• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大地电磁六元素张量阻抗理论及其应用

    胡祥云 金钢燮

    胡祥云, 金钢燮, 2018. 大地电磁六元素张量阻抗理论及其应用. 地球科学, 43(10): 3399-3406. doi: 10.3799/dqkx.2018.317
    引用本文: 胡祥云, 金钢燮, 2018. 大地电磁六元素张量阻抗理论及其应用. 地球科学, 43(10): 3399-3406. doi: 10.3799/dqkx.2018.317
    Hu Xiangyun, Kim Kangsop, 2018. A Trial for Introducing 6-Element Tensor Impedance in Magnetotelluric Method and Its Application. Earth Science, 43(10): 3399-3406. doi: 10.3799/dqkx.2018.317
    Citation: Hu Xiangyun, Kim Kangsop, 2018. A Trial for Introducing 6-Element Tensor Impedance in Magnetotelluric Method and Its Application. Earth Science, 43(10): 3399-3406. doi: 10.3799/dqkx.2018.317

    大地电磁六元素张量阻抗理论及其应用

    doi: 10.3799/dqkx.2018.317
    基金项目: 

    中国地质大学(武汉)地学长江计划 CUGCJ1707

    国家自然科学基金项目 41474055

    详细信息
      作者简介:

      胡祥云(1966-), 男, 教授, 主要从事地震层析成像研究

    • 中图分类号: P315

    A Trial for Introducing 6-Element Tensor Impedance in Magnetotelluric Method and Its Application

    • 摘要: 在经典大地电磁(MT)理论中,张量阻抗[ Z ]定义为电场分量和磁场分量之间的线性关系.估算张量阻抗[ Z ]及和它有关的其他参数(例如视电阻率、相位、倾子等)是MT数据处理中的一个重要环节.引入了六元素张量阻抗[ R ]的全新概念,并开发了相应的处理方法.为检验本方法的特征和抗噪性能,对采集自朝鲜的MT野外资料进行了分析.分析结果表明在MT资料处理中新定义的六元素张量阻抗[ R ]比传统的四分量张量阻抗[ Z ]提高测深曲线的相干度至少0.1以上,并且改善了大地电磁资料处理的质量.

       

    • 图  1  在噪声严重的MT测点观测到的电磁场分量之间的相干度曲线

      图a为ExHxHyHz之间相干度;图b为EyHxHyHz之间相干度

      Fig.  1.  The curves of coherencies versus frequency number between observed electircal and magnetic components at a MT station

      图  2  图 1中的MT测点实测电场和用[Z], [R]预测的电场之间的相干度曲线

      图a为与Ex有关的相干度;图b为与Ey有关的相干度

      Fig.  2.  Curves of coherencies between observed and predicted electrical components by using [Z] or [R], respectively at the MT station in Fig. 1

      图  3  图 12中的MT数据用[Z](a)和[R](b)估计的视电阻率ρxyρyx曲线对比

      Fig.  3.  Comparison of ρxy, ρyx apparent resistivity curves by the use of [Z](a) and [R](b) at the MT station in Fig. 1, 2

      图  4  图 2中的MT数据视电阻率ρxy, ρyx曲线的反演结果对比

      图a为实测与正演理论视电阻率曲线, 1, 2分别为用[Z], [R]得到的;图b为反演得到的深度-电阻率模型, 3, 4分别为从1, 2的反演得到的

      Fig.  4.  Comparison of effective apparent resistivity curves (a) and inverted resitivity models versus depth(b) at the MT station in Fig. 1-3, based on [Z] and [R]

      表  1  MT时间序列中磁场分量的振幅比较

      Table  1.   Comparison of amplitudes of magnetic components from MT records

      频率段 采样率t(s) 磁场分量平均振幅(mA/m)
      Hx Hy Hz
      1 6.510 4×10-4 0.562 1.893 0.560
      2 1.016 7×10-2 0.078 0.041 0.063
      3 0.166 667 0.183 0.149 0.350
      4 2.666 67 6.279 10.748 17.410
      平均 1.775 3.208 4.596
      下载: 导出CSV

      表  2  图 1中的测点Ei(i=x, y)和Hj(j=x, y, z)之间的平均相干度

      Table  2.   Coherencies between Ei(i=x, y) and Hj(j=x, y, z) components

      Coh(Ex, Hx) Coh(Ex, Hy) Coh(Ex, Hz) Coh(Ey, Hx) Coh(Ey, Hy) Coh(Ey, Hz)
      0.488 0.456 0.409 0.473 0.419 0.405
      下载: 导出CSV

      表  3  图 1中的MT测点中用[Z]和[R]时Ei, Eip之间平均相干度

      Table  3.   Comparison of coherencies between Ei, Eip components when using [Z] and [R]

