patterns diagram (b) of southeast ore section in Zijinshan ore field
表 1 闽西南紫金山矿田花岗岩LA-MC-ICP-MS锆石原位Lu-Hf同位素组成分析结果
Table 1. LA-MC-ICP-MS in-situ analyses of zircon Lu-Hf isotopic composition of the Zijinshan granites, Southwest Fujian Province
测点 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(t) tDM1(Ma) tDM2(Ma) fLu/Hf 比值 2σ 比值 2σ 比值 2σ 14CL01 171.9 0.025 621 0.000 265 0.001 236 0.000 013 0.282 609 0.000 019 -2.1 916.0 1 353.8 -0.96 14CL02 107.8 0.030 448 0.000 585 0.001 439 0.000 022 0.282 590 0.000 019 -4.2 947.3 1 433.9 -0.96 14CL03 110.8 0.032 544 0.000 463 0.001 500 0.000 020 0.282 607 0.000 023 -3.5 925.4 1 395.4 -0.95 14CL04 108.5 0.040 784 0.001 013 0.001 881 0.000 040 0.282 624 0.000 023 -3.0 910.5 1 360.1 -0.94 14CL05 106.6 0.031 269 0.000 428 0.001 504 0.000 020 0.282 594 0.000 020 -4.1 943.7 1 426.6 -0.95 14CL06 107.1 0.028 901 0.000 232 0.001 341 0.000 011 0.282 665 0.000 021 -1.5 838.3 1 265.2 -0.96 14CL07 106.7 0.023 936 0.000 467 0.001 166 0.000 020 0.282 626 0.000 019 -2.9 889.6 1 352.5 -0.96 14CL08 106.5 0.040 713 0.003 581 0.001 753 0.000 138 0.282 568 0.000 021 -5.0 987.1 1 485.7 -0.95 14CL09 104.1 0.045 229 0.000 987 0.002 071 0.000 044 0.282 644 0.000 021 -2.4 885.4 1 317.2 -0.94 14CL10 108.7 0.056 805 0.004 055 0.002 553 0.000 170 0.282 625 0.000 022 -3.0 925.8 1 360.4 -0.92 14CL11 110.5 0.025 336 0.000 206 0.001 187 0.000 010 0.282 608 0.000 021 -3.5 916.4 1 392.2 -0.96 14CL12 105.1 0.029 219 0.000 678 0.001 394 0.000 037 0.282 679 0.000 021 -1.1 819.4 1 234.8 -0.96 14CL13 109.4 0.033 660 0.000 467 0.001 630 0.000 025 0.282 631 0.000 021 -2.7 894.2 1 342.6 -0.95 14CL14 106.1 0.039 611 0.000 532 0.001 825 0.000 024 0.282 604 0.000 021 -3.7 937.8 1 406.0 -0.95 14CL15 109.2 0.026 562 0.000 930 0.001 251 0.000 041 0.282 636 0.000 021 -2.5 878.6 1 330.7 -0.96 14CL16 104.4 0.018 377 0.000 226 0.000 879 0.000 009 0.282 595 0.000 019 -4.0 926.8 1 423.1 -0.97 14CL17 108.2 0.031 557 0.001 055 0.001 520 0.000 044 0.282 661 0.000 020 -1.7 848.6 1 275.1 -0.95 表 2 闽西南紫金山矿田东南矿段花岗岩锆石LA-ICP-MS稀土元素数据
Table 2. Rare earth elements measured by LA-ICP-MS from southeast ore field of Zijinshan granite zircons, Southeast Fujian Province
测点 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 14CL01 0.09 39.63 0.38 6.35 11.44 2.31 52.59 18.17 208.44 77.48 340.77 74.99 740.58 127.34 14CL02 19.06 64.24 4.83 20.19 4.53 1.58 13.28 5.00 64.77 28.73 152.12 40.63 473.54 100.59 14CL03 1.05 25.40 0.30 1.93 1.53 0.71 9.40 3.34 45.30 20.29 109.88 28.99 343.53 72.92 14CL04 0.01 32.78 0.05 0.69 1.81 1.03 11.96 4.54 56.03 23.25 119.09 30.58 349.96 71.39 14CL05 0.01 22.92 0.02 0.71 1.39 0.76 9.33 3.53 46.53 20.43 105.34 27.14 321.66 66.47 14CL06 0.02 20.10 0.02 0.31 1.30 0.72 8.09 3.26 44.02 19.42 104.37 28.32 328.81 70.64 14CL07 0.14 23.93 0.08 0.50 1.63 0.64 8.86 3.65 48.97 21.58 115.54 30.40 355.93 76.69 14CL08 0.01 26.29 0.02 0.56 1.68 0.70 9.66 4.14 55.71 25.12 134.03 35.37 412.69 90.32 14CL09 0.01 32.52 0.03 0.60 1.94 1.03 12.44 5.16 69.38 32.40 172.63 44.97 524.85 113.56 14CL10 0.01 22.30 0.03 0.63 1.05 0.68 9.16 3.41 46.87 19.90 102.18 26.68 308.49 65.70 14CL11 0.06 29.08 0.05 0.65 1.42 0.96 11.25 4.29 59.90 27.13 145.66 38.45 455.44 99.39 14CL12 0.02 22.65 0.02 0.53 1.13 0.70 9.55 3.65 48.37 21.14 114.12 29.24 352.29 76.63 14CL13 0.04 23.58 0.02 0.59 1.22 0.67 9.50 3.52 47.74 21.33 113.13 29.28 343.91 76.52 14CL14 0.72 38.14 0.27 1.44 2.71 1.16 16.72 6.49 85.44 37.32 195.60 49.63 554.49 119.83 14CL15 0.26 22.56 0.15 1.18 1.42 0.78 9.57 4.09 55.63 24.38 132.97 35.64 423.28 93.75 14CL16 0.03 25.25 0.04 1.04 2.45 1.26 14.66 5.63 73.90 32.88 174.94 46.04 539.69 124.65 14CL17 0.01 30.33 0.03 0.80 1.74 0.74 9.70 3.93 52.39 22.63 119.27 30.76 356.40 80.34 -
Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79. doi: 10.1016/S0009-2541(02)00195-X Anderson, J.L., Barth, A.P., Wooden, J.L., et al., 2008.Thermometers and Thermobarometers in Granitic Systems.Reviews in Mineralogy and Geochemistry, 69(1):121-142. doi: 10.2138/rmg.2008.69.4 Baldwin, J.A., Brown, M., Schmitz, M.D., 2007.First Application of Titanium-in-Zircon Thermometry to Ultrahigh-Temperature Metamorphism.Geology, 35(4):295-298. doi: 10.1130/G23285A.1 Belousova, E., Griffin, W., O'Reilly, S.Y., et al., 2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143(5):602-622. doi: 10.1007/s00410-002-0364-7 Bolhar, R., Weaver, S.D., Palin, J.M., et al., 2008.Systematics of Zircon Crystallisation in the Cretaceous Separation Point Suite, New Zealand, Using U/Pb Isotopes, REE and Ti Geothermometry.Contributions to Mineralogy and Petrology, 156(2):133-160. doi: 10.1007/s00410-007-0278-5 Burnham, A.D., Berry, A.J., 2012.Erratum to "An Experimental Study of Trace Element Partitioning between Zircon and Melt as a Function of Oxygen Fugacity".Geochimica et Cosmochimica Acta, 95:196-212. doi: 10.1016/j.gca.2012.07.034 Chen, B., Tian, W., Jahn, B.M., et al., 2008.Zircon SHRIMP U-Pb Ages and In-Situ Hf Isotopic Analysis for the Mesozoic Intrusions in South Taihang, North China Craton:Evidence for Hybridization between Mantle-Derived Magmas and Crustal Components.Lithos, 102(1-2):118-137. doi: 10.1016/j.lithos.2007.06.012 Chen, G.N., 1998.Advances in the Study of Genesis and Metallogeny of Granite:A Brief Introduction of the Melting In-Situ Hypothesis and Geochemical Field of the Elements.Advance in Earth Sciences, 13(2):140-144(in Chinese with English abstract). http://cdmd.cnki.com.cn/Article/CDMD-10491-2009153771.htm Chen, G.N., 2011.Pondering over the Genesis of Rocks and the Evolution of Lithosphere.Earth Science Frontiers, 18(1):1-8(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201101001 Chen, G.N., Grapes, R., Zhang, K., 2003.A Model for Mesozoic Crustal Melting and Tectonic Deformation in Southeast China.International Geology Review, 45(10):948-957. doi: 10.2747/0020-6814.45.10.948 Chen, G.N., Chen, Z., Chen, X., et al., 2015a.Crustal Melting and Its Relationship with Continental Orogeny.Geotectonica et Metallogenia, 39(3):383-390(in Chinese with English abstract). Chen, G.N., Qiu, W., Lu, Y.X., et al., 2015b.Multi Crustal Melting and Its Relationship to the Formation of Volcanic-Type Uranium-Polymetal Ore-Field.Earth Science Frontiers, 22(4):22-28(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201504003 Chen, H.S., 1996.The Research on the Mineralization Chronology and Isotopic Exploration Assessment for Zijinshan Copper-Gold Deposit.Geotectonica et Metallogenia, 20(4):348-360(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600038806 Chen, J., Chen, Y.J., Zhong, J., et al., 2011.Fluid Inclusion Study of the Wuziqilong Cu Deposit in the Zijinshan Ore Field, Fujian Province.Acta Petrologica Sinica, 27(5):1425-1438(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201105016 Chu, N.C., Taylor, R.N., Chavagnac, V., et al., 2002.Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry:An Evaluation of Isobaric Interference Corrections.Journal of Analytical Atomic Spectrometry, 17(12):1567-1574. doi: 10.1039/b206707b Duan, G., Chen, H.Y., Hollings, P., et al., 2017.The Mesozoic Magmatic Sources and Tectonic Setting of the Zijinshan Mineral Field, South China:Constraints from Geochronology and Geochemistry of Igneous Rocks in the Southeastern Ore Segment.Ore Geology Reviews, 80:800-827. doi: 10.1016/j.oregeorev.2016.08.016 Engebretson, D.C., Cox, A., Gordon, R.G., 1985.Relative Motions Between Oceanic and Continental Plates in the Pacific Basin.Geological Society of America, Boulder. Ferry, J.M., Watson, E.B., 2007.New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers.Contributions to Mineralogy and Petrology, 154(4):429-437. doi: 10.1007/s00410-007-0201-0 Frietsch, R., Perdahl, J.A., 1995.Rare Earth Elements in Apatite and Magnetite in Kiruna-Type Iron Ores and Some Other Iron Ore Types.Ore Geology Reviews, 9(6):489-510. doi: 10.1016/0169-1368(94)00015-G Fu, B., Page, F.Z., Cavosie, A.J., et al., 2008.Ti-in-Zircon Thermometry:Applications and Limitations.Contributions to Mineralogy and Petrology, 156(2):197-215. doi: 10.1007/s00410-008-0281-5 Geng, Y.S., Zhou, X.W., 2011.Characteristics of Geochemistry and Zircon Hf Isotope of the Early Neoproterozoic Granite in Alax Area, Inner Mongolia.Acta Petrologica Sinica, 27(4):897-908(in Chinese with English abstract). Harley, S.L., Kelly, N.M., 2007.Zircon Tiny but Timely.Elements, 3(1):13-18. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ023480616/ Harrison, T.M., Watson, E.B., Aikman, A.B., 2007.Temperature Spectra of Zircon Crystallization in Plutonic Rocks.Geology, 35(7):635-638. doi: 10.1130/G23505A.1 He, Z.Y., Xu, X.S., 2012.Petrogenesis of the Late Yanshanian Mantle-Derived Intrusions in Southeastern China:Response to the Geodynamics of Paleo-Pacific Plate Subduction.Chemical Geology, 328:208-221. doi: 10.1016/j.chemgeo.2011.09.014 Hiess, J., Nutman, A.P., Bennett, V.C., et al., 2008.Ti-in-Zircon Thermometry Applied to Contrasting Archean Metamorphic and Igneous Systems.Chemical Geology, 247(3-4):323-338. doi: 10.1016/j.chemgeo.2007.10.012 Hoskin, P.W.O., Schaltegger, U., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62. doi: 10.2113/0530027 Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200710025 Hu, C.J., Huang, W.T., Bao, Z.W., et al., 2012.LA-ICP-MS Zircon U-Pb Dating of the Dacite Porphyry from Zijinshan Cu-Au Deposit and Its Metallogenetic Implications.Geotectonica et Metallogenia, 36(2):284-292(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201202015 Huang, R.S., 2008.Igneous Series and Epithermal Porphyry Cu-Au-Ag Mineralization System in the Zijinshan Ore Field, Fujian Province.Journal of Geomechanics, 14(1):74-86(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200801007.htm Huang, W.T., Li, J., Liang, H.Y., et al., 2013.Zircon LA-ICP-MS U-Pb Ages and Highly Oxidized Features of Magma Associated with Luoboling Porphyry Cu-Mo Deposit in Zijinshan Ore Field, Fujian Province.Acta Petrologica Sinica, 29(1):283-293(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201301022 Jian, P., Cheng, Y.Q., Liu, D.Y., 2001.Petrographical Study of Metamorphic Zircon:Basic Roles in Interpretation of U-Pb Age of High Grade Metamorphic Rocks.Earth Science Frontiers, 8(3):183-191(in Chinese with English abstract). Jiang, S.H., Bagas, L., Liang, Q.L., 2017.Pyrite Re-Os Isotope Systematics at the Zijinshan Deposit of SW Fujian, China:Constraints on the Timing and Source of Cu-Au Mineralization.Ore Geology Reviews, 80:612-622. doi: 10.1016/j.oregeorev.2016.07.024 Jiang, S.H., Liang, Q.L., Bagas, L., et al., 2013.Geodynamic Setting of the Zijinshan Porphyry-Epithermal Cu-Au-Mo-Ag Ore System, SW Fujian Province, China:Constrains from the Geochronology and Geochemistry of the Igneous Rocks.Ore Geology Reviews, 53:287-305. https://doi.org/10.1016/j.oregeorev.2013.02.001 Li, B., Jiang, S.Y., 2014.Geochronology and Geochemistry of Cretaceous Nanshanping Alkaline Rocks from the Zijinshan District in Fujian Province, South China:Implications for Crust-Mantle Interaction and Lithospheric Extension.Journal of Asian Earth Sciences, 93:253-274. https://doi.org/10.1016/j.jseaes.2014.07.040 Li, B., Zhao, K.D., Yang, S.Y., et al., 2013.Petrogenesis of the Porphyritic Dacite from Ermiaogou Cu-Au Deposit in Zijinshan Ore Field and Its Metallogenetic Implications.Acta Petrologica Sinica, 29(12):4167-4185(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201312009 Li, B., Zhao, K.D., Zhang, Q., et al., 2015.Petrogenesis and Geochemical Characteristics of the Zijinshan Granitic Complex from Fujian Province, South China.Acta Petrologica Sinica, 31(3):811-828(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201503015 Li, C.Y., Hao, X.L., Liu, J.Q., et al., 2017.The Formation of Luoboling Porphyry Cu-Mo