Geochemical Characteristics and Tectonic Implications of Late Devonian Quartz Diorite Porphyry in Dunbasitao Area, Northern Margin of East Junggar Basin, Xinjiang
-
摘要: 新疆顿巴斯套矿区石英闪长玢岩的研究对厘清古亚洲洋晚泥盆世的演化具有重要意义.新疆顿巴斯套矿区石英闪长玢岩位于东准噶尔盆地北缘,为确定其岩浆侵入活动时限和岩石成因,讨论准噶尔地块北侧的古亚洲洋在晚古生代早期的俯冲作用,开展锆石LA-ICP-MS U-Pb年代学、Hf同位素地球化学,全岩主微量元素地球化学、Sr-Nd同位素地球化学研究.矿区内石英闪长玢岩单颗粒锆石LA-ICP-MS U-Pb定年结果为378±2 Ma,指示晚泥盆世岩浆活动.石英闪长玢岩全岩SiO2含量为54.94%~68.64%,富Na2O(平均含量为4.34%),Na2O/K2O为1.19~2.72,里特曼指数(σ)大多小于3.3,Fe2O3T含量为2.23%~5.65%、MgO含量为0.81%~2.77%、Al2O3含量为14.31%~16.99%,TiO2含量为0.32%~1.02%,CaO含量为2.58%~4.97%,Mg#变化于38.1~51.2,A/CNK为0.83~1.08,属准铝质钙碱性-高钾钙碱性系列.岩石富集大离子亲石元素(LILE)和轻稀土元素(LREE),亏损高场强元素(HFSE,如Nb、Ta、P、Ti),稀土元素配分曲线右倾,具有明显的轻重稀土分异,基本无Eu异常.全岩有较低的(87Sr/86Sr)i(0.703 783~0.703 901),较高的εNd(378 Ma)(+6.2~+6.7),年轻的TDM(560~608 Ma),锆石εHf(t)相对较高,变化于+12.1~+15.1,对应的一阶段模式年龄TDM1(Hf)为403~516 Ma,显示亏损地幔源区特征.综合上述地球化学特征认为石英闪长玢岩为俯冲环境下洋壳部分熔融的产物,俯冲洋壳脱水产生的流体、熔体在上升过程中与地幔楔发生了交代反应.结合新疆北部蛇绿岩及东准噶尔北缘、阿尔泰南缘相关岛弧花岗岩、火山岩等综合对比,认为区内中-晚泥盆世存在古亚洲洋的南北双向俯冲.Abstract: Research on the quartz diorite porphyry in Dunbasitao gold deposit, Xinjiang, will throw light on the evolution of the paleo-Asian ocean in Late Devonian. The quartz diorite porphyry in Dunbasitao gold deposit is located in the northern margin of the East Junggar basin, Xinjiang Uygur Autonomous Region. LA-ICP-MS zircon U-Pb dating yields a weighted mean age of 378±2 Ma for the intrusion, indicating Late Devonian magmatism.The quartz diorite porphyry shows variable SiO2 contents (54.94%-68.64%), with high Na2O (average 4.34%) and Na2O/K2O (1.19%-2.72%), and it has medium Fe2O3T(2.23%-5.65%), MgO (0.81%-2.77%), Al2O3 (14.31%-16.99%), low TiO2 (0.32%-1.02%) with Rittman index (σ) < 3.3.Mg# values of the rocks range from 38.1 to 51.2 with CaO content of 2.58%-4.97 %, A/CNK of 0.81 to 1.08.The quartz diorite porphyry is metaluminous calc-alkaline-high-K calc-alkaline. It is enriched in LILE (Rb, Ba, Tu, K, La, Sr) and LREE, and depleted in HFSE (Nb, Ta, P, Ti) relative to the primitive mantle; the REE exhibits right-dipping patterns having significant LREE and HREE differentiation. All the samples have low (87Sr/86Sr)i (0.703 783-0.703 938), high εNd(t) (+6.2 to +6.7) and zircon εHf(t)=+12.1 to +15.1, as well as young Nd isotopic model ages (TDM ranging in 546-608 Ma) and zircon Hf isotopic model age (TDM1 ranging in 403-516 Ma), indicating a depleted mantle source. The rock was sourced from subducting slab during the subduction of the paleo-Asian ocean in Middle-Late Devonian. Trace element discrimination diagrams indicate that rock formed in volcanic arc environment, which implies bidirectional subduction (north and south) existing in early Late Paleozoic, combined with spatial distribution of ophiolite, granodiorites and volcanic rocks in the northern Xinjiang and northern margin of East Junggar.
-
0. 引言
新疆东准噶尔北缘是中亚造山带的重要组成部分,其位于西伯利亚板块和哈萨克斯坦-准噶尔板块的结合部位(图 1a),北与阿尔泰造山带相接,南与塔里木地块相连,额尔齐斯断裂、卡拉麦里-莫钦乌拉断裂分别为其边界(图 1,肖序常, 1992; 柴凤梅等, 2012).区域上扎河坝-阿尔曼泰蛇绿混杂岩带和卡拉麦里蛇绿混杂岩带(何国琦等, 2001; 肖文交等, 2006)呈北西向展布,晚古生代花岗岩和中基性侵入岩广泛发育(韩宝福等, 2006),强烈的构造岩浆活动造就了区内丰富的矿产资源.
图 1 东准噶尔大地构造位置(a)及其北缘地质简图(b)a.据董连慧等(2009)修改;b.据张栋等(2011)修改.①额尔齐斯蛇绿岩带; ②阿尔曼泰绿岩带; ③卡拉麦里蛇绿岩带; ④巴音沟蛇绿岩带; ⑤冰达坂蛇绿岩带; ⑥红柳河蛇绿岩带.Ⅰ.西伯利亚板块; Ⅱ.哈萨克斯坦-准噶尔板块; Ⅱ1.萨吾尔山晚古生代大洋岛弧; Ⅱ2.野马泉早古生代大陆岛弧; Ⅱ3.准噶尔-吐哈陆块; Ⅱ4.天山地区古生代复合弧盆系统; Ⅲ.塔里木板块.1.第四系; 2.中生界; 3.上石炭统; 4.下石炭统; 5.泥盆系; 6.志留系; 7.韧性剪切带; 8.深大断裂带; 9.地层界线; 10.后碰撞花岗岩; 11.蛇绿岩; 12.研究区Fig. 1. Regional tectonic background map (a) and geological sketch in northern margin of East Junggar (b)前人对东准噶尔地区地质构造演化开展过大量研究,认为准噶尔北缘晚古生代经历了板块俯冲、板块碰撞和板内拉张过程(肖序常, 1992; 李锦轶等, 2006).近年在富蕴下泥盆统托让格库都克组(D1t)发现了埃达克岩和富铌玄武岩(许继峰等, 2001; 张海祥等, 2004),基于这一认识准噶尔地块北侧的古亚洲洋的俯冲起始时间被限定在泥盆世之前,但还缺乏与俯冲相关的弧火成岩的关键证据支持.
本文选取青河县顿巴斯套金矿区石英闪长玢岩开展锆石LA-ICP-MS U-Pb年代学、Hf同位素地球化学,全岩主、微量元素地球化学、Sr-Nd同位素地球化学研究,确定了该区岩浆侵入活动时限和岩石成因,结合前人研究成果,讨论了洋壳的俯冲极性,为准噶尔地块北侧的古亚洲洋在晚古生代早期存在南向俯冲作用提供了关键证据.
1. 地质背景
研究区位于新疆青河县东南,距县城约160 km,大地构造位置处于准噶尔盆地东北缘,阿尔泰造山带南缘,阿尔曼泰蛇绿岩带南侧,在成矿区带上属于东准噶尔成矿区.东准噶尔地区位于哈萨克斯坦-准噶尔板块,其北以额尔齐斯蛇绿岩带为界与西伯利亚板块(Ⅰ)相邻,南侧以卡拉麦里蛇绿岩带为界与塔里木板块(Ⅲ)相邻(闫升好等, 2006; 张栋等, 2011; 董连慧等, 2012).研究区为不同时代所形成的沟、弧、盆系拼合在一起的复杂地块,自北向南依次包括:额尔齐斯志留纪-石炭纪蛇绿岩带、萨吾尔晚古生代志留纪-石炭纪大洋岛弧、阿尔曼泰寒武纪-奥陶纪蛇绿岩带、野马泉早古生代奥陶纪大陆岛弧、卡拉麦里志留纪-石炭纪蛇绿岩带(图 1).
矿区内出露地层以火山-沉积碎屑岩建造为主,岩性主要为砂砾岩、长石岩屑砂岩、粉砂岩、中-基性火山熔岩、火山碎屑岩及碳酸岩;侵入岩主要岩石类型包括石英闪长岩、石英闪长玢岩(脉岩)、花岗闪长岩、二长花岗岩、钾长花岗岩等(张洋洋等, 2015),空间上其展布方向与区域总体构造线方向一致.构造以NW向阿尔曼泰断裂及其北东侧次级NWW向构造为主(图 2),受构造作用控制,区内地层发生脆-韧性构造变形及蚀变,呈NWW向近平行分布,矿(化)体均赋存于脆-韧性构造蚀变带中,带内岩石均发生塑性变形和变质,具强烈的片理化(肖飞等, 2014).
图 2 顿巴斯套金矿区地质简图据张洋洋等(2015)修改.1.砂砾岩;2.长石岩屑砂岩;3.粉砂岩;4.金矿体;5.石英闪长玢岩;6.断裂;7.地质界线;8.产状(°);9.采样岩心钻孔及编号Fig. 2. Geological sketch map of Dunbasitao gold mining area2. 岩石学特征及样品采集
石英闪长玢岩以脉岩的形式侵位于矿区陆源碎屑岩中,走向与区内构造线方向(NWW)近一致,脉宽一般为0.5~80.0 m,长度多为5~200 m,最长可达300~500 m,脉岩多沿构造裂隙产出,其形成受区域断裂构造控制较为明显(图 2).石英闪长玢岩与矿区内主矿体I8号矿体密切伴生,普遍遭受蚀变,随深度加深金矿化逐渐增强,脉岩向深部有逐渐变大的趋势,在ZK008孔深部发现石英闪长玢岩由含矿围岩变为金矿化体,表明石英闪长玢岩与矿体的关系极其密切(王永, 2013).
