• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    甘肃红石泉地区基性岩脉特征及Ar-Ar定年

    蓝德初 张树明 秦雨 杨春四 王利玲 戚佳伟

    蓝德初, 张树明, 秦雨, 杨春四, 王利玲, 戚佳伟, 2019. 甘肃红石泉地区基性岩脉特征及Ar-Ar定年. 地球科学, 44(10): 3469-3483. doi: 10.3799/dqkx.2018.272
    引用本文: 蓝德初, 张树明, 秦雨, 杨春四, 王利玲, 戚佳伟, 2019. 甘肃红石泉地区基性岩脉特征及Ar-Ar定年. 地球科学, 44(10): 3469-3483. doi: 10.3799/dqkx.2018.272
    Lan Dechu, Zhang Shuming, Qin Yu, Yang Chunsi, Wang Liling, Qi Jiawei, 2019. Characteristics and Ar-Ar Dating of Mafic Dykes in Hongshiquan Area, Gansu Province. Earth Science, 44(10): 3469-3483. doi: 10.3799/dqkx.2018.272
    Citation: Lan Dechu, Zhang Shuming, Qin Yu, Yang Chunsi, Wang Liling, Qi Jiawei, 2019. Characteristics and Ar-Ar Dating of Mafic Dykes in Hongshiquan Area, Gansu Province. Earth Science, 44(10): 3469-3483. doi: 10.3799/dqkx.2018.272

    甘肃红石泉地区基性岩脉特征及Ar-Ar定年

    doi: 10.3799/dqkx.2018.272
    基金项目: 

    国家自然科学基金项目 41172079

    国家自然科学基金项目 41862006

    详细信息
      作者简介:

      蓝德初(1993—), 男, 硕士研究生, 矿物学、岩石学、矿床学专业

      通讯作者:

      张树明(1965—), 男

    • 中图分类号: P58

    Characteristics and Ar-Ar Dating of Mafic Dykes in Hongshiquan Area, Gansu Province

    • 摘要: 基性岩脉是研究地幔和地幔变化的"窗口",并且与金、铀、金刚石等矿床有重要关系.甘肃红石泉地区产有我国最典型的白岗岩型铀矿床,其中发育有多条基性岩脉.研究区基性岩新鲜面呈灰绿色,具有典型的煌斑结构,块状构造,斑晶矿物主要为角闪石,基质主要由斜长石和黑云母组成,副矿物主要有磁铁矿、磷灰石及锆石等,据此确定基性岩为闪斜煌斑岩.岩石具有富碱、高钾、贫铁以及富集轻稀土元素和大离子亲石元素等地球化学特征,进而判断其属于钾质钙碱性煌斑岩.通过40Ar-39Ar全岩测定,获得煌斑岩成岩年龄为237.2±2.6 Ma,煌斑岩的岩浆来源于EMII型富集地幔,形成于板内拉张环境,岩浆在上升侵位过程中遭受了地壳物质的混染,属于早中生代古亚洲洋闭合、陆陆碰撞后伸展的产物.红石泉煌斑岩与铀矿床铀成矿没有直接成因关系,对于铀矿只有后期改造作用.

       

    • 图  1  甘肃龙首山区域地质及铀矿分布

      1.第四系; 2.新近系中晚期; 3.新近系; 4.第三系; 5.上白垩统; 6.下白垩统; 7.石炭系; 8.震旦系; 9.元古界; 10.太古界; 11.华力西期花岗岩; 12.加里东期花岗岩; 13.片麻状花岗闪长岩; 14.花岗闪长岩; 15.区域大断裂; 16.大断裂; 17.砂砾岩型铀矿床、矿点; 18.泥岩型铀矿床、矿点; 19.花岗岩型铀矿床、矿点; 20.碱交代型铀矿床、矿点; 21.地质界线; 22.城市名; 23.地名; 24.研究区.图据203研究所资料(2011)《甘肃地质志》修改

      Fig.  1.  Distribution of Gansu Longshoushan regional geology and uranium ore

      图  2  红石泉地区地质略图

      1.第四系; 2.石炭系; 3.元古界; 4.伟晶状白岗岩; 5.肉红色中粒斑状花岗岩; 6.灰绿色斜长花岗岩-石英闪长岩; 7.煌斑岩; 8断层; 9.采样位.图据核工业西北地质局202大队内部资料修改

      Fig.  2.  Sketch of ore deposit geology in Hongshiquan area

      图  3  煌斑岩脉照片

      图为手标本照片和显微镜下正交偏光.a.岩石新鲜面灰绿色(样品LSS14-46手标本); b.岩石新鲜面灰绿色(样品LSS14-59手标本); c.煌斑结构(样品LSS14-59正交偏光); d.基质矿物(样品LSS14-57正交偏光).Pl.斜长石; Bi.黑云母; Kfs.钾长石