Deposit:Constraints from Zircon and Apatite.Lithos, 272-273:291-300. doi: 10.1016/j.lithos.2016.12.003 Li, X.H., Li, Z.X., Li, W.X., et al., 2007.U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic Ⅰ- and A-Type Granites from Central Guangdong, SE China:A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?.Lithos, 96(1-2):186-204. doi: 10.1016/j.lithos.2006.09.018 Liang, H.Y., Campbell, I.H., Allen, C., et al., 2006.Zircon Ce4+/Ce3+ Ratios and Ages for Yulong Ore-Bearing Porphyries in Eastern Tibet.Mineralium Deposita, 41(2):152-159. https://doi.org/10.1007/s00126-005-0047-1 Liang, Q.L., Jiang, S.H., Wang, S.H., et al., 2012.Re-Os Dating of Molybdenite from the Luoboling Porphyry Cu-Mo Deposit in the Zijinshan Ore Field of Fujian Province and Its Geological Significance.Acta Geologica Sinica, 86(7):1113-1118(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201207007 Liang, Q.L., Jiang, S.H., Wang, S.H., et al., 2013.Petrogenesis of the Mesozoic Magmatic Rocks in Zijinshan Area:Constraints from Zircon Hf Isotope Evidence.Acta Petrologica et Mineralogica, 32(3):318-328(in Chinese with English abstract). Liu, S.J., Li, J.H., Santosh, M., 2010.First Application of the Revised Ti-in-Zircon Geothermometer to Paleoproterozoic Ultrahigh-Temperature Granulites of Tuguiwula, Inner Mongolia, North China Craton.Contributions to Mineralogy and Petrology, 159(2):225-235. doi: 10.1007/s00410-009-0425-2 Ludwing, K.R., 2003.Isoplot/Ex Version 3.00, A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Berkeley. Mao, J.R., Tao, K.Y., Chen, S.Y., et al., 1998.The Granitic Magmatism and Mineralization in Southwest Fujian.Volcanology & Mineral Resources, 19(4):311-320(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199801026174 Mao, J.R., Tao, K.Y., Lee, C.Y., et al., 2002.Geochronology and Geochemical Characteristics in Late Mesozoic Sifang Pluton, Southwestern Fujian, and Their Significance.Acta Petrologica Sinica, 18(4):449-458(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200204002 Mao, J.R., Xu, N.Z., Hu, Q., et al., 2004.The Mesozoic Rock-Forming and Ore-Forming Processes and Tectonic Environment Evolution in Shanghang-Datian Region, Fujian.Acta Petrologica Sinica, 20(2):285-296(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200402010 Mao, J.W., Xie, G.Q., Li, X.F., et al., 2004.Mesozoic Large Scale Mineralization and Multiple Lithospheric Extension in South China.Earth Science Frontiers, 11(1):45-55(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200401003 Meng, F.C., Zhang, J.X., Cui, M.H., 2013.Discovery of Early Paleozoic Eclogite from the East Kunlun, Western China and Its Tectonic Significance.Gondwana Research, 23(2):825-836. doi: 10.1016/j.gr.2012.06.007 Miller, C.F., McDowell, S.M., Mapes, R.W., 2003.Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance.Geology, 31(6):529. doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2 Northrup, C.J., Royden, L.H., Burchfiel, B.C., 1995.Motion of the Pacific Plate Relative to Eurasia and Its Potential Relation to Cenozoic Extension along the Eastern Margin of Eurasia.Geology, 23(8):719. doi: 10.1130/0091-7613(1995)023<0719:MOTPPR>2.3.CO;2 Page, F.Z., Ushikubo, T., Kita, N.T., et al., 2007.High-Precision Oxygen Isotope Analysis of Picogram Samples Reveals 2 μm Gradients and Slow Diffusion in Zircon.American Mineralogist, 92(10):1772-1775. doi: 10.2138/am.2007.2697 Pettke, T., Audétat, A., Schaltegger, U., et al., 2005.Magmatic-to-Hydrothermal Crystallization in the W-Sn Mineralized Mole Granite (NSW, Australia)—Part Ⅱ:Evolving Zircon and Thorite Trace Element Chemistry.Chemical Geology, 220(3-4):191-213. doi: 10.1016/j.chemgeo.2005.02.017 Qiu, J.S., Xiao, E., Hu, J., et al., 2008.Petrogenesis of Highly Fractionated Ⅰ-Type Granites in the Coastal Area of Northeastern Fujian Province:Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd-Hf Isotopes.Acta Petrologica