本文研究的5件样品采自东矿区0线、7线、15线和39线的4个钻孔岩心,采样深度自地表向下40~135 m,脉体宽度为3~10 m(图 2).岩石呈灰黄色,风化色红黄色,块状构造,中粗粒斑状结构,斑晶主要为斜长石、角闪石、黑云母(图 3a~3d).脉岩普遍遭受蚀变,蚀变类型主要为硅化、绢云母化、绿泥石化和金属矿化,但是仍然保留了原始矿物的主要特征.样品ZK1504-1、ZK1504-2蚀变程度较弱,仅斜长石斑晶边缘发生绢云母化(图 3e,3f).样品ZK005-2、ZK704-1、ZK3902-1有不同程度蚀变,镜下观察呈中粗粒斑状结构,基质为半自形粒状结构.斑晶主要为斜长石(~20%)、角闪石(~5%)、黑云母(~5%),斑晶中的斜长石呈板状,发育有环带结构,表面有绢云母化,边缘有绿泥石化;基质多为斜长石(~65%)微晶,多呈半自形细粒,发育聚片双晶,粒径为0.15~0.35 mm,普遍发生绢云母化(图 3e~3i).样品ZK005-2、ZK704-1中局部可见碳酸盐化及黄铁矿化,镜下可见黑云母、角闪石斑晶边缘发育方解石,此外还有少量石英、黄铁矿颗粒(图 3g和3h).
3. 测试方法
3.1 锆石LA-ICP-MS U-Pb定年和Hf同位素分析
用于锆石定年的样品采自矿区0线钻孔ZK005中一段较厚的石英闪长玢岩(41.61~63.65 m),编号ZK005-2,样品送河北省区域地质调查研究所经循标准程序破碎,重磁分选之后,在双目镜下选择晶型完好并且纯净透明的锆石制靶.制靶之后磨蚀至锆石核部出露,并在中国地质大学(武汉)地质过程与矿产资源国家重点实验室(GPMR)进行透射光、反射光和阴极发光(CL)照相.
锆石原位微区U-Pb同位素测试在GPMR激光剥蚀等离子质谱仪(LA-ICP-MS)上完成.激光剥蚀系统为GeoLas2005,ICP-MS为Agilent 7500a.选取无裂隙、无包裹体的锆石,并在环带清晰的部位布点,激光束斑直径为32 μm,实验过程中用氦气为载气,测试过程中选用91500作为内标对U-Th-Pb同位素进行校正,并选用GJ-1作为监测样,选用NIST610作为外标,29Si作为内标进行微量元素校正计算,详细的分析流程及仪器参数参见Liu et al.(2008a, 2010a, 2010b).锆石年龄数据及微量元素数据处理采用ICPMSDataCal 9.5软件完成,U-Pb年龄谐和图和加权平均年龄的计算采用Isoplot 3.75软件(Ludwig, 2003).
锆石Hf同位素分析在GPMR采用LA-MC-ICP-MS进行,测试点位置与U-Pb测试点一致或者在同一颗锆石相同环带内,激光束斑直径为44 μm,详细分析流程参照Hu et al.(2012).
3.2 全岩地球化学测试
在室内详细的岩相学鉴定的基础上尽可能避免蚀变强烈部分,将样品在切割机上对有蚀变、裂隙的部位进行切割去除,选取样品新鲜完整无蚀变的部分清除其表面粉尘,粉碎至200目以下,然后进行主量元素、微量元素和Sr-Nd同位素分析.
主量元素分析在GPMR采用玻璃熔片大型X射线荧光光谱方法(XRF)分析完成.微量和稀土元素分析在GPMR采用ICP-MS完成,分析流程为:(1)称取全岩粉末样50 mg置于Teflon中;(2)用1.5 mL HNO3和1.5 mL HF在195 ℃条件下消解48 h,在120 ℃条件下蒸干除Si;(3)加入3 mL HNO3,并在195 ℃下加热12 h,溶液转入聚乙烯瓶中,并用2% HNO3稀释至约100 g后,密封保存以待ICP-MS测试.详细的分析流程及分析精密度和准确度见文献Liu et al.(2008b).
全岩Sr-Nd同位素分析在GPMR采用TritonTI型热电离同位素质谱仪完成,分析流程如下:(1)将全岩粉末样置于Teflon坩埚中用HNO3-HF在195 ℃条件下溶解48 h,蒸干后加入1 mL HCl;(2)用AG50X8阳离子交换树脂分离Rb和Sr,用HDEHP萃淋树脂分离Sm和Nd,以待测试.Sr、Nd同位素的质量分馏用86Sr/88Sr=0.119 4和146Nd/144Nd=0.721 9进行校正.Sr-Nd同位素分析采用NBS987和JNdi-1作为标样,本次分析过程中标样NBS987的87Sr/86Sr测试结果为0.710 271± 0.000 008,标样JNdi-1的分析结果为0.512 115±0.000 006,详细的测试流程和分析方法参照文献Gao et al.(2004).
4. 分析结果
4.1 锆石U-Pb年代学
石英闪长玢岩中典型锆石的CL图像、U-Pb测试点位和相应年龄结果见图 4.锆石为无色-淡黄色,呈自形-半自形长柱状、椭圆状,长轴多为100~250 μm,长宽比为1.5:1~3:1,阴极发光显示明显的振荡环带(图 4a),指示其岩浆成因(吴元保和郑永飞, 2004).17颗锆石内17个测点的U-Pb同位素和微量元素测试结果列于附表 1和附表 2中.锆石的Th和U含量分别为55×10-6~485×10-6,124×10-6~568×10-6,Th/U为0.39~0.85,与岩浆成因锆石的Th/U一致(>0.1,Griffin et al., 2004).锆石轻重稀土分异明显,重稀土元素相对富集,具有明显的Ce正异常和Eu弱负异常(图 4c),表明锆石为典型的岩浆锆石(Hoskin and Schaltegger, 2003).在锆石U-Pb谐和图上(图 4b),数据点均落在谐和线上或其附近,单颗粒锆石206Pb/238U年龄介于372~381 Ma,其加权平均年龄为378±2 Ma(MSWD=0.37).该年龄代表了石英闪长玢岩的结晶年龄,表明脉岩为晚泥盆世岩浆活动的产物.
图 4 顿巴斯套地区石英闪长玢岩中(ZK005-2)锆石阴极发光(CL)图像(a)、U-Pb年龄谐和图(b)和锆石稀土元素球粒陨石标准化配分图(c)图a中实心圆圈和蓝色虚线圆圈分别代表U-Pb年龄、Hf同位素测试激光剥蚀点位;圈中数字为分析点号,编号同附表 1,锆石下方年龄为206Pb/238U表面年龄,蓝色数字代表εHf(t);图c球粒陨石数据据Sun and McDonough(1989)Fig. 4. Cathodoluminescence (CL) image (a), zircon U-Pb concordia diagram (b) and chondrite-normalized REE distribution patterns (c) for zircons of quartz diorite porphyry sample (ZK005-2) from Dunbasitao area4.2 主量元素
全岩主量测试数据列于表 1,样品ZK704-1、ZK3902-1相对于其他样品有较低的SiO2、Na2O,但具有较高的TiO2、Fe2O3T、CaO和很高的烧失量(LOI),这与样品具有硫化物和较强的蚀变有关,故在扣除岩石LOI后再进行计算并投图.全岩SiO2含量范围为54.94%~68.64%,K2O+Na2O含量为5.86%~7.97%,Na2O/K2O为1.19~2.72,整体Na2O含量相对较高(平均值为4.34%).里特曼指数(σ)除ZK3902-1以外均小于3.3,显示为钙碱性特征,SiO2-K2O图解指示岩石总体上属中-高钾钙碱性系列(图 5a).岩石具有中等的Fe2O3T(2.23%~5.65%)、MgO(0.81%~2.77%),较低的TiO2(0.32%~1.02%).岩石的Mg#变化范围为38.1~51.2,平均值为47.5.岩体Al2O3含量为14.31%~16.99%,CaO含量为2.58%~4.97%,A/CNK为0.83~1.08,显示准铝质-弱过铝质特征(图 5b).
表 1 顿巴斯套地区石英闪长玢岩主量元素(%)、微量及稀土元素(10-6)分析结果Table Supplementary Table Major (%) and trace (10-6) element compositions of the quartz diorite porphyry from Dunbasitao area样品编号 ZK005-2 ZK704-1 ZK1504-1 ZK1504-2 ZK3902-1 *PM3YQ-3 *PM3YQ-4 SiO2 67.14 54.94 66.58 66.4 56.21 68.64 63.12 TiO2 0.32 1.02 0.34 0.35 0.97 0.32 0.52 Al2O3 14.38 15.27 14.31 14.82 14.92 15.52 16.99 Fe2O3T 2.23 5.65 2.32 2.45 5.40 2.60 4.50 MnO 0.059 0.100 0.047 0.048 0.087 0.140 0.140 MgO 1.18 2.77 1.23 1.21 2.54 0.81 1.85 CaO 2.69 4.97 2.78 2.72 4.21 2.58 4.15 Na2O 4.62 3.19 4.26 3.52 5.04 4.62 5.14 K2O 2.01 2.67 2.39 2.75 1.85 3.35 2.35 P2O5 0.15 0.48 0.13 0.14 0.47 0.12 0.24 LOI 4.72 8.48 5.14 5.44 6.78 1.30 1.49 Total 99.50 99.54 99.53 99.85 98.48 99.76 100.09 Na2O/K2O 2.30 1.19 1.78 1.28 2.72 1.38 2.17 Na2O+K2O 6.63 5.86 6.65 6.27 6.89 7.97 7.49 σ 1.82 2.88 1.88 1.68 3.59 2.48 2.79 A/CNK 0.98 0.89 0.98 1.08 0.83 0.97 0.92 A/NK 1.47 1.87 1.49 1.69 1.45 1.38 1.54 Mg# 51.1 49.3 51.2 49.5 48.2 38.1 44.9 Sc 4.55 10.05 4.91 5.15 8.98 5.10 7.90 Cr 18.6 37.4 19.6 20.1 30.2 7.8 31.3 Co 16.6 26.9 21.4 17.4 24.8 Ni 13.4 41.8 14.3 16.0 34.7 Rb 37.5 43.4 42.2 48.9 28.1 57.4 31.0 Sr 374 451 441 394 460 724 1 045 Y 7.0 12.2 7.2 7.2 11.1 6.1 8.0 Zr 102 126 108 108 116 89 102 Nb 12.9 15.2 12.2 12.2 14.8 7.8 6.9 Ba 434 573 445 663 423 1 297 1 051 La 21.5 26.5 21.4 21.7 24.0 15.5 16.0 Ce 38.5 53.6 39.0 38.9 49.2 32.2 34.9 Pr 4.00 6.27 4.05 4.11 5.67 3.78 4.08 Nd 14.1 23.9 14.3 14.2 21.6 11.7 13.5 Sm 2.37 4.49 2.36 2.57 3.99 2.23 2.81 Eu 0.62 1.44 0.64 0.63 1.18 0.70 0.96 Gd 1.66 3.38 1.83 1.84 3.08 1.85 2.47 Tb 0.25 0.46 0.23 0.26 0.43 0.23 0.31 Dy 1.34 2.47 1.26 1.37 2.31 1.28 1.74 Ho 0.23 0.43 0.23 0.24 0.38 0.25 0.34 Er 0.59 1.05 0.61 0.62 1.01 0.71 0.93 Tm 0.09 0.16 0.10 0.09 0.15 0.11 0.13 Yb 0.54 0.88 0.57 0.61 0.91 0.77 0.91 Lu 0.08 0.14 0.10 0.10 0.13 0.14 0.15 Hf 2.84 2.95 3.03 3.07 2.79 2.90 3.50 Ta 1.11 0.89 1.08 1.05 0.88 0.64 0.52 Pb 12.50 8.37 6.42 4.21 4.37 Th 6.09 2.71 5.97 6.22 2.61 3.40 2.70 U 2.90 2.16 2.80 2.29 1.18 REE 85.86 125.16 87.29 114.02 86.67 71.43 79.19 LREE/HREE 16.98 12.98 16.02 12.59 16.55 12.38 10.35 (La/Yb)N 28.52 21.72 25.66 18.94 26.90 14.43 12.61 δEu 0.91 1.09 0.85 0.99 0.91 1.02 1.09 Sr/Y 53.20 36.97 61.25 54.50 41.44 118.30 131.28 Ce/Th 6.32 19.78 6.53 6.25 18.85 9.47 12.93 Ba/Th 71.26 211.44 74.54 106.59 162.07 381.47 389.26 Nb/U 4.45 7.04 4.36 5.33 12.54 Ce/Pb 3.08 6.40 6.07 9.24 11.26 Zr/Sm 43.04 28.06 45.76 42.02 29.07 39.91 36.30 注:A/CNK=Al2O3/(CaO+Na2O+K2O); A/NK=Al2O3/(Na2O+K2O); 带*的数据来源于新疆有色地质勘查局七O一队, 2011, 新疆青河县阿克加尔一带1:5万区域地质调查报告. 图 5 顿巴斯套石英闪长玢岩主量元素图解a.K2O-SiO2关系图, 底图据Rollinson(1993);b.A/NK-A/CNK关系图, 底图据Maniar and Piccoli(1989).数据来源:正常岛弧型黑云母闪长岩(379.7 Ma,吕书君等, 2012);正常岛弧型花岗岩数据来自希勒克特哈腊苏花岗闪长斑岩(381 Ma,杨文平等, 2005)和喀腊萨依二长闪长斑岩(376 Ma,Zhang et al., 2006);陆壳部分熔融英云闪长岩(375 Ma,柴凤梅等, 2013);早泥盆世托让格库都克组埃达克岩(许继峰等, 2001; 张海祥等, 2004)Fig. 5. Major element plots for the quartz diorite porphyry from Dunbasitao area and rocks from its adjacent areas4.3 稀土及微量元素
石英闪长玢岩稀土元素总量(∑REE)介于71.43×10-6~125.16×10-6,低于地壳岩浆岩平均值(164×10-6),与地壳重熔型花岗岩(S型)的较高稀土元素含量存在明显差异(邱家骧, 1991).轻重稀土分异明显,富集轻稀土元素(LREE),相对亏损重稀土元素(HREE),LREE/HREE介于10.35~16.98,球粒陨石标准化稀土元素配分曲线具LREE富集的陡的右倾分配特点(图 6a).岩石δEu为0.85~1.09,Eu异常不明显.稀土元素分配总体上明显区别于陆壳部分熔融型岩石,与东准噶尔地区同时代埃达克岩、岛弧型花岗岩和闪长岩的稀土分配较为一致(图 6a).岩石(La/Yb)N介于12.61~28.52,平均值为21.25,在(La/Yb)N-Yb变异图解中,样品均落在埃达克岩范围内(图 7a).