      Fig.  3.  Lamprophyre vein photographs

      图  4  煌斑岩的(K2O+Na2O)-SiO2(a)和K/Al-K/(K+Na)(b)图解

      UML.超铁镁煌斑岩; LL.钾镁煌斑岩; CAL.钙碱性煌斑岩; AL.碱性煌斑岩; Ⅰ.钠质煌斑岩; Ⅰ′.弱钾质煌斑岩; Ⅱ.钾质煌斑岩; Ⅲ.超钾质煌斑岩; Ⅳ.过钾质煌斑岩; Ⅴ.钾镁煌斑岩.图中数据据路凤香等(1991)

      Fig.  4.  (K2O+Na2O)-SiO2(a) and K/Al-K/(K+Na)(b) diagrams of lamprophyres

      图  5  煌斑岩主量元素Harker图解

      Fig.  5.  Harker diagrams of the lamprophyres

      图  6  微量元素原始地幔标准化蛛网图

      Sun and McDonough(1989)

      Fig.  6.  Primitive mantle-normalized spider diagrams for trace elements

      图  7  稀土元素球粒陨石标准化配分模式

      Taylor and McLenann(1985)

      Fig.  7.  Chondrite-normalized REE patterns for rare earth elements

      图  8  红石泉煌斑岩87Sr /86Sr-206Pb/204Pb(a)和143Nd /144Nd-206Pb/204Pb(b)相关图解

      EMII.EMII型富集地幔; EMI.EMI型富集地幔; MORB.洋中脊玄武岩; DM.亏损地幔; PREMA.普通地幔; HIMU.具有高U/Pb比值地幔; BSE.全硅酸盐地球数值.底图据Rollison(2000)

      Fig.  8.  87Sr/86Sr-206Pb/204Pb (a) and 143Nd/144Nd-206Pb/204Pb (b) diagrams of the lamprophyres from Hongshiquan area

      图  9  样品全岩40Ar/39Ar坪年龄谱(a~c)和等时线年龄(d)

      Fig.  9.  Whole-rock 40Ar/39Ar age spectra (a-c) and sochron age (d) of lamprophyre samples

      图  10  红石泉煌斑岩La/Yb-Nb/Ta图解

      Münker(1998)

      Fig.  10.  La/Yb-Nb/Ta diagram of lamprophyres from Hongshiquan

      图  11  煌斑岩La/Sm-La图

      管涛等(2003)

      Fig.  11.  La/Sm-La plot of lamprophyres

      图  12  红石泉地区煌斑岩FeO*-MgO-Al2O3(a)、TiO2-Zr(b)和Zr-Zr/Y(c)构造环境判别图

      Ⅰ.洋中脊或洋底玄武岩; Ⅱ.洋岛玄武岩; Ⅲ.大陆玄武岩; Ⅳ.扩张性中央岛玄武岩; Ⅴ.造山带玄武岩; WPB.板内玄武岩; MORB.洋中脊玄武岩; VAB.火山岛弧玄武岩; IAB.岛弧玄武岩.图a据Münker(1998); 图b据李昌年(1992); 图c据Rollison(2000)

      Fig.  12.  FeO*-MgO-Al2O3(a), TiO2-Zr(b) and Zr-Zr/Y(c) tectonic discrimination diagrams of lamprophyre in Hongshiquan area

      表  1  采样位置及岩性

      Table  1.   Sampling location and lithology

      样品号 坐标 样品岩性
      X Y H
      LSS14-37 4 297 970 434 739 2 318 闪斜煌斑岩
      LSS14-44 4 297 992 434 659 2 347 闪斜煌斑岩
      LSS14-46 4 297 999 434 757 2 347 闪斜煌斑岩
      LSS14-57 4 298 029 435 151 2 373 闪斜煌斑岩
      LSS14-59 4 298 144 435 088 2 460 闪斜煌斑岩
      下载: 导出CSV

      表  2  红石泉地区煌斑岩Sr、Nd、Pb同位素数据(误差2δ计)

      Table  2.   Sr, Nd and Pb isotope data of lamprophyres in Hongshiquan area (error 2δ)

      样品号 LSS14-37 LSS14-57 LSS13-59
      87Rb/86Sr 1.752 0 1.788 0 1.807 1
      147Sm/144Nd 0.096 481 0.082 673 0.106 112
      87Sr/86Sr 0.711 956 0.712 965 0.712 828
      143Nd/144Nd 0.511279 0.511 837 0.511 994
      206Pb/204Pb 18.977 19.461 20.067
      207Pb/204Pb 15.557 15.493 15.564
      208Pb/204Pb 38.487 38.767 38.955
      (87Sr/86Sr)i=237.2 0.706 042 0.706 930 0.706 728
      εNd(t=237.2) -23.49 -12.18 -9.28
      下载: 导出CSV