Sinica, 24(11):2468-2484(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200811003.htm Qiu, X.P., Lan, Y.Z., Liu, Y., 2010.The Key to the Study of Deep Mineralization and the Evaluation of Ore-Prospecting Potential in the Zijinshan Gold and Copper Deposit.Acta Geoscientica Sinica, 31(2):209-215(in Chinese with English abstract). Ren, J.Y., Tamaki, K., Li, S.T., et al., 2002.Late Mesozoic and Cenozoic Rifting and Its Dynamic Setting in Eastern China and Adjacent Areas.Tectonophysics, 344(3-4):175-205. https://doi.org/10.1016/s0040-1951(01)00271-2 Rollinson, H.R., 1993.Using Geochemical Data: Evaluation, Presentation and Interpretation.Longman Scientific and Technical, Essex. Ruan, S.K., Zeng, W.C., 2014.Discussion on the Metallogenic Model of Granite "In-Situ Melting" in Zijinshan Mineralization Area.Geological Science and Technology Information, 33(6):170-174, 179(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201406024.htm Shen, W.Z., Ling, H.F., Li, W.X., et al., 2000.Crust Evolution in Southeast China:Evidence from Nd Model Ages of Granitoids.Science China Earth Sciences, 30(5):471-478(in Chinese). doi: 10.1007-BF02877829/ Shu, L.S., 2012.An Analysis of Principal Features of Tectonic Evolution in South China Block.Geological Bulletin of China, 31(7):1035-1053(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201207003 Sun, J.F., Yang, J.H., Wu, F.Y., 2009.Application of In-Situ Isotopic Analysis to Granite Genesis.Earth Science Frontiers, 16(2):129-139(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200902011.htm Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19 Sun, W.D., Huang, R.F., Li, H., et al., 2015.Porphyry Deposits and Oxidized Magmas.Ore Geology Reviews, 65:97-131. doi: 10.1016/j.oregeorev.2014.09.004 Trail, D., Bruce Watson, E., Tailby, N.D., 2012.Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas.Geochimica et Cosmochimica Acta, 97:70-87. https://doi.org/10.1016/j.gca.2012.08.032 Wang, R.R., Xu, Z.Q., Santosh, M., et al., 2017.Petrogenesis and Tectonic Implications of the Early Paleozoic Intermediate and Mafic Intrusions in the South Qinling Belt, Central China:Constraints from Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes.Tectonophysics, 712-713:270-288. https://doi.org/10.1016/j.tecto.2017.05.021 Wang, C.Z., 2013.Lithogeochemical Characteristics of the Alunite Metasomatic Alterated Rock of the Zijinshan Gold-Copper Deposit.Advances in Earth Science, 28(8):897-912(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201308006 Wang, S., Zhang, D., Wu, G.G., et al., 2018.Late Mesozoic Tectonic Evolution of Southwestern Fujian Province, South China:Constraints from Magnetic Fabric, Zircon U-Pb Geochronology and Structural Deformation.Journal of Earth Science, 29(2):391-407. https://doi.org/10.1007/s12583-017-0968-5 Wang, S.H., Pei, R.F., 2007.Ore Resource Prognosis and Ore-Prospecting Targets in Southern Central Gangdise Range.Mineral Deposits, 26(3):346-352(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200703012 Wang, S.H., Pei, R.F., Zeng, X.H., et al., 2009.Metallogenic Series and Model of the Zijinshan Mining Field.Acta Geologica Sinica, 83(2):145-157(in Chinese with English abstract). Watson, E.B., Harrison, T.M., 2005.Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth.Science, 308(5723):841-844. doi: 10.1126/science.1110873 Watson, E.B., Wark, D.A., Thomas, J.B., 2006.Crystallization Thermometers for Zircon and Rutile.Contributions to Mineralogy and Petrology, 151(4):413-433. doi: 10.1007/s00410-006-0068-5 Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995.Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses.Geostandards and Geoanalytical Research, 19(1):1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 Wu, F.Y., Yang, Y.H., Xie, L.W., et al., 2006.Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology.Chemical Geology, 234(1-2):105-126. doi: 10.1016/j.chemgeo.2006.05.003 Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604. http://www.cnki.com.cn/Article/CJFDTotal-JXTW200415001.htm Xiao, A.F., Li, D.P., Liu, X.M., 2012.LA-ICP-MS Zircon U-Pb Dating for the Volcanic Rocks of the Lower Formation of the Shimaoshan Group and Evolution of the Cretaceous Magmatism in the Zijinshan Cu-Au Orefield, Fujian Province.Geotectonica et Metallogenia, 36(4):613-623(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201204015 Xie, Q.F., Cai, Y.F., Dong, Y.P., et al., 2017.LA-ICP-MS Zircon U-Pb Geochronology and Hf Isotopic Compositions of Yanshanian Granites in the Shanghang Area, Fujian Province.Acta Geologica Sinica, 91(10):2212-2230(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201710005 Xie, X., Xu, X.S., Zou, H.B., et al., 2005.The Large Scale Stage Magmatism of Mesozoic in Southeast China:Evidence from the Early Jurassic Basalts.Science China Earth Science, 35(7):587-605(in Chinese). Xu, X.S., Xie, X., 2015.Late Mesozoic-Cenozoic Basaltic Rocks and Crust-Mantle Interaction, SE China.Geological Journal of China Universities, 11(3):318-334(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200503004 Yu, B., Pei, R.F., Qiu, X.P., et al., 2013.The Evolution Series of Mesozoic Magmatic Rocks in the Zijinshan Orefield, Fujian Province.Acta Geoscientica Sinica, 34(4):437-446(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201304006 Yuan, H.L., Gao, S., Liu, X.M., et al., 2004.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research, 28(3):353-370. doi: 10.1111/ggr.2004.28.issue-3 Yuan, H.L., Wu, F.Y., Gao, S., et al., 2003.Precise Determinations of U-Pb Age and Rare Earth Element Concentrations of Zircons by Excimer LA-ICP MS Using a Two-Stage Ablation Strategy.Chinese Science Bulletin, 48(14):1511-1520(in Chinese). Zhang, D.Q., Feng, C.Y., Li, D.X., et al., 2005.The Evolution of Ore-Forming Fluids in the Porphyry-Epithermal Metallogenic System of Zijinshan Area.Acta Geoscientica Sinica, 26(2):127-136(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200502005 Zhang, D.Q., Li, D.X., Feng, C.Y., et al., 2001.The Temporal and Spatial Framework of the Mesozoic Magmatic System in Zijinshan Area and Its Geological Significance.Acta Geoscientica Sinica, 22(5):403-408(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200105004 Zhang, D.Q., She, H.Q., Li, D.X., et al., 2003.The Porphyry-Epithermal Metallogenic System in the Zijinshan Region, Fujian Province.Acta Geologica Sinica, 77(2):253-261(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200302014 Zhang, Q., 2013.Is the Mesozoic Magmatism in Eastern China Related to the Westward Subduction of the Pacific Plate? Acta Petrologica et Mineralogica, 32(1):113-128(in Chinese with English abstract). Zhang, Q., 2014.Geodynamic Implications of Continental Granites.Acta Petrologica et Mineralogica, 33(4):785-798(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-yskw201404016.htm Zhang, W.Y., Wang, C.Z., 2014.Thermoelectric Characteristics of Pyrite in the Zijinshan Copper-Gold Deposit and Its Geological Significance.Acta Geologica Sinica, 88(7):1288-1298(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201407006 Zhao, X.L., Liu, K., Mao, J.R., et al., 2013.The Differences of Geochemical Characteristics and Relative with Ore-Forming Processes of Two Types Early-Cretaceous Granites in Southwestern Fujian Province.Bulletin of Mineralogy, Petrology and Geochemistry, 32(1):87-96(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KYDH201301009.htm Zhao, X.L., Mao J.R., Chen R., et al., 2007.Zircon SHRIMP Age and Geochemical Characteristics of the Caixi Pluton in Southwestern Fujian Province.Acta Petrologica et Mineralogica, 26(3):223-231(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200703003 Zhao, X.L., Mao, J.R., Chen, R., et al., 2008.SHRIMP Zircon Dating of the Zijinshan Pluton in Southwestern Fujian and Its Implications.Geology