图 6 顿巴斯套地区石英闪长玢岩稀土元素配分图(a)和微量元素蛛网图(b)数据来源同图 5,球粒陨石和原始地幔数据来自Sun and McDonough(1989)Fig. 6. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace elements patterns (b) for the quartz diorite porphyry from Dunbasitao area图 7 顿巴斯套石英闪长玢岩(La/Yb)N-YbN(a)和Sr/Y-Y关系图(b)数据来源同图 5,图a、b底图据Defant and Drummond(1990),图中带小短线的虚线为部分熔融曲线Fig. 7. (La/Yb)N-YbN diagram (a) and Sr/Y-Y diagram (b) for the quartz diorite porphyry from Dunbasitao area微量元素原始地幔标准化曲线总体上岩石大离子亲石元素(LILE,Rb、Ba、Th、K、La、Sr)相对高场强元素(HFSE,Nb、Ta、P、Ti)明显富集.Ba、U、K、Pb、Sr呈正异常,Nb、Ta、P、Ti呈负异常,显示岛弧岩浆的特点.钻孔样品ZK704-1、ZK3902-1尽管较其他样品有较强的蚀变和较高的烧失量且岩石LILE可能在蚀变中会发生改变,但是HFSF数量上与其余样品差异不大(表 1),仍然具有一致的分配曲线(图 6b),表明HFSE仍然可以用来判断岩石类型和成因,在Nb/Yb-Zr/TiO2图解中,样品落在碱性玄武岩—粗安岩区域(图 8).样品微量元素中Sr含量很高(>374×10-6),重稀土(其中Yb < 1.0×10-6和Y < 11.1×10-6)含量却很低,导致了岩石很高的Sr/Y比值,在Sr/Y-Y图解中,样品均落入埃达克岩范围内(图 7b).总体上,石英闪长玢岩与东准噶尔北缘地区同时代岛弧型黑云母闪长岩、埃达克岩的范围一致,与区域上同期的陆壳部分熔融型英云闪长岩有区别(图 7b).
4.4 Sr-Nd-Hf同位素
5件样品Sr-Nd同位素测试结果列于附表 3,εNd(t)和(87Sr/86Sr)i按378 Ma进行校正.样品的87Sr/86Sr比值介于0.704 857~0.705 724,143Nd/144Nd比值介于0.512 732~0.512 769.石英闪长玢岩具有较低的(87Sr/86Sr)i(0.703 783~0.703 901),较高的εNd(t)(+6.2~+6.7),以及较为年轻Nd同位素的一阶段模式年龄(TDM介于560~608 Ma).
锆石Hf同位素分析结果见附表 4,176Lu/177Hf比值变化于0.000 781~0.003 276,176Yb/177Hf比值介于0.021 998~0.101 339,176Hf/177Hf比值变化于0.282 894~0.282 974,εHf(t)相对较高,变化于+12.1~+15.1,对应的一阶段模式年龄TDM1(Hf)为403~516 Ma,相对于全岩Sr-Nd测试结果较为年轻(附表 4).
5. 讨论
5.1 岩石成因
顿巴斯套石英闪长玢岩具有较高的Mg#(38.1~51.2,平均值为47.5),中等Al2O3(14.31%~16.99%),较高的CaO(2.58%~4.97%)含量,为钙碱性-高钾钙碱性准铝质岩石.岩石富集Rb、Ba、Th、K、Pb等大离子亲石元素,相对亏损Nb、Ta、P、Ti等高场强元素,显示较高的Sr/Y (28.7~131.28)和(La/Yb)N(12.61~28.52)比值,具有俯冲带埃达克质岩浆岩的地球化学特征(Defant and Drummond, 1990).这类岩石的成因模式可能存在以下几种:(1)加厚下地壳部分熔融(Atherton and Petford, 1993; Chung et al., 2003);(2)拆沉下地壳熔融(Gao et al., 2004);(3)岛弧玄武质岩浆的分离结晶(Castillo et al., 1999);(4)俯冲洋壳部分熔融(Defant and Drummond, 1990; Rapp et al., 1999).
加厚下地壳部分熔融形成的岩浆具有高SiO2、低MgO、相容元素(Cr、Ni)和Mg#等特征,并常见继承锆石或者下地壳包体(Chung et al., 2003; 陈加杰等, 2016).顿巴斯套石英闪长玢岩SiO2含量变化范围大(52.44~68.64),有较高的MgO(0.81%~2.77%,平均值为1.66%)、Cr(18.6×10-6~38.5×10-6)、Ni(13.4×10-6~41.8×10-6)和Mg#(38.1~51.2,平均值为47.5),野外观察并未见到岩体中存在具有变质、变形特征的壳源包体,锆石显微观察及CL阴极发光均未见明显的继承锆石,显然与典型的下地壳部分熔融形成的岩石特征不符.新生的下地壳部分熔融虽然也可以形成埃达克质岩,但是形成的岩石也是低Mg#的与本文样品特征不符,更重要的是,岩石亏损的Nd-Hf同位素特征明显排除了古老下地壳作为岩浆主要源区的可能.
拆沉下地壳部分熔融形成的岩浆虽然存在地幔物质的加入(Gao et al., 2004; Liu et al., 2008b),但是其源区仍然以古老下地壳物质为主,其岩浆同位素特征应该仍然表现为富集特征,但是顿巴斯套石英闪长玢岩样品Sr-Nd同位素显示亏损特征,锆石Hf同位素更是接近亏损地幔的同位素特征,因此古老的地壳物质不可能作为该岩石的主要源区.此外Gao et al.(2004)认为拆沉下地壳部分熔融形成的埃达克质火山岩具有相对高的MgO(2.31%~5.68%,平均值为3.55%)和Mg#(53~65)值,并且这些埃达克质岩矿物中具有辉石反环带,即单斜辉石斑晶发育斜方辉石的反环带,而顿巴斯套石英闪长玢岩MgO和Mg#明显低于上述数值,在显微镜下也未见有辉石矿物及反环带现象,故拆沉下地壳熔融模型不能很好地解释石英闪长玢岩的成因模式.
玄武质岩浆的高压分异可以形成类似同位素特征的埃达克质岩,但是这类岩石多与一系列具有成因联系的基性岩共生(Castillo et al., 1999),研究区范围内并未发现类似的基性岩.玄武质岩浆结晶分异形成的埃达克质岩通常具有非常高的Al2O3含量(18%;Macpherson et al., 2006),明显高于本次研究的石英闪长玢岩,进一步排除了石英闪长玢岩直接来源于玄武质岩浆结晶分异.
事实上,Sr-Nd同位素多元图解上样品偏离MORB区域落入阿尔曼泰蛇绿岩区域(图 9a),暗示了俯冲玄武质洋壳可能是石英闪长玢岩源区的主要组成之一.岩石强烈亏损的Hf同位素特征也支持俯冲的玄武质洋壳作为源区主要组成的可能性(图 9b).再者,在SiO2-MgO图解中样品都落入俯冲洋壳熔融的区域(图略),进一步表明岩石可能主要来源于俯冲洋壳板片的部分熔融.另外,本文样品具有较高的相容元素(Cr、Ni等)、MgO含量和Mg#,同时岩石富Nb(6.9×10-6~15.2×10-6)且邻近区域在泥盆统托让格库都克组(D1t)出现了富Nb玄武岩(张海祥等, 2004),指示熔融形成埃达克质熔体在上侵的过程中与地幔楔橄榄岩发生了交代反应(Rapp et al., 1999; 王强等, 2003),但是这一过程中是否有俯冲沉积物和板片流体的加入还需要进一步讨论.