      表  3  红石泉地区煌斑岩阶段加热法40Ar/39Ar分析结果

      Table  3.   Lamprophyre phasewise heating method 40Ar/39Ar analysis results of Hongshiquan area

      T(℃) (40Ar/39Ar)m (36Ar/39Ar)m (37Ar/39Ar)m (38Ar/39Ar)m 40Ar(%) F 39Ar
      (10-14 mol)
      39Ar
      (Cum) (%)
      Age
      (Ma)
      ±1σ
      (Ma)
      LSS14-37 全岩 W=30.77 mg J=0.005 958
      800 215.164 7 0.685 8 5.279 4 0.157 6 5.99 12.941 5 0.29 1.60 134.0 3.2
      850 90.045 4 0.236 0 1.552 6 0.063 1 22.67 20.435 3 0.54 4.57 207.3 2.9
      900 51.357 2 0.093 8 0.177 6 0.031 7 46.03 23.642 1 1.16 10.91 237.7 2.3
      940 32.720 4 0.025 8 0.213 4 0.018 2 76.70 25.100 9 1.93 21.45 251.4 2.4
      980 31.509 1 0.013 0 0.108 3 0.015 1 87.80 27.668 7 3.93 42.92 275.3 2.6
      1010 35.514 6 0.025 6 0.190 2 0.017 6 78.74 27.966 7 1.36 50.35 278.0 2.8
      1050 48.236 6 0.054 8 0.273 1 0.024 5 66.44 32.053 8 0.97 55.64 315.3 3.4
      1090 57.924 4 0.046 1 0.866 7 0.026 2 76.57 44.386 4 0.81 60.07 423.3 3.8
      1130 47.059 8 0.037 5 0.514 6 0.022 3 76.52 36.023 5 1.17 66.47 350.8 3.2
      1170 48.588 4 0.038 3 0.798 1 0.023 8 76.82 37.351 2 2.09 77.85 362.5 3.4
      1210 48.769 6 0.015 0 0.730 0 0.019 1 90.99 44.402 6 2.23 90.02 423.4 3.8
      1300 34.863 7 0.009 9 0.294 5 0.015 5 91.66 31.962 5 1.32 97.22 314.5 3.0
      1400 35.534 0 0.030 6 0.141 9 0.016 7 82.91 29.463 0 0.51 100.00 291.8 2.8
      LSS14-53 全岩 W=73.71 mg J=0.005 784
      800 101.416 5 0.314 7 7.213 7 0.103 4 8.80 8.975 0 0.30 2.09 91.3 5.9
      840 48.979 2 0.109 6 2.260 6 0.030 6 34.18 16.772 2 0.37 4.71 167.0 8.2
      900 52.147 5 0.113 5 0.914 1 0.039 1 35.78 18.671 4 0.93 11.21 185.0 4.2
      950 37.209 4 0.049 4 1.729 6 0.025 9 61.07 22.754 7 0.98 18.12 223.1 2.3
      1000 37.419 3 0.044 2 3.023 6 0.026 0 65.66 24.631 0 1.47 28.46 240.3 2.3
      1040 45.519 0 0.051 6 6.902 3 0.033 7 67.54 30.917 0 0.94 35.06 296.8 2.8
      1080 40.921 5 0.039 4 5.477 1 0.029 8 72.46 29.782 5 1.75 47.32 286.7 2.7
      1120 40.048 6 0.040 2 3.382 8 0.026 7 70.92 28.479 2 1.67 59.04 275.1 2.8
      1160 41.564 3 0.043 7 2.732 5 0.025 8 69.38 28.902 8 1.31 68.20 278.9 2.7
      1200 47.214 2 0.052 4 4.444 6 0.030 5 67.87 32.159 0 1.42 78.15 307.7 2.8
      1250 40.451 8 0.027 2 4.289 2 0.025 0 80.90 32.838 5 1.97 91.97 313.7 2.9
      1300 65.808 8 0.087 1 11.413 4 0.049 8 62.13 41.268 8 1.03 99.20 386.2 3.5
      1400 167.066 2 0.415 5 17.789 3 0.118 7 27.26 46.201 0 0.11 100.00 427.2 6.9
      LSS14-59 全岩 W=27.96 mg J=0.005 614
      700 340.331 5 1.112 8 1.012 0 0.318 4 3.40 11.589 7 0.02 0.09 114 76
      800 45.100 3 0.135 6 0.625 8 0.049 2 11.25 5.075 7 0.41 1.67 50.7 1.3
      860 46.887 5 0.117 0 0.134 5 0.038 9 26.26 12.314 5 1.55 7.72 120.6 1.3
      900 28.748 4 0.037 3 0.102 6 0.020 3 61.67 17.731 3 1.26 12.62 171.2 1.8
      950 26.708 0 0.016 8 0.075 0 0.016 2 81.40 21.742 4 1.37 17.95 207.8 2.0
      990 31.363 2 0.026 7 0.220 7 0.018 9 74.89 23.492 8 1.81 25.01 223.5 2.2
      1030 45.743 2 0.072 4 0.148 0 0.028 0 53.18 24.331 2 1.99 32.75 231.0 2.2
      1070 50.802 9 0.087 6 0.108 8 0.030 8 49.06 24.925 0 2.73 43.39 236.3 2.2
      1110 30.289 7 0.018 1 0.075 6 0.016 1 82.30 24.930 5 3.50 57.01 236.3 2.3
      1150 27.759 5 0.008 5 0.064 9 0.014 3 90.90 25.234 9 4.64 75.09 239.0 2.2
      1200 27.511 3 0.005 5 0.042 1 0.013 7 94.11 25.891 9 3.33 88.04 244.8 2.3