in China, 35(4):590-597(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200804003 Zhao, Y., Zhao, Y.Y., Hao, L.B., et al., 2014.A Discussion on the Source and Nature of Initial Ore-Forming Fluids of the Zijinshan Deposit in Fujian Province:Evidence from REE and Trace Elements.Geological Bulletin of China, 33(10):1562-1570(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201410012.htm Zheng, Y.F., 2011.On the Theoretical Calculations of Oxygen Isotope Fractionation Factors for Carbonate-Water Systems.Geochemical Journal, 45(4):341-354. doi: 10.2343/geochemj.1.0125 Zhong, J., Chen, Y.J., Pirajno, F., et al., 2014.Geology, Geochronology, Fluid Inclusion and H-O Isotope Geochemistry of the Luoboling Porphyry Cu-Mo Deposit, Zijinshan Orefield, Fujian Province, China.Ore Geology Reviews, 57:61-77. https://doi.org/10.1016/j.oregeorev.2013.09.004 Zhou, S., Chen, H.S., 1996.Geochronology and Geological Significance of the Zijinshan Copper-Gold Deposit.Bulletin of Mineralogy, Petrology and Geochemistry, 15(4):216-219(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH604.001.htm Zhou, X.M., Li, W.X., 2000.Origin of Late Mesozoic Igneous Rocks in Southeastern China:Implications for Lithosphere Subduction and Underplating of Mafic Magmas.Tectonophysics, 326(3-4):269-287. doi: 10.1016/S0040-1951(00)00120-7 Zhou, X.M., Sun, T., Shen, W.Z., et al., 2006.Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China:A Response to Tectonic Evolution.Episodes, 29(1):26-33. http://www.cqvip.com/Main/Detail.aspx?id=21590196 陈国能, 1998.花岗岩成因与成矿理论研究进展——原地重熔说与元素地球化学场简介.地球科学进展, 13(2):140-144. doi: 10.3321/j.issn:1001-8166.1998.02.006 陈国能, 2011.岩石成因与岩石圈演化思考.地学前缘, 18(1):1-8. http://d.old.wanfangdata.com.cn/Periodical/dxqy201101001 陈国能, 陈震, 陈雄, 等, 2015a.壳内熔融与大陆造山——中山大学地质学系成立90周年暨陈国达院士诞辰102周年纪念.大地构造与成矿学, 39(3):383-390. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201503003 陈国能, 邱惟, 卢映新, 等, 2015b.陆壳多次重熔与火山岩型铀-多金属矿田的形成.地学前缘, 22(4):22-28. http://d.old.wanfangdata.com.cn/Periodical/dxqy201504003 陈好寿, 1996.紫金山铜金矿床成矿年代及同位素找矿评价研究.大地构造与成矿学, 20(4):348-360. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600941843 陈静, 陈衍景, 钟军, 等, 2011.福建省紫金山矿田五子骑龙铜矿床流体包裹体研究.岩石学报, 27(5):1425-1438. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201105016 耿元生, 周喜文, 2011.阿拉善地区新元古代早期花岗岩的地球化学和锆石Hf同位素特征.岩石学报, 27(4):897-908. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201104001 侯可军, 李延河, 邹天人, 等, 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 胡春杰, 黄文婷, 包志伟, 等, 2012.福建紫金山矿田晚中生代英安玢岩形成时代及其成矿意义.大地构造与成矿学, 36(2):284-292. doi: 10.3969/j.issn.1001-1552.2012.02.015 黄仁生, 2008.福建紫金山矿田火成岩系列与浅成低温热液-斑岩铜金银成矿系统.地质力学学报, 14(1):74-86. doi: 10.3969/j.issn.1006-6616.2008.01.007 黄文婷, 李晶, 梁华英, 等, 2013.福建紫金山矿田罗卜岭铜钼矿化斑岩锆石LA-ICP-MS U-Pb年龄及成矿岩浆高氧化特征研究.岩石学报, 29(1):283-293. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201301022 简平, 程裕淇, 刘敦一, 2001.变质锆石成因的岩相学研究——高级变质岩U-Pb年龄解释的基本依据.地学前缘, 8(3):183-191. doi: 10.3321/j.issn:1005-2321.2001.03.022 李斌, 赵葵东, 杨水源, 等, 2013.福建紫金山矿田二庙沟铜(金)矿区英安玢岩的成因及其成矿意义.岩石学报, 29(12):4167-4185. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201312009 李斌, 赵葵东, 张倩, 等, 2015.福建紫金山复式岩体的地球化学特征和成因.岩石学报, 31(3):811-828. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201503015 梁清玲, 江思宏, 王少怀, 等, 2012.福建紫金山矿田罗卜岭斑岩型铜钼矿床辉钼矿Re-Os定年及地质意义.地质学报, 86(7):1113-1118. doi: 10.3969/j.issn.0001-5717.2012.07.007 梁清玲, 江思宏, 王少怀, 等, 2013.福建紫金山地区中生代岩浆岩成因——锆石Hf同位素证据.岩石矿物学杂志, 32(3):318-328. doi: 10.3969/j.issn.1000-6524.2013.03.004 毛建仁, 陶奎元, 陈三元, 等, 1998.闽西南花岗质岩浆作用与成矿.火山地质与矿产, 19(4):311-320. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199801026174 毛建仁, 陶奎元, 李寄嵎, 等, 2002.闽西南晚中生代四方岩体同位素年代学、地球化学及其构造意义.岩石学报, 18(4):449-458. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200204002 毛建仁, 许乃政, 胡青, 等, 2004.福建省上杭-大田地区中生代成岩成矿作用与构造环境演化.岩石学报, 20(2):285-296. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200402010 毛景文, 谢桂青, 李晓峰, 等, 2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘, 11(1):45-55. doi: 10.3321/j.issn:1005-2321.2004.01.003 邱检生, 肖娥, 胡建, 等, 2008.