图 9 顿巴斯套石英闪长玢岩Sr-Nd同位素组成图解(a)和锆石Hf同位素组成图解(b)图a底图据黄岗等(2016)Fig. 9. Plots of initial 87Sr/86Sr vs.εNd(t) (t=378 Ma) (a) and Hf isotopic compositions of zircons from the Dunbasitao quartz diorite porphyry (b)俯冲沉积物熔体具有较高的Th、Pb含量,低的Ce/Th(≈8)比值和Ba/Th(≈111)比值,这种熔体的加入可以改变俯冲带岩浆的Sr-Nd同位素初始比值,并伴有明显的Ce负异常(Hole et al., 1984; Plank and Langmuir, 1998).但本文所有岩石具有低的Th(2.6×10-6~6.2×10-6)含量、高的Ce/Th(6.3~19.8,平均值为11.5)和Ba/Th(71~389,平均值为200)比值且基本无Ce异常,表明源区没有俯冲沉积物熔体的加入.原始地幔的Ce/Pb比值、MORB以及OIB的Ce/Pb比值均为25(Sun and McDonough, 1989),且俯冲带环境下流体的加入会使熔体中的Ba/Th比值明显增高(Elburg et al., 2002).所有岩石具有低的Ce/Pb比值(3.1~11.1)、Nb/U比值(4.4~12.6)和高的Ba/Th比值,表明存在俯冲板片来源的流体加入(Seghedi et al., 2004; 柴凤梅等, 2012).
脱水的洋壳密度变大,拖曳大洋板块进一步向下俯冲,在重力作用下俯冲板片脱落,熔融产生埃达克质熔体.熔体的残留相可以为榴辉岩相、含石榴子石角闪岩相或角闪岩相(Rapp et al., 1999; Foley et al., 2002).在(La/Yb)N-Y图中(图 7a),样品均落入含10%石榴子石角闪岩平衡演化线附近,指示源区残留石榴子石.斜长石不稳定分解进入熔体,导致熔体中高的Sr含量及正的Eu异常,Y和Yb因与石榴子石相容而被大量残留在源区致使岩石Y和Yb含量很低.Salters and Hart(1989)提出当岩浆源区存在石榴子石残留时,熔体相富集放射性成因Hf和高的εHf(t),但石榴子石对Nd同位素的影响可以忽略不计(Schmitz et al., 2004),因此岩体相对较高的εHf(t)进一步佐证岩浆源区应该存在石榴子石.Sm在角闪石中的分配系数远大于Zr,本文样品很高的Zr/Sm比值(24.3~45.8),反映源区有角闪石的残留.
综上所述,顿巴斯套石英闪长玢岩是中-晚泥盆世俯冲作用的结果,在俯冲消减过程中俯冲板片脱水产生流体交代上覆地幔楔,脱水洋壳密度增大导致大洋板块继续向下俯冲而发生变质,并在重力作用下引起板片断离,从而导致软流圈地幔物质上涌,促使俯冲板片熔融产生高Sr/Y、(La/Yb)N、εNd(t)、εHf(t),中等Mg#的埃达克质熔体,其源区含石榴子石、角闪石,此外在部分熔融过程中有板片流体的加入,上升的过程中板片流体、熔体与上覆地幔楔发生了交代反应.同时,被埃达克质熔体和流体交代的地幔楔在局部拉张环境中产生减压熔融发生了顿巴斯套石英闪长玢岩原始岩浆.
5.2 构造意义
研究表明,古亚洲洋在早古生代广泛分布于中亚造山带和中国新疆北部地区,并分隔西伯利亚板块和哈萨克斯坦-准噶尔板块(肖序常, 1992).准噶尔地区历来是众多学者重点关注的地区,一系列的研究认为东准噶尔地区古生代经历了古亚洲洋扩张、板块俯冲、碰撞和后碰撞过程(徐学义等, 2014).造山带蛇绿岩是古洋壳存在的物质记录,新疆北部地区自北向南发育额尔齐斯-玛音鄂博蛇绿混杂岩带、扎河坝-阿尔曼泰蛇绿混杂岩带和卡拉麦里蛇绿混杂岩带等,其中后两条蛇绿混杂岩带出露良好,蛇绿岩组分较齐全,研究程度较高,形成时代已被确定分别为早古生代(肖文交等, 2006; 刘亚然等, 2016)和泥盆纪(唐红峰等, 2007; 黄岗等, 2012; 方爱民等, 2015; 黄岗等, 2017).
针对蛇绿岩套的高精度锆石U-Pb年代学研究显示,阿尔曼泰古洋(古亚洲洋分支)的主要扩张时期可能为中寒武世-早奥陶世(506~481 Ma; 简平等, 2003; 肖文交等, 2006; 张元元和郭召杰, 2010; 刘亚然等, 2016).阿尔曼泰蛇绿混杂带中沉积岩块最年轻的碎屑锆石年龄为426 Ma,其物源主要来自北侧阿勒泰造山带(黄岗等, 2013),暗示了在晚志留世期间阿尔曼泰蛇绿岩所代表的早古生代大洋已经关闭,东准噶尔北缘(哈萨克斯坦-准噶尔板块)与阿勒泰造山带(西伯利亚板块)已联为一体,二者共同构成了古西伯利亚古陆南缘的一个边缘造山带.在晚志留世-早泥盆世初期,随早古生代后碰撞期应力松弛,统一的准噶尔-阿勒泰古陆块开始发生强烈伸展裂解及韧性剪切走滑,使早古生代地层岩石普遍发生变质.持续的裂解在研究区北侧阿勒泰南缘发育准噶尔洋盆.青河县境内出露的额尔齐斯-玛音鄂博蛇绿构造混杂岩带中具有大洋拉斑玄武岩特征(N-MORB型)的斜长角闪岩年龄为437±12 Ma(张越等, 2012),提供了该古洋盆存在的直接证据.
近些年来许多学者对新疆额尔齐斯-玛音鄂博蛇绿构造混杂岩带的两侧的岩浆岩进行的大量研究表明在晚古生代早期(390~370 Ma)发生过一次大规模的岩浆活动,形成了大量的中酸性岩体(沈晓明等, 2010; 吕书君等, 2012; 田红彪等, 2017).本文所测石英闪长玢岩锆石LA-ICP-MS U-Pb年龄为378±2 Ma,该年龄代表了石英闪长玢岩的结晶年龄,与同处新疆额尔齐斯-玛音鄂博蛇绿岩带南侧(东准噶尔北缘)陆缘活动带区域上的玄武岩及中酸性岩体侵入时间一致(表 2).表明石英闪长玢岩与上述岩体是同时期岩浆活动产物.本文对顿巴斯套石英闪长玢岩进行了研究,结果表明该岩石为俯冲消减过程中俯冲板片脱水产生的流体和埃达克质熔体交代上覆地幔楔的产物,构造背景可能为俯冲环境.在Nb-Y构造判别图解(图 10a)中石英闪长玢岩及邻区中酸性岩均落入火山弧花岗岩区域,Rb-(Yb+Ta)图解(图 10b)也指示岩石形成于火山-岩浆弧环境.表明东准噶尔北缘中-晚泥盆世(380 Ma左右)存在火山岩浆弧,其形成可能与晚古生代大洋板块俯冲作用有关,暗示准噶尔洋在中-晚泥盆世(380 Ma左右)之后可能经历了一次规模较大的向南俯冲过程,其向南的持续俯冲产生了准噶尔北缘的泥盆纪-早石炭世的岛弧火山岩系.这一结论得到了东准噶尔北缘下泥盆统托让格库都克组(D1t)出现的与俯冲作用相关的富铌玄武岩和埃达克岩的佐证(许继峰等, 2001; 张海祥等, 2004).此外,柴凤梅等(2012)获得北塔山组(D2bt)玄武岩喷发年龄为380.5±2.2 Ma,它是准噶尔古洋盆于泥盆世时发生的俯冲消减所引发的岛弧岩浆作用的地质记录,再次表明准噶尔地块北侧的准噶尔古洋盆(古亚洲洋板块分支)很有可能在早泥盆世之前开始了一次新的向南俯冲的消减过程.
表 2 东准噶尔北缘相关地质体年龄Table Supplementary Table Northern margin of East Junggar statistics related geological ages地区 岩体 测试对象及方法 年龄 资料来源 老山口铁铜金矿区 北塔山组玄武岩 380.5±2.2 Ma 柴凤梅等, 2012 黑云母闪长岩 锆石LA-ICP-MS U-Pb 379.3±2.3 Ma 吕书君等, 2012 闪长玢岩 379.7±3 Ma 吕书君等, 2012 希勒克特哈腊苏铜矿区 花岗闪长斑岩 锆石SHRIMP U-Pb 381±6 Ma Zhang et al., 2006 花岗闪长斑岩 锆石SHRIMP U-Pb 375±8.7 Ma、371.8±9.6 Ma 吴淦国, 2008 石英闪长岩 锆石LA-ICP-MS U-Pb 382±1.3 Ma 杨富全等, 2012 含矿闪长玢岩 锆石LA-ICP-MS U-Pb 379±1.2 Ma、379±1.9 Ma 杨富全等, 2012 玉勒肯哈腊苏铜矿区 苏斑状花岗岩 锆石LA-ICP-MS U-Pb 381.6±2.5 Ma 赵战锋等, 2009 喀腊萨依 二长闪长斑岩 锆石SHRIMP U-Pb 376±10 Ma Zhang et al., 2006 卡拉先格尔Ⅰ号矿区 花岗闪长斑岩 锆石LA-ICP-MS U-Pb 390.2±4.9 Ma 相鹏等, 2009 乔夏哈拉铜金矿区 闪长岩脉 角闪石Ar-Ar坪年龄 378.1±3.6 Ma 应立娟, 2007 闪长玢岩 锆石LA-ICP-MS U-Pb 377.6±1.4 Ma 张志欣等, 2012 加玛特金铜矿 辉长岩 锆石LA-ICP-MS U-Pb 379.6±2.9 Ma 李远友等, 2017 图 10 顿巴斯套石英闪长玢岩Y-Nb图解(a)和(Yb+Ta)-Rb图解(b)syn-COLG.同碰撞花岗岩; WPG.板内花岗岩; VAG.岛弧花岗岩; ORG.洋中脊花岗岩.底图据Pearce et al.(1984)Fig. 10. The Y-Nb and (Yb+Ta)-Rb diagrams for discriminating the tectonic setting of the quartz diorite porphyry from Dunbasitao新疆额尔齐斯-玛音鄂博蛇绿岩带北侧方面(阿尔泰南缘),在早中奥陶世(>460 Ma)古亚洲洋板块开始向北俯冲于阿尔泰微大陆之下,460~415 Ma由于板块脱水形成的流体交代上覆地幔楔,促使其熔融形成岛弧火山岩(Windley et al., 2002).Zhang et al.(2006)根据克特哈腊苏花岗闪长斑岩和喀腊萨依二长闪长斑岩SHRIMP U-Pb年龄(381±6 Ma和376±10 Ma),提出两者代表了俯冲过程形成的花岗质岩石,并认为古亚洲洋由南西向北东俯冲过程的时间间隔可能为408~376 Ma,于381 Ma左右逐渐演化形成一个中等成熟的岛弧.张海祥等(2003)利用SHRIMP方法获得库尔提蛇绿岩的年龄为372±19 Ma,且在研究区中的北塔山组(D2bt)发现玻安岩,认为是准噶尔古洋盆(古亚洲洋板块分支)的北向俯冲, 库尔提弧后盆地开始持续拉张引发的弧后扩张的产物.随着古亚洲洋持续的向北俯冲,俯冲板片变质脱水,消减洋壳及地幔楔发生部分熔融形成基性岩浆,上涌的基性岩浆携带高热底侵于下地壳,使地壳部分熔融,并发生壳幔混合作用,形成大规模380~370 Ma的岛弧岩浆,如乌利奇花岗闪长岩(375±1 Ma,Wang et al., 2006)、塔尔浪黑云母花岗岩(382±5 Ma,Yuan et al., 2007)、蒙库铁矿区片麻状黑云母花岗岩(378±7 Ma,杨富全等, 2008)、阿舍勒铜矿区英云闪长岩(375.3±2.1 Ma,柴凤梅等, 2013)等.该时期形成大量花岗岩岩体,并具有不同程度变形,显示了区域挤压汇聚环境,表明阿尔泰南缘可能由俯冲增生到进入碰撞的过程(王涛等, 2010).早石炭世(355~318 Ma),碰撞拼合接近尾声,主造山期已近结束,早二叠世(290~270 Ma)古大洋均已消失(何国琦, 1994; 肖文交等, 2006; 徐学义等, 2014).