      1300 29.118 7 0.005 6 0.037 1 0.013 4 94.32 27.464 1 2.61 98.20 258.7 2.4
      1400 30.627 6 0.009 5 0.244 3 0.014 6 91.91 27.849 3 0.46 100.00 262.1 2.9
          注:表中下标m代表样品中测定的同位素比值 Total age =311.0 Ma, F=40Ar*/39Ar.
      下载: 导出CSV
    • Chen, N.S., Wang, X.Y., Zhang, H.F., et al., 2007. Geochemistry and Nd-Sr-Pb Isotopic Compositions of Granitoids from Qaidam and Oulongbuluke Micro-Blocks, NW China: Constraints on Basement Nature and Tectonic Affinity. Earth Science, 32(1): 7-21(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=a71631285a6f30cfadd12e61f77d4c4c&encoded=0&v=paper_preview&mkt=zh-cn
      Chen, S., Li, X.P., Kong, F.M., et al., 2018. Metamorphic Evolution and Zircon U-Pb Ages of the Nanshankou Mafic High Pressure Granulites from the Jiaobei Terrane, North China Craton. Journal of Earth Science, 29(5): 1219-1235. https://doi.org/10.1007/s12583-017-0956-9
      Chen, W., Wan, Y.S., Li, H.Q., et al., 2011. Isotope Geochronology: Technique and Application. Acta Geologica Sinica, 85(11): 1917-1947(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/fxhx201703002
      Chen, X.Y., Li, H.Z., Lu, W.J., et al., 2011. Overview of Research Advances in Lamprophyre. Journal of the Graduates Sun Yat-Sen University(Natural Sciences, Medicine), 32(4): 21-29(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8524623
      Chen, Y.C., Chang, Y.F., Pei, R.F., et al., 2007.China Metallogenic System and Regional Metallogenic Evaluation. Geological Publishing House, Beijing (in Chinese with English abstract).
      DePaolo, D.J., Wasserburg, G. J., 1976. Inferences about Magma Sources and Mantle Structure from Variations of 143Nd/144Nd. Geophysical Research Letters, 3(12): 743-746. https://doi.org/10.1029/gl003i012p00743
      Dupuy, C., Dostal, J., 1984. Trace Element Geochemistry of Some Continental Tholeiites. Earth and Planetary Science Letters, 67(1): 61-69. https://doi.org/10.1016/0012-821x(84)90038-4
      Faure, G., 1986.Principles of Isotope Geology. John Wiley and Sons, New York, 93-96.
      Guan, T., Huang, Z.L., Xie, L.H., et al., 2003. Geochemistry of Lamprophyres in Baimazhai Nickel Deposit, Yunnan Province, Ⅰ. Major and Trace Elements. Acta Mineralogica Sinica, 23(3): 278-288(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb200303016
      Hart, S.R., Li, S.G., Zheng, S.G., et al., 1989.Timing of Collision between the North and South China Blocks—The Sm-Nd Isotopic Age Evidence. Science in China, 32(11):1393-1400. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=639b1c63668588712169cf07e016815a
      Hou, G.T., 2012.North China Basic Dyke Swarm. Science Press, Beijing(in Chinese).
      Hu, R.Z., Jin, J.F., 1990. The Origin of Lamprophyre in Guidong Granitic Complex. Mineralogy and Petrology, 10(4): 1-7(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS199004001.htm
      Huang, Z.L., Liu, C.Q., Zhu, C.M., et al., 1999.Genesis of Lamprophyre in Laowangzhai Gold Deposit, Yunnan and Its Relationship with Gold Mineralization. Geological Publishing House, Beijing(in Chinese).
      Jacobsen, S. B., Wasserburg, G. J., 1980. Sm-Nd Isotopic Evolution of Chondrites. Earth and Planetary Science Letters, 50(1): 139-155. https://doi.org/10.1016/0012-821x(80)90125-9