福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约.岩石学报, 24(11):2468-2484. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200811002 邱小平, 蓝岳彰, 刘羽, 2010.紫金山金铜矿床深部成矿作用研究和找矿前景评价的关键.地球学报, 31(2):209-215. http://d.old.wanfangdata.com.cn/Periodical/dqxb201002010 阮诗昆, 曾文灿, 2014.紫金山矿集区花岗岩"原地重熔"成矿模式探讨.地质科技情报, 33(6):170-174, 179. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201406024 沈渭洲, 凌洪飞, 李武显, 等, 2000.中国东南部花岗岩类的Nd模式年龄与地壳演化.中国科学(D辑), 30(5):471-478. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200005004 舒良树, 2012.华南构造演化的基本特征.地质通报, 31(7):1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003 孙金凤, 杨进辉, 吴福元, 2009.原位微区同位素分析在花岗岩成因研究中的应用.地学前缘, 16(2):129-139. doi: 10.3321/j.issn:1005-2321.2009.02.009 王翠芝, 2013.紫金山铜金矿明矾石交代蚀变岩的岩石地球化学特征.地球科学进展, 28(8):897-912. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201308006 王少怀, 裴荣富, 2007.冈底斯中段南缘成矿远景预测及找矿方向.矿床地质, 26(3):346-352. doi: 10.3969/j.issn.0258-7106.2007.03.012 王少怀, 裴荣富, 曾宪辉, 等, 2009.再论紫金山矿田成矿系列与成矿模式.地质学报, 83(2):145-157. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200902001 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001 肖爱芳, 黎敦朋, 柳小明, 2012.福建省紫金山铜金矿田石帽山群下组火山岩锆石LA-ICP-MS U-Pb测年与白垩纪岩浆活动期次.大地构造与成矿学, 36(4):613-623. doi: 10.3969/j.issn.1001-1552.2012.04.015 谢其锋, 蔡元峰, 董云鹏, 等, 2017.福建上杭地区燕山期花岗岩锆石U-Pb年代学及Hf同位素组成.地质学报, 91(10):2212-2230. doi: 10.3969/j.issn.0001-5717.2017.10.005 谢昕, 徐夕生, 邹海波, 等, 2005.中国东南部晚中生代大规模岩浆作用序幕:J2早期玄武岩.中国科学(D辑), 35(7):587-605. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200507001 徐夕生, 谢昕, 2005.中国东南部晚中生代-新生代玄武岩与壳幔作用.高校地质学报, 11(3):318-334. doi: 10.3969/j.issn.1006-7493.2005.03.004 于波, 裴荣富, 邱小平, 等, 2013.福建紫金山矿田中生代岩浆岩演化序列研究.地球学报, 34(4):437-446. http://d.old.wanfangdata.com.cn/Periodical/dqxb201304006 袁洪林, 吴福元, 高山, 等, 2003.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析.科学通报, 48(14):1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008 张德全, 丰成友, 李大新, 等, 2005.紫金山地区斑岩-浅成热液成矿系统的成矿流体演化.地球学报, 26(2):127-136. doi: 10.3321/j.issn:1006-3021.2005.02.005 张德全, 李大新, 丰成友, 等, 2001.紫金山地区中生代岩浆系统的时空结构及其地质意义.地球学报, 22(5):403-408. doi: 10.3321/j.issn:1006-3021.2001.05.004 张德全, 佘宏全, 李大新, 等, 2003.紫金山地区的斑岩-浅成热液成矿系统.地质学报, 77(2):253-261. doi: 10.3321/j.issn:0001-5717.2003.02.014 张旗, 2013.中国东部中生代岩浆活动与太平洋板块向西俯冲有关吗?岩石矿物学杂志, 32(1):113-128. doi: 10.3969/j.issn.1000-6524.2013.01.010 张旗, 2014.大陆花岗岩的地球动力学意义.岩石矿物学杂志, 33(4):785-798. doi: 10.3969/j.issn.1000-6524.2014.04.016 张文媛, 王翠芝, 2014.紫金山铜金矿黄铁矿热电性特征及其地质意义.地质学报, 88(7):1288-1298. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201407006 赵希林, 刘凯, 毛建仁, 等, 2013.闽西南地区早白垩世两类花岗质岩体地球化学异同及其与成矿作用关系.矿物岩石地球化学通报, 32(1):87-96. doi: 10.3969/j.issn.1007-2802.2013.01.007 赵希林, 毛建仁, 陈荣, 等, 2007.闽西南地区才溪岩体锆石SHRIMP定年及其地球化学特征.岩石矿物学杂志, 26(3):223-231. doi: 10.3969/j.issn.1000-6524.2007.03.003 赵希林, 毛建仁, 陈荣, 等, 2008.闽西南地区紫金山岩体锆石SHRIMP定年及其地质意义.中国地质, 35(4):590-597. doi: 10.3969/j.issn.1000-3657.2008.04.003 赵禹, 赵玉岩, 郝立波, 等, 2014.福建紫金山矿床初始成矿流体来源及性质——来自稀土和微量元素的证据.地质通报, 33(10):1562-1570. doi: 10.3969/j.issn.1671-2552.2014.10.012 周肃, 陈好寿, 1996.紫金山铜金矿同位素年代学及其地质意义.矿物岩石地球化学通报, 15(4):216-219. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH604.001.htm 期刊类型引用(6)
1. 谢其锋,彭向东,肖爱芳,李晓敏,王少怀. “紫金模式”下校企合作虚拟仿真实验室教学体系的建设与探索. 中国地质教育. 2024(02): 143-147 . 百度学术
2. Qifeng Xie,Mingguo Zhai,Yuanfeng Cai,Yunpeng Dong,Hong Zhang,Aifang Xiao. Genesis and metallogenic characteristic of Dongnan Cu–Mo deposit associated granitoids: LA-ICP-MS zircon U–Pb dating and isotope constraint from Zijinshan ore field in southeastern China. Acta Geochimica. 2023(02): 332-345 . 必应学术
3. 郑义,郭春丽,王登红,赵汀,王岩. 中国伴生铟(镉镓锗)矿床的时空分布、成因类型及成矿机制:总结与展望. 地质学报. 2023(11): 3569-3618 . 百度学术
4. 汪相. 中国东南部黄山运动及其花岗质岩浆活动与成矿作用. 地质论评. 2022(05): 1677-1728 . 百度学术
5. 谢其锋,董云鹏,蔡元峰,翟明国,肖爱芳,张红,包志安. 福建上杭单竹坪矿床早白垩世岩浆作用及地质意义. 岩石学报. 2022(10): 3037-3051 . 百度学术
6. 张纪伟,陈华勇. 金属矿床勘查与开发定量生态评估体系初探:以福建罗卜岭斑岩型铜钼矿为例. 地球科学. 2021(11): 3818-3828 . 本站查看
其他类型引用(3)
-