综上所述,我们初步认识到:在早泥盆世或更早的时期位于哈萨克斯坦-准噶尔板块与西伯利亚板块之间的古亚洲洋已经存在,于早泥盆世分别向南侧的哈萨克斯坦-准噶尔板块和北侧的西伯利亚板块之下俯冲消减,并在390~370 Ma伴有大规模岩浆活动并形成了两个古岛弧火山岩带,随着古亚洲洋关闭消失,两侧的古岛弧开始碰撞对接,后经过陆内造山改造,最后形成了如今的准噶尔和阿尔泰造山带的构造格局(图 11).
6. 结论
(1) 顿巴斯套地区石英闪长玢岩锆石LA-ICP-MS U-Pb年龄为378±2 Ma,指示岩体侵位于晚泥盆世.
(2) 石英闪长玢岩是中-晚泥盆世古亚洲洋向哈萨克斯坦-准噶尔板块俯冲消减过程中俯冲板片部分熔融的产物,板片脱水产生的流体和熔体在上升过程中与地幔楔发生了交代反应.
(3) 该岩脉是古亚洲洋向南俯冲时于东准噶尔北缘形成的岛弧岩浆岩,指示古亚洲洋在晚古生代早期存在南北双向俯冲.
附表 1~4见本刊官网(http://www.earth-science.net).
致谢: 论文撰写过程中感谢新疆有色地质勘查局七〇一队提供的野外帮助,感谢匿名审稿人在论文评审过程中给本文提出的宝贵意见. -
图 1 东准噶尔大地构造位置(a)及其北缘地质简图(b)
a.据董连慧等(2009)修改;b.据张栋等(2011)修改.①额尔齐斯蛇绿岩带; ②阿尔曼泰绿岩带; ③卡拉麦里蛇绿岩带; ④巴音沟蛇绿岩带; ⑤冰达坂蛇绿岩带; ⑥红柳河蛇绿岩带.Ⅰ.西伯利亚板块; Ⅱ.哈萨克斯坦-准噶尔板块; Ⅱ1.萨吾尔山晚古生代大洋岛弧; Ⅱ2.野马泉早古生代大陆岛弧; Ⅱ3.准噶尔-吐哈陆块; Ⅱ4.天山地区古生代复合弧盆系统; Ⅲ.塔里木板块.1.第四系; 2.中生界; 3.上石炭统; 4.下石炭统; 5.泥盆系; 6.志留系; 7.韧性剪切带; 8.深大断裂带; 9.地层界线; 10.后碰撞花岗岩; 11.蛇绿岩; 12.研究区
Fig. 1. Regional tectonic background map (a) and geological sketch in northern margin of East Junggar (b)
图 2 顿巴斯套金矿区地质简图
据张洋洋等(2015)修改.1.砂砾岩;2.长石岩屑砂岩;3.粉砂岩;4.金矿体;5.石英闪长玢岩;6.断裂;7.地质界线;8.产状(°);9.采样岩心钻孔及编号
Fig. 2. Geological sketch map of Dunbasitao gold mining area
图 4 顿巴斯套地区石英闪长玢岩中(ZK005-2)锆石阴极发光(CL)图像(a)、U-Pb年龄谐和图(b)和锆石稀土元素球粒陨石标准化配分图(c)
图a中实心圆圈和蓝色虚线圆圈分别代表U-Pb年龄、Hf同位素测试激光剥蚀点位;圈中数字为分析点号,编号同附表 1,锆石下方年龄为206Pb/238U表面年龄,蓝色数字代表εHf(t);图c球粒陨石数据据Sun and McDonough(1989)
Fig. 4. Cathodoluminescence (CL) image (a), zircon U-Pb concordia diagram (b) and chondrite-normalized REE distribution patterns (c) for zircons of quartz diorite porphyry sample (ZK005-2) from Dunbasitao area
图 5 顿巴斯套石英闪长玢岩主量元素图解
a.K2O-SiO2关系图, 底图据Rollinson(1993);b.A/NK-A/CNK关系图, 底图据Maniar and Piccoli(1989).数据来源:正常岛弧型黑云母闪长岩(379.7 Ma,吕书君等, 2012);正常岛弧型花岗岩数据来自希勒克特哈腊苏花岗闪长斑岩(381 Ma,杨文平等, 2005)和喀腊萨依二长闪长斑岩(376 Ma,Zhang et al., 2006);陆壳部分熔融英云闪长岩(375 Ma,柴凤梅等, 2013);早泥盆世托让格库都克组埃达克岩(许继峰等, 2001; 张海祥等, 2004)
Fig. 5. Major element plots for the quartz diorite porphyry from Dunbasitao area and rocks from its adjacent areas
图 6 顿巴斯套地区石英闪长玢岩稀土元素配分图(a)和微量元素蛛网图(b)
数据来源同图 5,球粒陨石和原始地幔数据来自Sun and McDonough(1989)
Fig. 6. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace elements patterns (b) for the quartz diorite porphyry from Dunbasitao area
图 7 顿巴斯套石英闪长玢岩(La/Yb)N-YbN(a)和Sr/Y-Y关系图(b)
数据来源同图 5,图a、b底图据Defant and Drummond(1990),图中带小短线的虚线为部分熔融曲线
Fig. 7. (La/Yb)N-YbN diagram (a) and Sr/Y-Y diagram (b) for the quartz diorite porphyry from Dunbasitao area
图 8 顿巴斯套地区石英闪长玢岩Nb/Y-Zr/TiO2判别图解
底图据Winchester and Floyd (1976)
Fig. 8. Nb/Y-Zr/TiO2 diagram for the quartz diorite porphyry from Dunbasitao area
图 9 顿巴斯套石英闪长玢岩Sr-Nd同位素组成图解(a)和锆石Hf同位素组成图解(b)
图a底图据黄岗等(2016)
Fig. 9. Plots of initial 87Sr/86Sr vs.εNd(t) (t=378 Ma) (a) and Hf isotopic compositions of zircons from the Dunbasitao quartz diorite porphyry (b)
图 10 顿巴斯套石英闪长玢岩Y-Nb图解(a)和(Yb+Ta)-Rb图解(b)
syn-COLG.同碰撞花岗岩; WPG.板内花岗岩; VAG.岛弧花岗岩; ORG.洋中脊花岗岩.底图据Pearce et al.(1984)
Fig. 10. The Y-Nb and (Yb+Ta)-Rb diagrams for discriminating the tectonic setting of the quartz diorite porphyry from Dunbasitao
表 1 顿巴斯套地区石英闪长玢岩主量元素(%)、微量及稀土元素(10-6)分析结果
Table 1. Major (%) and trace (10-6) element compositions of the quartz diorite porphyry from Dunbasitao area
样品编号 ZK005-2 ZK704-1 ZK1504-1 ZK1504-2 ZK3902-1 *PM3YQ-3 *PM3YQ-4 SiO2 67.14 54.94 66.58 66.4 56.21 68.64 63.12 TiO2 0.32 1.02 0.34 0.35 0.97 0.32 0.52 Al2O3 14.38 15.27 14.31 14.82 14.92 15.52 16.99 Fe2O3T 2.23 5.65 2.32 2.45 5.40 2.60 4.50 MnO 0.059 0.100 0.047 0.048 0.087 0.140 0.140 MgO 1.18 2.77 1.23 1.21 2.54 0.81 1.85 CaO 2.69 4.97 2.78 2.72 4.21 2.58 4.15 Na2O 4.62 3.19 4.26 3.52 5.04 4.62 5.14 K2O 2.01 2.67 2.39 2.75 1.85 3.35 2.35 P2O5 0.15 0.48 0.13 0.14 0.47 0.12 0.24 LOI 4.72 8.48 5.14 5.44 6.78 1.30 1.49 Total 99.50 99.54 99.53 99.85 98.48 99.76 100.09 Na2O/K2O 2.30 1.19 1.78 1.28 2.72 1.38 2.17 Na2O+K2O 6.63 5.86 6.65 6.27 6.89 7.97 7.49 σ 1.82 2.88 1.88 1.68 3.59 2.48 2.79 A/CNK 0.98 0.89 0.98 1.08 0.83 0.97 0.92 A/NK 1.47 1.87 1.49 1.69 1.45 1.38 1.54 Mg# 51.1 49.3 51.2 49.5 48.2 38.1 44.9 Sc 4.55 10.05 4.91 5.15 8.98 5.10 7.90 Cr 18.6 37.4 19.6 20.1 30.2 7.8 31.3 Co 16.6 26.9 21.4 17.4 24.8 Ni 13.4 41.8 14.3 16.0 34.7 Rb 37.5 43.4 42.2 48.9 28.1 57.4 31.0 Sr 374 451 441 394 460 724 1 045 Y 7.0 12.2 7.2 7.2 11.1 6.1 8.0 Zr 102 126 108 108 116 89 102 Nb 12.9 15.2 12.2 12.2 14.8 7.8 6.9 Ba 434 573 445 663 423 1 297 1 051 La 21.5 26.5 21.4 21.7 24.0 15.5 16.0 Ce 38.5 53.6 39.0 38.9 49.2 32.2 34.9 Pr 4.00 6.27 4.05 4.11 5.67 3.78 4.08 Nd 14.1 23.9 14.3 14.2 21.6 11.7 13.5 Sm 2.37 4.49 2.36 2.57 3.99 2.23 2.81 Eu 0.62 1.44 0.64 0.63 1.18 0.70 0.96 Gd 1.66 3.38 1.83 1.84 3.08 1.85 2.47 Tb 0.25 0.46 0.23 0.26 0.43 0.23 0.31 Dy 1.34 2.47 1.26 1.37 2.31 1.28 1.74 Ho 0.23 0.43 0.23 0.24 0.38 0.25 0.34 Er 0.59 1.05 0.61 0.62 1.01 0.71 0.93 Tm 0.09 0.16 0.10 0.09 0.15 0.11 0.13 Yb 0.54 0.88 0.57 0.61 0.91 0.77 0.91 Lu 0.08 0.14 0.10 0.10 0.13 0.14 0.15 Hf 2.84 2.95 3.03 3.07 2.79 2.90 3.50 Ta 1.11 0.89 1.08 1.05 0.88 0.64 0.52 Pb 12.50 8.37 6.42 4.21 4.37 Th 6.09 2.71 5.97 6.22 2.61 3.40 2.70 U 2.90 2.16 2.80 2.29 1.18 REE 85.86 125.16 87.29 114.02 86.67 71.43 79.19 LREE/HREE 16.98 12.98 16.02 12.59 16.55 12.38 10.35 (La/Yb)N 28.52 21.72 25.66 18.94 26.90 14.43 12.61 δEu 0.91 1.09 0.85 0.99 0.91 1.02 1.09 Sr/Y 53.20 36.97 61.25 54.50 41.44 118.30 131.28 Ce/Th 6.32 19.78 6.53 6.25 18.85 9.47 12.93 Ba/Th 71.26 211.44 74.54 106.59 162.07 381.47 389.26 Nb/U 4.45 7.04 4.36 5.33 12.54 Ce/Pb 3.08 6.40 6.07 9.24 11.26 Zr/Sm 43.04 28.06 45.76 42.02 29.07 39.91 36.30 注:A/CNK=Al2O3/(CaO+Na2O+K2O); A/NK=Al2O3/(Na2O+K2O); 带*的数据来源于新疆有色地质勘查局七O一队, 2011, 新疆青河县阿克加尔一带1:5万区域地质调查报告. 表 2 东准噶尔北缘相关地质体年龄
Table 2. Northern margin of East Junggar statistics related geological ages
地区 岩体 测试对象及方法 年龄 资料来源 老山口铁铜金矿区 北塔山组玄武岩 380.5±2.2 Ma 柴凤梅等, 2012 黑云母闪长岩 锆石LA-ICP-MS U-Pb 379.3±2.3 Ma 吕书君等, 2012 闪长玢岩 379.7±3 Ma 吕书君等, 2012 希勒克特哈腊苏铜矿区 花岗闪长斑岩 锆石SHRIMP U-Pb 381±6 Ma Zhang et al., 2006 花岗闪长斑岩 锆石SHRIMP U-Pb 375±8.7 Ma、371.8±9.6 Ma 吴淦国, 2008 石英闪长岩 锆石LA-ICP-MS U-Pb 382±1.3 Ma 杨富全等, 2012 含矿闪长玢岩 锆石LA-ICP-MS U-Pb 379±1.2 Ma、379±1.9 Ma 杨富全等, 2012 玉勒肯哈腊苏铜矿区 苏斑状花岗岩 锆石LA-ICP-MS U-Pb 381.6±2.5 Ma 赵战锋等, 2009 喀腊萨依 二长闪长斑岩 锆石SHRIMP U-Pb 376±10 Ma Zhang et al., 2006 卡拉先格尔Ⅰ号矿区 花岗闪长斑岩 锆石LA-ICP-MS U-Pb 390.2±4.9 Ma 相鹏等, 2009 乔夏哈拉铜金矿区 闪长岩脉 角闪石Ar-Ar坪年龄 378.1±3.6 Ma 应立娟, 2007 闪长玢岩 锆石LA-ICP-MS U-Pb 377.6±1.4 Ma 张志欣等, 2012 加玛特金铜矿 辉长岩 锆石LA-ICP-MS U-Pb 379.6±2.9 Ma 李远友等, 2017 -