      Li, S.C., Zhang, L.Y., Li, P.C., et al., 2017.Discovery and Tectonic Implications of Early Triassic O-Type Adakite in Middle of Great Xing'an Range.Earth Science, 42(12):2117-2128(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201712002
      Li, T., Ni, S.B., 1997. Element Abundances of the Continental Lithosphere in China. Geology and Prospecting, 33(1): 31-37(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=73a6c8b605c3deec63814f462655713c
      Li, X.H., Zhou, H.W., Wei, G.J., et al., 2002. Geochemistry and Sr-Nd Isotopes of Cenozoic Ultrapotassic Lamprophyres in Western Yunnan: Constraints on the Composition of Subcontinental Lithospheric Mantle. Geochimica, 31(1): 26-34(in Chinese with English abstract).
      Li, Y.J., Li, G.Y., Tong, L.L., et al., 2015.Discrimination of Ratios of Ta, Hf, Th, La, Zr and Nb for Tectonic Setting in Basalts. Journal of Earth Sciences and Environment, 37 (3): 14-21(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XAGX201503004.htm
      Ling, H.F., Xu, S.J., Shen, W.Z., et al., 1998. Nd, Sr, Pb and O Isotopic Compositions of Late Proterozoic Gezong- and Donggu-Granites in the West Margin of Yangtze Plate and Comparison with Other Coeval Granitoids. Acta Petrologica Sinica, 14(3): 269-277(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98199803001
      Liu, S., Hu, R.Z., Feng, G.Y., et al., 2010. Distribution and Significance of the Mafic Dyke Swarms since Mesozoic in North China Craton. Geological Bulletin of China, 29(2-3): 259-267(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201002010
      Liu, Z.H., Wu, X.B., 2009.Relationship between Meso-Basic Veins and Uranium Mineralization. Modern Mining, 25(3):77-80(in Chinese). http://cn.bing.com/academic/profile?id=317946ac0c5053c20433d1e70c6d641e&encoded=0&v=paper_preview&mkt=zh-cn
      Lu, L.X., Du, M., Shao, H.S., 2015. Comparison and Discussion of K-Ar and Ar-Ar Dating Methods. Liaoning Chemical Industry, 44(8): 1025-1027(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lnhg201508041
      Lu, F.X., Shu, X.X., Zhao, C.H., 1991. A Suggestion on Classification of Lamprophyres. Geological Science and Technology Information, 10(Suppl.): 55-62(in Chinese with English abstract).
      Ma, C.Q., Li, Z. C., Ehlers, C., et al., 1998. A Post-Collisional Magmatic Plumbing System: Mesozoic Granitoid Plutons from the Dabieshan High-Pressure and Ultrahigh-Pressure Metamorphic Zone, East-Central China. Lithos, 45(1-4): 431-456. https://doi.org/10.1016/s0024-4937(98)00043-7
      Ma, Y.F., Liu, Y.J., Wen, Q.B., et al., 2017.Petrogenesis and Tectonic Settings of Volcanic Rocks from Late Triassic Hadataolegai Fm. at Central Part of Great Xing'an Range. Earth Science, 42(12):2146-2173(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201712004
      Menzies, M.A., 1983.Mantle Ultramafic Xenoliths in Alkaline Magmas: Evidence for Mantle Heterogeneity Modified by Magmatic Activity. In: Hawkesworth, C.J., Norry, M.J., eds., Continental Basalts and Mantle Xenoliths. Shiva, London, 92-110.
      Münker, C., 1998. Nb/Ta Fractionation in a Cambrian Arc/back Arc System, New Zealand: Source Constraints and Application of Refined ICPMS Techniques. Chemical Geology, 144(1-2): 23-45. https://doi.org/10.1016/s0009-2541(97)00105-8
      Song, X.Y., Qin, G.J., 1994.The Metallogenc Significance of Lamprophyre. Mineral Resources and Geology, 8(2): 81-87(in Chinese with English abstract).
      Rollison, H.R., 2000. Petro-Geochemistry(Yang, X.M., Yang, X.Y., Chen, S.X., Translated). Press of University of Science and Technology of China, Hefei, 186-187.
      Rong, J.S., Han, Z.H., Xia, Y.L., 1984.Granitic Pluton Type of Mineralization Characteristics of Uranium Deposits and Mineralization in China. Radioactive Geology, 2(2):1-11(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201802003
      Sun, J.G., Hu, S.X., Ling, H.F., et al., 2000. Element Geochemistry and Origin of High Potassic-Potassic Dike Rocks in Two Types of Goldfields in Northwest Jiaodong, Shandong, China. Geochimica, 29(2): 143-152(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=cfbc7f91f0e59ad5274ea5b23062483f&encoded=0&v=paper_preview&mkt=zh-cn
      Sun, S.S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sun, Y., Li, J.C., Ding, J., et al., 2017. Characteristics and Genesis of Lamprophyre Vein Type Uranium Mineralization in the West of Mianning, Sichuan. Acta Geologica Sichuan, 37(2): 209-213(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scdzxb201702008
      Tarney, J., Jones, C. E., 1994. Trace Element Geochemistry of Orogenic Igneous Rocks and Crustal Growth Models. Journal of the Geological Society, 151(5): 855-868. https://doi.org/10.1144/gsjgs.151.5.0855
      Taylor, S.R., McLennan, S.M., 1985.The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.
      Wang, Z.Q., Li, Z.Y., Zhang, G.Y., et al., 2007. Geochemical Characteristics and the Provenance of Cretaceous Basic Dikes in Zhongdong Area of Xiazhuang Uranium Ore Field. Uranium Geology, 23(4): 218-225, 248(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykdz200704005
      Waxilali, Li, H.Z., Liang, J., et al., 2011. Review of the Species, Petrogenesis of Lamprophyre and Its Relationship with Mineralization. Journal of the Graduates Sun Yat-Sen University(Natural Sciences, Medicine), 32(4): 1-13(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=c6e8caf65cb5594232ced58b71194c1d&encoded=0&v=paper_preview&mkt=zh-cn
      Xiao, C.D., Zhang, Z.L., Zhao, L.Q., 2004. Nd, Sr and Pb Isotope Geochemistry of Yanshanian Granitoids in Eastern Inner Mongolia and Their Origins. Geology in China, 31(1): 57-63(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200401008
      Xin, C.L., Ma, W.Y., An, G.B., et al., 2013. Geological Characteristics and Mineralization Mechanism of the No.207 Uranium Deposit in Longshoushan, Gansu Province. Acta Geologica Sinica, 87(4): 577-590(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201304011
      Xu, D.R., 2000. Relationship between Lamprophyre and Gold Mineralization in the Gezhen Gold-Bearing Shear Zone in Hainan Province. Geotectonica et Metallogenia, 24(3): 258-265(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200003010
      Xu, J.F., Qiu, J.X., 1991.The Fractional Crystallization of Basaltic Magma in Shanwang, Shandong Province. Earth Science, 16(4):369-376(in Chinese with English abstract).
      Yang, C.S., Zhang, S.M., Zhao, Y.Y., et al., 2015.Sr-Nd-Pb Isotopic Characteristics of Ore-Bearing Host Rocks in Hongshiquan Uranium Deposit, Gansu. Acta Mineralogica Sinica, 35(Suppl.):175-176(in Chinese).
      Yang, W.T., Duan, L.Z., Zhang, Y., 2013. Studying in Middle-Tectonic Level and Rock Deformation Characteristic in Longshoushan Area. Northwestern Geology, 46(2): 44-53(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz201302006