Atherton, M.P., Petford, N., 1993.Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust.Nature, 362(6416):144-146. https://doi.org/10.1038/362144a0 Blichert-Toft, J., Chauvel, C., Albarède, F., 1997.Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS.Contributions to Mineralogy and Petrology, 127(3):248-260. https://doi.org/10.1007/s004100050278 Castillo, P.R., Janney, P.E., Solidum, R.U., 1999.Petrology and Geochemistry of Camiguin Island, Southern Philippines:Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting.Contributions to Mineralogy and Petrology, 134(1):33-51. https://doi.org/10.1007/s004100050467 Chai, F.M., Ouyang, L.J., Dong, L.H., et al., 2013.Geochronology and Genesis of Tonalites from the Ashele Cu-Zn Deposit on the Southern Margin of Altay, Xinjiang.Acta Petrologica et Mineralogica, 32(1):41-52(in Chinese with English abstract). Chai, F.M., Yang, F.Q., Liu, F., et al., 2012.Geochronology and Genesis of Volcanic Rocks in Beitashan Formation at the Northern Margin of the Junggar, Xinjiang.Acta Petrologica Sinica, 28(7):2183-2198 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201207019 Chen, J.J., Fu, L.B., Wei, J.H., et al., 2016.Geochemical Characteristics of Late Ordovician Granodiorite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province:Implications on the Evolution of Proto-Tethys Ocean.Earth Science, 41(11):1863-1882(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.129 Chung, S.L., Liu, D.Y., Ji, J.Q., et al., 2003.Adakites from Continental Collision Zones:Melting of Thickened Lower Crust beneath Southern Tibet.Geology, 31(11):1021-1024. https://doi.org/10.1130/g19796.1 Defant, M.J., Drummond, M.S., 1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0 Dong, L.H., Qu, X., Zhao, T.Y., et al., 2012.Magmatic Sequence of Early Palaeozoic Granitic Intrusions and Its Tectonic Implications in North Altay Orogen, Xinjiang.Acta Petrologica Sinica, 28(8):2307-2316(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201208001 Dong, L.H., Xu, X.W., Qu, X., et al., 2009.Tectonic Setting and Formation Mechanism of the Circum-Junggar Porphyritic Copper Deposit Belts.Acta Petrologica Sinica, 25(4):713-737(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200904001.htm Elburg, M.A., van Bergen, M., Hoogewerff, J., et al., 2002.Geochemical Trends across an Arc-Continent Collision Zone:Magma Sources and Slab-Wedge Transfer Processes below the Pantar Strait Volcanoes, Indonesia.Geochimica et Cosmochimica Acta, 66(15):2771-2789. https://doi.org/10.1016/s0016-7037(02)00868-2 Fang, A.M., Wang, S.G., Zhang, J.M., et al., 2015.The U-Pb Ages of Zircons from the Gabbro in the Kalamaili Ophiolite, North Xinjiang and Its Tectonic Significances.Chinese Journal of Geology, 50(1):140-154(in Chinese with English abstract). Foley, S., Tiepolo, M., Vannucci, R., 2002.Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones.Nature, 417(6891):837-840. https://doi.org/10.1038/nature00799 Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004.Recycling Lower Continental Crust in the North China Craton.Nature, 432(7019):892-897. https://doi.org/10.1038/nature03162 Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004.Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons.Precambrian Research, 131(3-4):231-282. https://doi.org/10.1016/j.precamres.2003.12.011 Han, B.F., Ji, J.Q., Song, B., et al., 2006.Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China(PartⅠ):Timing of Post-Collisional Plutonism.Acta Petrologica Sinica, 22(5):1077-1086 (in Chinese with English abstract). He, G.Q., 1994.Paleozoic Crustal Evolution and Mineralization, Xinjiang, China.Xinjiang People's Publishing House, Urumqi, 23-24(in Chinese). He, G.Q., Li, M.S., Jia, J.D., et al., 2001.A Discussion on Age and Tectonic Significance of Ophiolite in Eastern Junggar, Xinjiang.Acta Scientiarum Naturalium Universitatis Pekinensis, 37(6):852-858(in Chinese with English abstract). Hole, M.J., Saunders, A.D., Marriner, G.F., et al., 1984.Subduction of Pelagic Sediments:Implications for the Origin of Ce-Anomalous Basalts from the Mariana Islands.Journal of the Geological Society, 141(3):453-472. https://doi.org/10.1144/gsjgs.141.3.0453 Hoskin, P.W.O., Schaltegger, U., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62. https://doi.org/10.2113/0530027 Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012.Improved In-Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS.Journal of Analytical Atomic Spectrometry, 27(9):1391-1399. https://doi.org/10.1039/c2ja30078h Huang, G., Niu, G.Z., Wang, X.L., et al., 2012.Formation and Emplacement Age of Karamaili Ophiolite:LA-ICP-MS Zircon U-Pb Age Evidence from the Diabase and Tuff in Eastern Junggar, Xinjiang.Geological Bulletin of China, 31(8):1267-1278(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201208006.htm Huang, G., Niu, G.Z., Wang, X.L., et al., 2016.Early Silurian Adakitic Rocks of East Junggar, Xinjiang:Evidence from Zircon U-Pb Age, Geochemistry and Sr-Nd-Hf Isotope of the Quartz Diorite.Acta Petrologica et Mineralogica, 35(5):751-767(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201605002.htm Huang, G., Niu, G.Z., Wang, X.L., et al., 2017.The Discovery of the Amphibolite in the Kalamaili Ophiolitic Mélange Formed in Mid-Oceanic Ridge Setting.Geology in China, 44(2):358-370(in Chinese with English abstract). Huang, G., Niu, G.Z., Zhang, Z.W., et al., 2013.Discovery of ~4.0 Ga Detrital Zircons in the Aermantai Ophiolitic Mélange, East Junggar, Northwest China.Chinese Science Bulletin, 58(28-29):2966-2979(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JXTW201330008.htm Jian, P., Liu, D.Y., Zhang, Q., et al., 2003.SHRIMP Dating of Ophiolite and Leucocratic Rocks within Ophiolite.Earth Science Frontiers, 10(4):439-456(in Chinese with English abstract). Li, J.Y., He, G.Q., Xu, X., et al., 2006.Crustal Tectonic Framework of Northern Xinjiang and Adjacent Regions and Its Formation.Acta Geologica Sinica, 80(1):148-168(in Chinese with English abstract). Li, Y.Y., Liu, G.R., Yu, X.B., et al., 2017.Zircon U-Pb Age and Geochemistry of Gabbro from Jiamate Au-Cu Ore District in Northern Junggar, China and Their Geological Significance.Geoscience, 31(4):651-661(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201704001.htm Liu, Y.R., Jian, P., Zhang, W., et al., 2016.Zircon SHRIMP U-Pb Dating and O Isotope of the Beitashan Ophiolitic Mélange in the East Junggar, Xinjiang, and Its Geological Significance.Acta Petrologica Sinica, 32(2):537-554(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201602018 Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010a.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010b.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546. https://doi.org/10.1007/s11434-010-3052-4 Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008a.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008b.Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole:Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates.Chemical Geology, 247(1-2):133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016 Ludwig, K.R., 2003.ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Berkeley. Lü, S.J., Yang, F.Q., Chai, F.M., et al., 2012.Zircon U-Pb Dating for Intrusions in Laoshankou Ore District in Northern Margin of East Junggar and Their Significances.Geological Review, 58(1):149-164(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000002606 MacPherson, C.G., Dreher, S.T., Thirlwall, M.F., 2006.Adakites without Slab Melting:High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines.Earth and Planetary Science Letters, 243(3-4):581-593. https://doi.org/10.1016/j.epsl.2005.12.034 Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 Plank, T., Langmuir, C.H., 1998.The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle.Chemical Geology, 145(3-4):325-394. https://doi.org/10.1016/s0009-2541(97)00150-2 Qiu, J.X., 1991.Application Magmatic Petrology.China University of Geosciences Press, Wuhan, 225-248(in Chinese). Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999.Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge:Experimental Constraints at 3.8 GPa.Chemical Geology, 160(4):335-356. https://doi.org/10.1016/s0009-2541(99)00106-0 Rollinson, H.R., 1993.Using Geochemical Data: Evaluation, Presentation, Interpretation.Longman Group UK Ltd., New York.1-381. Salters, V.J.M., Hart, S.R., 1989.The Hafnium Paradox and the Role of Garnet in the Source of Mid-Ocean-Ridge Basalts.Nature, 342(6248):420-422. https://doi.org/10.1038/342420a0 Schmitz, M.D., Vervoort, J.D., Bowring, S.A., et al., 2004.Decoupling of the Lu-Hf and Sm-Nd Isotope Systems during the Evolution of Granulitic Lower Crust beneath Southern Africa.Geology, 32(5):405-408. https://doi.org/10.1130/g20241.1 Seghedi, I., Downes, H., Vaselli, O., et al., 2004.Post-Collisional Tertiary-Quaternary Mafic Alkalic Magmatism in the Carpathian-Pannonian Region:A Review.Tectonophysics, 393(1-4):43-62. https://doi.org/10.1016/j.tecto.2004.07.051 Shen, X.M., Zhang, H.X., Ma, L., 2010.Ridge Subduction and the Possible Evidences in Chinese Altay, Xinjiang.Geotectonica et Metallogenia, 34(2):181-195(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DGYK201002006.htm Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219(3-4):311-324. https://doi.org/10.1016/s0012-821x(04)00012-3 Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Tang, H.F., Su, Y.P., Liu, C.Q., et al., 2007.Zircon U-Pb Age of the Plagiogranite in Kalamaili Belt, Northern Xinjiang and Its Tectonic Implications.Geotectonica et Metallogenia, 31(1):110-117(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DGYK200701014.htm Tian, H.B., Chen, Y.X., Yang, Y.Q., et al., 2017.Ages, Origin and Tectonic Significance of Halaerci Granites from Northeastern Part of Chinese Altay Mountains.Earth Science, 42(10):1658-1672(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.553 Wang, Q., Zhao, Z.H., Bai, Z.H., et al., 2003.Carboniferous Adakite-High-Mg Andesite-Nb Enriched Basaltic Rock Suites in the Alataoshan Area Xinjiang:Interaction between Plate Melt and Mantle Implications and Crustal Growth.Chinese Science Bulletin, 48(12):1342-1349(in Chinese). Wang, T., Hong, D.W., Jahn, B.M., et al., 2006.Timing, Petrogenesis, and Setting of Paleozoic Synorogenic Intrusions from the Altai Mountains, Northwest China:Implications for the Tectonic Evolution of an Accretionary Orogen.The Journal of Geology, 114(6):735-751. https://doi.org/10.1086/507617 Wang, T., Tong, Y., Li, S., et al., 2010.Spatial and Temporal Variations of Granitoids in the Altay Orogen and Their Implications for Tectonic Setting and Crustal Growth:Perspectives from Chinese Altay.Acta Petrologica et Mineralogica, 29(6):595-618 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201006002.htm Wang, Y., 2013.Analysis of the Relationship between the Regional Faults and Dunbasitao Gold Deposits, Qinghe, Xinjiang.Xinjiang Youse Jinshu, 36(Suppl.2):65-67(in Chinese). Winchester, J.A., Floyd, P.A., 1976.Geochemical Magma Type Discrimination:Application to Altered and Metamorphosed Basic Igneous Rocks.Earth and Planetary Science Letters, 28(3):459-469. https://doi.org/10.1016/0012-821x(76)90207-7 Windley, B.F., Kröner, A., Guo, J.H., et al., 2002.Neoproterozoic to Paleozoic Geology of the Altai Orogen, NW China:New Zircon Age Data and Tectonic Evolution.The Journal of Geology, 110(6):719-737. https://doi.org/10.1086/342866 Wu, G.G., 2008.The Main Porphyry Copper Belt in Northern Xinjiang.Geological Publishing House, Beijing, 145-146(in Chinese). Wu, Y.B., Zhen, Y.F., 2004.Zircon Minerageny Research and Interpretation of U-Pb Age Constraints.Chinese Science Bulletin, 49(16):1589-1604(in Chinese). Xiang, P., Zhang, L.C., Wu, H.Y., et al., 2009.Ages of the Zircons from Ore-Bearing Porphyries in Ⅱ-Ⅲ Ore Area of Kalaxianger Porphyry Copper Ore Belt in Qinghe, Xinjiang and Its Geological Significance.Acta Petrologica Sinica, 25(6):1474-1483(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200906018.htm Xiao, F., Li, H., Xia, F., et al., 2014.Analysis on Geological Characteristics and Metallogenic Condition of Dunbasitao Gold Deposit, Qinghe County, Xinjiang.Gold, 35(1):11-17(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/huangj201401004 Xiao, W.J., Windley, B.F., Yan, Q.R., et al., 2006.SHRIMP Zircon Age of the Aermantai Ophiolite in the North Xinjiang Area, China and Its Tectonic Implications.Acta Geologica Sinica, 80(1):32-37(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200601003.htm Xiao, X.C., 1992.Northern Xinjiang and Its Neighbor Region Tectonic.Geological Publishing House, Urumqi, 23-25(in Chinese). Xu, J.F., Mei, H.J., Yu, X.Y., et al., 2001.North Junggar Late Paleozoic Island Arc Subduction-Related Volcanic Adakite:Subtractive Sheet Product of Partial Melting.Chinese Science Bulletin, 46(8):684-688(in Chinese). Xu, X.Y., Li, R.S., Chen, J.L., et al., 2014.New Constrains on the Paleozoic Tectonic Evolution of the Northern Xinjiang Area.Acta Petrologica Sinica, 30(6):1521-1534(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201406001 Yan, S.H., Wang, Y.T., Zhang, Z.C., et al., 2006.Metallogenic Type, Tectonic Setting, and Resource Potential of Ertix Gold Ore Belt in Northern Xinjiang.Mineral Deposits, 25(6):693-704(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200606005.htm Yang, F.Q., Mao, J.W., Yan, S.H., et al., 2008.Geochronology, Geochemistry and Geological Implications of the Mengku Synorogenic Plagiogranite Pluton in Altay, Xinjiang.Acta Geologica Sinica, 82(4):485-499(in Chinese with English abstract). Yang, F.Q., Zhang, Z.X., Liu, G.R., et al., 2012.Geochronology of Yulekenhalasu Porphyry Copper Deposit in Northtern Junggar Area, Xinjiang, China.Acta Petrologica Sinica, 28(7):2029-2042(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201207007 Yang, W.P., Zhang, Z.C., Zhou, G., et al., 2005.Discovery of the Xileketehalsu Porphyry Copper Deposit on the Southern Margin of the Altay Copper Metallogenic Belt.Geology in China, 32(1):107-114(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200501014.htm Ying, L.J., 2007.Geology, Geochemistry and Discussion on the Origin of the Qiaoxiahala Fe-Cu-Au Deposit in Xinjiang (Dissertation).Chinese Academy of Geological Sciences, Beijing (in Chinese). Yuan, C., Sun, M., Xiao, W.J., et al., 2007.Accretionary Orogenesis of the Chinese Altai:Insights from Paleozoic Granitoids.Chemical Geology, 242(1-2):22-39. https://doi.org/10.1016/j.chemgeo.2007.02.013 Zhang, D., Lu, Y.M., Guo, X.D., et al., 2011.Au(Cu) Mineralization Associated with Ductile-Brittle Shear Zone in East Junggar Area:Conversion of Structural Deformation, Metallogenic Time and Geodynamics Background.Gold, 32(3):8-15(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJZZ201103005.htm Zhang, H.X., Niu, H.C., Hiroaki, S., et al., 2004.Late Paleozoic Adakite and Nb-Enriched Basalt from Northern Xinjiang:Evidence for the Southward Subduction of the Paleo-Asian Ocean.Geological Journal of China Universities, 10(1):106-113(in Chinese with English abstract). Zhang, H.X., Niu, H.C., Terada, K., et al., 2003.Studies SHRIMP's Kul Ophiolite Plagioclase Granite, Altay Region, Northern Xinjiang.Chinese Science Bulletin, 48(12):1350-1354(in Chinese). Zhang, Y., Xu, X.Y., Chen, J.L., et