      Zhai, M. G., 2011. Cratonization and the Ancient North China Continent: A Summary and Review. Science China Earth Sciences, 41(8): 1037-1046(in Chinese). http://cn.bing.com/academic/profile?id=79b3f2b0efdb7e7af14fe8292e5588f5&encoded=0&v=paper_preview&mkt=zh-cn
      Zhang, C., 1989.Diagenetic Characteristics and Geological Implications of Granite-Grained Granite in Hongshuquan Uranium Deposit. Northwestern Geology, 22(1): 28-34(in Chinese).
      Zhang, W.L., Zou, M.Q., Shao, F., et al., 2009. Geological Characteristics of Dike-Structural Belt in Taoshan Orefield and Its Relationship to Uranium Deposits. World Nuclear Geoscience, 26(1): 38-42, 48(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjhdzkx200901006
      Zhang, Z.M., Ding, H.X., Dong, X., et al., 2018. High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen. Journal of Earth Science, 29(5): 1005-1009. https://doi.org/10.1007/s12583-018-0852-y
      Zhao, J.G., Wang, L.C., 2009. Discussion on Characteristics and Genesis Type of Hongshiquan Uranium Deposit. Gold Science and Technology, 17(1): 38-41(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxjs200901009
      Zhao, Z.X., Jia, Y.Q., Wang, J.R., et al., 2018.LA-ICP-MS Zircon U-Pb Age and Geochemistry of Monzonite Granite-Quartz Diorite Pluton in Xiaoheishan Area of Beishan Orogenic Belt and Its Geological Significance, Inner Mongolia.Earth Science, 43(Suppl.2):49-59(in Chinese with English abstract).
      Zhou, D.W., Zhang, C.L., Liu, L., et al., 1998. Sm-Nd Dating of Basic Dykes from Wudang Block and a Discussion of Related Questions. Acta Geoscientia Sinica, 19(1): 25-30(in Chinese with English abstract).
      Zhou, Z.L., 1987.Characteristics and Genesis of the Cenozoic Lamprophyre Reservoir in Chezhen Depression. Bulletin of Mineralogy, Petrology and Geochemistry, 6(2): 66-68(in Chinese).
      陈能松, 王新宇, 张宏飞, 等, 2007.柴-欧微地块花岗岩地球化学和Nd-Sr-Pb同位素组成:基底性质和构造属性启示.地球科学, 32(1):7-21. doi: 10.3321/j.issn:1000-2383.2007.01.002
      陈文, 万渝生, 李华芹, 等, 2011.同位素地质年龄测定技术及应用.地质学报, 85(11):1917-1947. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201111009
      陈宣谕, 李红中, 卢文姬, 等, 2011.煌斑岩相关研究进展综述.中山大学研究生学刊(自然科学·医学版), 32(4):21-29. http://d.old.wanfangdata.com.cn/Periodical/dtsj201728051
      陈毓川, 常印佛, 裴荣富, 等, 2007.中国成矿体系与区域成矿评价.北京:地质出版社.
      管涛, 黄智龙, 谢力华, 等, 2003.云南白马寨镍矿区煌斑岩地球化学Ⅰ.主要元素和微量元素.矿物学报, 23(3):278-288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb200303016
      侯贵廷, 2012.华北基性岩墙群.北京:科学出版社.
      胡瑞忠, 金景福, 1990.贵东花岗岩体中煌斑岩的成因.矿物岩石, 10(4):1-7. http://www.cqvip.com/Main/Detail.aspx?id=315222
      黄智龙, 刘丛强, 朱成明, 等, 1999.云南老王寨金矿区煌斑岩成因及其与金矿化的关系.北京:地质出版社.
      李昌年, 1992.构造岩浆判别的地球化学方法及其讨论.地质科技情报, 11(3):73-78, 84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000361809
      李世超, 张凌宇, 李鹏川, 等, 2017.大兴安岭中段早三叠世O型埃达克岩的发现及其大地构造意义.地球科学, 42(12):2117-2128. http://d.old.wanfangdata.com.cn/Periodical/dqkx201712002
      黎彤, 倪守斌, 1997.中国大陆岩石圈的化学元素丰度.地质与勘探, 33(1):31-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199701016715
      李献华, 周汉文, 韦刚健, 等, 2002.滇西新生代超钾质煌斑岩的元素和Sr-Nd同位素特征及其对岩石圈地幔组成的制约.地球化学, 31(1):26-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200201005
      李永军, 李甘雨, 佟丽莉, 等, 2015.玄武岩类形成的大地构造环境Ta、Hf、Th、La、Zr、Nb比值对比判别.地球科学与环境学报, 37(3):14-21. doi: 10.3969/j.issn.1672-6561.2015.03.004