al., 2012.Geological Characteristics and LA-ICP-MS Zircon U-Pb Age of Mayinebo Ophiolite in Altay Orogenic Belt.Geological Bulletin of China, 31(6):834-842(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201206002.htm Zhang, Y.Y., Guo, Z.J., 2010.New Constraints on Formation Ages of Ophiolites in Northern Junggar and Comparative Study on Their Connection.Acta Petrologica Sinica, 26(2):421-430(in Chinese with English abstract). Zhang, Y.Y., Yang, B.R., Wei, J.H., et al., 2015.Application of Complexity of Element Method in Geochemical Anomaly Studying and Metallogenic Prediction in the Dunbasitao Gold Mine, Qinghe County, Xinjiang.Geological Science and Techology Information, 34(4):92-99(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201504014.htm Zhang, Z.C., Yan, S.H., Chen, B.L., et al., 2006.SHRIMP Zircon U-Pb Dating for Subduction-Related Granitic Rocks in the Northern Part of East Jungaar, Xinjiang.Chinese Science Bulletin, 51(8):952-962. https://doi.org/10.1007/s11434-008-0952-7 Zhang, Z.X., Yang, F.Q., Li, C., et al., 2012.Rock-Forming and Ore-Forming Ages of Qiaoxiahala Fe-Cu-Au Deposit on Northern Margin of Junggar Basin, Xinjiang.Mineral Deposits, 31(2):347-358(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201202015.htm Zhao, Z.F., Xue, C.J., Zhang, L.W., et al., 2009.U-Pb Dating of Zircons from Acid Intrusions in Yulekenhalasu Copper Deposit of Qinghe, Xinjiang, and Its Geological Significance.Mineral Deposits, 28(4):425-433(in Chinese with English abstract). 柴凤梅, 欧阳刘进, 董连慧, 等, 2013.新疆阿舍勒铜锌矿区英云闪长岩年代学及地球化学.岩石矿物学杂志, 32(1):41-52. doi: 10.3969/j.issn.1000-6524.2013.01.003 柴凤梅, 杨富全, 刘锋, 等, 2012.新疆准噶尔北缘北塔山组火山岩年龄及岩石成因.岩石学报, 28(7):2183-2198. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201207019 陈加杰, 付乐兵, 魏俊浩, 等, 2016.东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约.地球科学, 41(11):1863-1882. http://earth-science.net/WebPage/Article.aspx?id=3384 董连慧, 屈迅, 赵同阳, 等, 2012.新疆北阿尔泰造山带早古生代花岗岩类侵入序列及其构造意义.岩石学报, 28(8):2307-2316. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201208001 董连慧, 徐兴旺, 屈迅, 等, 2009.初论环准噶尔斑岩铜矿带的地质构造背景与形成机制.岩石学报, 25(4):713-737. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200904001 方爱民, 王世刚, 张俊敏, 等, 2015.新疆北部卡拉麦里蛇绿岩中辉长岩的锆石U-Pb年龄及其构造意义.地质科学, 50(1):140-154. doi: 10.3969/j.issn.0563-5020.2015.01.009 韩宝福, 季建清, 宋彪, 等, 2006.新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限.岩石学报, 22(5):1077-1086. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200605003.htm 何国琦, 1994.中国新疆古生代地壳演化及成矿.乌鲁木齐:新疆人民出版社, 23-24. 何国琦, 李茂松, 贾进斗, 等, 2001.论新疆东准噶尔蛇绿岩的时代及其意义.北京大学学报(自然科学版), 37(6):852-858. doi: 10.3321/j.issn:0479-8023.2001.06.017 黄岗, 牛广智, 王新录, 等, 2012.新疆东准噶尔卡拉麦里蛇绿岩的形成和侵位时限——来自辉绿岩和凝灰岩LA-ICP-MS锆石U-Pb年龄的证据.地质通报, 31(8):1267-1278. doi: 10.3969/j.issn.1671-2552.2012.08.006 黄岗, 牛广智, 王新录, 等, 2016.新疆东准噶尔早志留世埃达克岩——来自锆石U-Pb年龄、地球化学及Sr-Nd-Hf同位素的证据.岩石矿物学杂志, 35(5):751-767. doi: 10.3969/j.issn.1000-6524.2016.05.002 黄岗, 牛广智, 王新录, 等, 2017.东准噶尔卡拉麦里蛇绿混杂岩中斜长角闪岩的发现与洋中脊构造环境的确认.中国地质, 44(2):358-370. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201702011 黄岗, 牛广智, 张占武, 等, 2013.东准噶尔阿尔曼泰蛇绿混杂带中发现~4.0 Ga碎屑锆石.科学通报, 58(28-29):2966-2979. http://www.cnki.com.cn/Article/CJFDTotal-KXTB2013Z2013.htm 简平, 刘敦一, 张旗, 等, 2003.蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年.地学前缘, 10(4):439-456. doi: 10.3321/j.issn:1005-2321.2003.04.012 李锦轶, 何国琦, 徐新, 等, 2006.新疆北部及邻区地壳构造格架及其形成过程的初步探讨.地质学报, 80(1):148-168. doi: 10.3321/j.issn:0001-5717.2006.01.017 李远友, 刘国仁, 于秀斌, 等, 2017.新疆准噶尔北缘加玛特金铜矿区辉长岩锆石U-Pb年龄、岩石地球化学特征及地质意义.现代地质, 31(4):651-661. doi: 10.3969/j.issn.1000-8527.2017.04.001 刘亚然, 简平, 张维, 等, 2016.新疆东准噶尔北塔山蛇绿混杂岩锆石SHRIMP U-Pb定年、氧同位素及其地质构造意义.岩石学报, 32(2):537-554. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201602018 吕书君, 杨富全, 柴凤梅, 等, 2012.东准噶尔北缘老山口铁铜金矿区侵入岩LA-ICP-MS锆石U-Pb定年及地质意义.地质论评, 58(1):149-164. doi: 10.3969/j.issn.0371-5736.2012.01.013 邱家骧, 1991.应用岩浆岩岩石学.武汉:中国地质大学出版社, 225-248. 沈晓明, 张海祥, 马林, 2010.洋脊俯冲及其在新疆阿尔泰地区存在的可能证据.大地构造与成矿学, 34(2):181-195. doi: 10.3969/j.issn.1001-1552.2010.02.004 唐红峰, 苏玉平, 刘丛强, 等, 2007.新疆北部卡拉麦里斜长花岗岩的锆石U-Pb年龄及其构造意义.大地构造与成矿学, 31(1):110-117. doi: 10.3969/j.issn.1001-1552.2007.01.013 田红彪, 陈有炘, 杨永强, 等, 2017.中国阿尔泰东北部哈拉尔次花岗岩的年龄、成因及构造意义.地球科学, 42(10):1658-1672. http://earth-science.net/WebPage/Article.aspx?id=3670 王强, 赵振华, 白正华, 等, 2003.新疆阿拉套山石炭纪埃达克岩、富Nb岛弧玄武质岩:板片熔体与地幔橄榄岩相互作用及地壳增生.科学通报, 48(12):1342-1349. doi: 10.3321/j.issn:0023-074X.2003.12.022 王涛, 童英, 李舢, 等, 2010.阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义——以中国阿尔泰为例.岩石矿物学杂志, 29(6):595-618. doi: 10.3969/j.issn.1000-6524.2010.06.002 王永, 2013.新疆青河县顿巴斯套金矿与区内断裂关系的分析.新疆有色金属, 36(S2):65-67. http://d.old.wanfangdata.com.cn/Periodical/xjysjs2013z1029 吴淦国, 2008.新疆北部主要斑岩铜矿带.北京:地质出版社, 145-146. 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 相鹏, 张连昌, 吴华英, 等, 2009.新疆青河卡拉先格尔铜矿带Ⅱ-Ⅲ矿区含矿斑岩锆石年龄及地质意义.岩石学报, 25(6):1474-1483. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200906018 肖飞, 李欢, 夏芳, 等, 2014.新疆青河顿巴斯套金矿床地质特征及控矿因素分析.黄金, 35(1):11-17. http://d.old.wanfangdata.com.cn/Periodical/ysjswz201506033 肖文交, Windley, B.F., 阎全人, 等, 2006.北疆地区阿尔曼太蛇绿岩锆石SHRIMP年龄及其大地构造意义.地质学报, 80(1):32-37. doi: 10.3321/j.issn:0001-5717.2006.01.004 肖序常, 1992.新疆北部及其邻区大地构造.乌鲁木齐:地质出版社, 23-25. 许继峰, 梅厚钧, 于学元, 等, 2001.准噶尔北缘晚古生代岛弧中与俯冲作用有关的Adakite火山岩:消减板片部分熔融的产物.科学通报, 46(8):684-688. doi: 10.3321/j.issn:0023-074X.2001.08.016 徐学义, 李荣社, 陈隽璐, 等, 2014.新疆北部古生代构造演化的几点认识.岩石学报, 30(6):1521-1534. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201406001 闫升好, 王义天, 张招崇, 等, 2006.新疆额尔齐斯金矿带的成矿类型、地球动力学背景及资源潜力.矿床地质, 25(6):693-704. doi: 10.3969/j.issn.0258-7106.2006.06.006 杨富全, 毛景文, 闫升好, 等, 2008.新疆阿尔泰蒙库同造山长花岗岩年代学、地球化学及其地质意义.地质学报, 82(4):485-499. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200804006 杨富全, 张志欣, 刘国仁, 等, 2012.新疆准噶尔北缘玉勒肯哈腊苏斑岩铜矿床年代学研究.岩石学报, 28(7):2029-2042. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201207007 杨文平, 张招崇, 周刚, 等, 2005.阿尔泰铜矿带南缘希勒克特哈腊苏斑岩铜矿的发现及其意义.中国地质, 32(1):107-114. doi: 10.3969/j.issn.1000-3657.2005.01.014 应立娟, 2007.新疆乔夏哈拉铁铜金矿床地质、地球化学特征与成因研究(硕士学位论文).北京: 中国地质科学院. http://cdmd.cnki.com.cn/Article/CDMD-82501-2007214291.htm 张栋, 路彦明, 郭小东, 等, 2011.东准噶尔地区与韧-脆性剪切带有关的金(铜)成矿—构造变形转换与成矿时限及地球动力学背景.黄金, 32(3):8-15. doi: 10.3969/j.issn.1001-1277.2011.03.003 张海祥, 牛贺才, Hiroaki, S., 等, 2004.新疆北部晚古生代埃达克岩、富铌玄武岩组合:古亚洲洋板块南向俯冲的证据.高校地质学报, 10(1):106-113. doi: 10.3969/j.issn.1006-7493.2004.01.010 张海祥, 牛贺才, Terada, K., 等, 2003.新疆北部阿尔泰地区库尔提蛇绿岩中斜长花岗岩的SHRIMP年代学研究.科学通报, 48(12):1350-1354. doi: 10.3321/j.issn:0023-074X.2003.12.023 张越, 徐学义, 陈隽璐, 等, 2012.阿尔泰地区玛因鄂博蛇绿岩的地质特征及其LA-ICP-MS锆石U-Pb年龄.地质通报, 31(6):834-842. doi: 10.3969/j.issn.1671-2552.2012.06.002 张元元, 郭召杰, 2010.准噶尔北部蛇绿岩形成时限新证据及其东、西准噶尔蛇绿岩的对比研究.岩石学报, 26(2):421-430. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201002006 张洋洋, 杨宝荣, 魏俊浩, 等, 2015.元素复杂程度法在新疆青河县顿巴斯套金矿区异常信息提取及成矿预测中的应用.地质科技情报, 34(4):92-99. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201504014.htm 张志欣, 杨富全, 李超, 等, 2012.新疆准噶尔北缘乔夏哈拉铁铜金矿床成岩成矿时代.矿床地质, 31(2):347-358. doi: 10.3969/j.issn.0258-7106.2012.02.014 赵战锋, 薛春纪, 张立武, 等, 2009.新疆青河玉勒肯哈腊苏铜矿区酸性岩锆石U-Pb法定年及其地质意义.矿床地质, 28(4):425-433. doi: 10.3969/j.issn.0258-7106.2009.04.005 期刊类型引用(2)
1. 王雅宁,朱志新,李咸阳,李平,郑飞,宫相宽. 东准噶尔早泥盆世托让格库都克组火山岩SHRIMP锆石U-Pb测年及地质意义. 新疆地质. 2020(02): 161-167 . 百度学术
2. 李欢,李艳军,魏俊浩,石文杰,李红梅. 新疆东准噶尔顿巴斯套金矿床含金黄铁矿Rb-Sr等时线年龄及地质意义. 地球科学. 2018(12): 4606-4620 . 本站查看
其他类型引用(4)
-