      凌洪飞, 徐士进, 沈渭洲, 等, 1998.格宗、东谷岩体Nd、Sr、Pb、O同位素特征及其与扬子板块边缘其它晋宁期花岗岩对比.岩石学报, 14(3):269-277. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199803001
      刘燊, 胡瑞忠, 冯光英, 等, 2010.华北克拉通中生代以来基性岩墙群的分布及研究意义.地质通报, 29(2-3):259-267. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201002010
      刘治恒, 巫晓兵, 2009.中基性脉岩与铀成矿的关系.现代矿业, 25(3):77-80. doi: 10.3969/j.issn.1674-6082.2009.03.022
      卢磊勋, 杜萌, 邵瀚石, 2015. K-Ar法和Ar-Ar法两种定年方法的差异性对比及讨论.辽宁化工, 44(8):1025-1027. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lnhg201508041
      路凤香, 舒小辛, 赵崇贺, 1991.有关煌斑岩分类的建议.地质科技情报, 10(S1):55-62. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ1991S1006.htm
      马永非, 刘永江, 温泉波, 等, 2017.大兴安岭中段晚三叠世哈达陶勒盖组火山岩成因及构造背景.地球科学, 42(12):2146-2173. http://d.old.wanfangdata.com.cn/Periodical/dqkx201712004
      戎嘉树, 韩泽宏, 夏毓亮, 1984.我国一岩体型铀矿床的矿化特征及成矿作用.放射性地质, 2(2):1-11. http://www.cnki.com.cn/Article/CJFDTotal-YKDZ198402000.htm
      孙景贵, 胡受奚, 凌洪飞, 等, 2000.胶西北两类金矿田的高钾-钾质脉岩元素地球化学与成岩作用研究.地球化学, 29(2):143-152. doi: 10.3321/j.issn:0379-1726.2000.02.006
      孙悦, 李巨初, 丁俊, 等, 2017.冕西煌斑岩脉型铀矿化特征及成因.四川地质学报, 37(2):209-213. doi: 10.3969/j.issn.1006-0995.2017.02.008
      宋新宇, 覃功炯, 1994, 煌斑岩的成矿意义.矿产与地质, 8(2):81-87. http://d.old.wanfangdata.com.cn/Periodical/scyj201706009
      瓦西拉里, 李红中, 梁锦, 等, 2011.煌斑岩的种类、成因及其与成矿作用的关系.中山大学研究生学刊(自然科学.医学版), 32(4):1-13. http://www.cnki.com.cn/Article/CJFDTotal-YJSK201104003.htm
      王正其, 李子颖, 张国玉, 等, 2007.下庄中洞地区白垩纪基性脉岩地球化学特征及其源区性质.铀矿地质, 23(4):218-225, 248. doi: 10.3969/j.issn.1000-0658.2007.04.005
      肖成东, 张忠良, 赵利青, 2004.东蒙地区燕山期花岗岩Nd、Sr、Pb同位素及其岩石成因.中国地质, 31(1):57-63. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200401008
      辛存林, 马维云, 安国堡, 等, 2013.甘肃龙首山207铀矿床成矿地质特征及其成矿机制探讨.地质学报, 87(4):577-590. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201304011
      许德如, 2000.海南岛戈枕含金剪切带煌斑岩与金成矿关系研究.大地构造与成矿学, 24(3):258-265. doi: 10.3969/j.issn.1001-1552.2000.03.010
      许继锋, 邱家骧, 1991.山东临朐山旺地区玄武岩浆的分离结晶.地球科学, 16(4):369-376. http://www.cnki.com.cn/Article/CJFDTotal-DQKX199104003.htm
      杨春四, 张树明, 赵亚云, 等, 2015.甘肃红石泉铀矿床含矿主岩Sr-Nd-Pb同位素特征及意义.矿物学报, 35(S1):175-176. http://d.old.wanfangdata.com.cn/Conference/9132894
      杨望暾, 段立志, 张阳, 2013.龙首山地区中深构造层次及岩石变形特征研究.西北地质, 46(2):44-53. doi: 10.3969/j.issn.1009-6248.2013.02.006
      翟明国, 2011.克拉通化与华北陆块的形成.中国科学:地球科学, 41(8):1037-1046. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201108001.htm
      张诚, 1989.红石泉铀矿床含矿伟晶状白岗岩成岩特征及其地质意义.西北地质, 22(1):28-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003277011
      张万良, 邹茂卿, 邵飞, 等, 2009.桃山矿田脉岩-构造带地质特征及其与铀成矿的关系.世界核地质科学, 26(1):38-42, 48. doi: 10.3969/j.issn.1672-0636.2009.01.006
      赵建国, 王龙成, 2009.红石泉铀矿床矿化特征及成因类型探讨.黄金科学技术, 17(1):38-41. doi: 10.3969/j.issn.1005-2518.2009.01.009
      赵志雄, 贾元琴, 王金荣, 等, 2018.内蒙古小黑山地区二长花岗岩和石英闪长岩的锆石U-Pb年代学、元素地球化学及其地质意义.地球科学, 43(S2):49-59. http://www.cnki.com.cn/Article/CJFDTotal-DQKX2018S2005.htm
      周鼎武, 张成立, 刘良, 等, 1998.武当地块基性岩墙群的Sm-Nd定年及其相关问题讨论.地球学报, (1):25-30. http://www.cnki.com.cn/Article/CJFDTotal-DQXB801.003.htm
      周自立, 1987.车镇凹陷中生代煌斑岩储油层的特征及成因.矿物岩石地球化学通讯, 6(2):66-68. http://www.cnki.com.cn/Article/CJFDTotal-KYDH198702007.htm
    • dqkx-44-10-3469-TableS1.pdf
    • 加载中
    图(12) / 表(3)
    计量
    • 文章访问数:  3322
    • HTML全文浏览量:  1405
    • PDF下载量:  41
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-12-12
    • 刊出日期:  2019-11-11

    目录

      /

      返回文章
      返回