      相干度 Coh(Ex) Coh(Ey)
      [Z] 0.659 0.641
      [R] 0.692 0.692
      下载: 导出CSV
    • Auken, E., Boesen, T., Christiansen, A.V., 2017.A Review of Airborne Electromagnetic Methods with Focus on Geotechnical and Hydrological Applications from 2007 to 2017.Advances in Geophysics.
      Berdichevsky, M.N., 1968.Electrical Prospecting with Magnetotelluric Profiling.Nedra, Moscow(in Russia).
      Cao, Z.L., He, Z.X., Chang, Y.J., 2006.A Simulation Study of Induced Polarization Effect of Magnetotelluric and Its Application in Oil and Gas Detection.Progress in Geophysics, 21(4):1252-1257(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200604031.htm
      de Groot-Hedlin, C., Constable, S., 2004.Inversion of Magnetotelluric Data for 2D Structure with Sharp Resistivity Contrasts.Geophysics, 69(1):78-86. https://doi.org/10.1190/1.1649377
      Egbert, G.D., Livelybrooks, D.W., 1996.Single Station Magnetotelluric Impedance Estimation:Coherence Weighting and the Regression M-Estimate.Geophysics, 61(4):964-970. https://doi.org/10.1190/1.1444045
      Gamble, T.D., Goubau, W.M., Clarke, J., 1979.Magnetotellurics with a Remote Magnetic Reference.Geophysics, 44(1):53-68. https://doi.org/10.1190/1.1440923
      García, X., Jones, A.G., 2002.Atmospheric Sources for Audio-Magnetotelluric (AMT) Sounding.Geophysics, 67(2):448-458. https://doi.org/10.1190/1.1468604
      García, X., Jones, A.G., 2005.A New Methodology for the Acquisition and Processing of Audio-Magnetotelluric (AMT) Data in the AMT Dead Band.Geophysics, 70(5):G119-G126. https://doi.org/10.1190/1.2073889
      Gómez-Treviño, E., Mondragón, M., 1995.Uneven Effect of Random Noise in Magnetotelluric Apparent Resistivity Definitions.Geophysics, 60(4):1238-1242. https://doi.org/10.1190/1.1443853
      Groom, R.W., Bailey, R.C., 1991.Analytic Investigations of the Effects of Near-Surface Three-Dimensional Galvanic Scatterers on MT Tensor Decompositions.Geophysics, 56(4):496-518. https://doi.org/10.1190/1.1443066
      Gupta, D., Choubey, S., 2015.Discrete Wavelet Transform for Image Processing.International Journal of Emerging Technology and Advanced Engineering, 4(3):598-602. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_36d77fb15fc197b8636242fbc09e7525
      Hu, Z.Z., Hu, X.Y., 2005.Review of Three Dimensional Magnetotelluric Inversion Methods.Progress in Geophysics, 20(1):214-220(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ2005010BA.htm
      Li, D.W., Wang, Y.X., 2015.Major Issues of Research and Development of Hot Rock Geothermal Energy.Earth Science, 40(11):1858-1869 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.166
      Lilley, F.E.M., 1998.Magnetotelluric Tensor Decomposition:Part I, Theory for a Basic Procedure.Geophysics, 63(6):1885-1897. https://doi.org/10.1190/1.1444481
      Linde, N., Pedersen, L.B., 2004.Characterization of a Fractured Granite Using Radio Magnetotelluric (RMT) Data.Geophysics, 69(5):1155-1165. https://doi.org/10.1190/1.1801933
      Liu, W.C., Zhang, S.Y., Yang, L.B., et al., 2015.Three-Dimensional Electrical and Deep Structure Features of Akebasitao Area in Western Junggar by AMT Data.Earth Science, 40(3):441-447 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.036
      Muñoz, G., 2014.Exploring for Geothermal Resources with Electromagnetic Methods.Surveys in Geophysics, 35(1):101-122. https://doi.org/10.1007/s10712-013-9236-0
      Pedersen, L.B., Engels, M., 2005.Routine 2D Inversion of Magnetotelluric Data Using the Determinant of the Impedance Tensor.Geophysics, 70(2):G33-G41. https://doi.org/10.1190/1.1897032
      Ri, G., Kim, K., Ri, Y., 2002.The Magnetotelluric Exploration.Publisher of Industry, PyongYang.
      Tripp, A.C., 2005.Acheron's Rainbow:Free Associations on 75 Years of Exploration Geo-Electromagnetics.Geophysics, 70(6):25-31. https://doi.org/10.1190/1.2127107
      Wang, J.Y., Xu, Y.X., 1998.Methods and Advances for Estimation of Magnetotelluric Response Function Abroad.Earth Science Frontiers, 5(2):217-222(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dxqy802.006.htm
      Wang, S.M., Wang, J.Y., 2004.Application of Higher-Order Statistics in Magnetotelluric Data Processing.Chinese Journal of Geophysics, 47(5):928-934(in Chinese with English abstract). doi: 10.1002/cjg2.584/full
      Xu, Y.X., Wang, J.Y., 2000.A Spectrum Estimation Method for Magnetotelluric Signal Based on Continuous Wavelet Transforms.Chinese Journal of Geophysics, 43(5):717-723. https://doi.org/10.1002/cjg2.86
      Xu, Z., 1987.The Processing of Five-Component Magnetotelluric Sounding Data.Oil Geophysical Prospecting, 22(4):435-444. http://en.cnki.com.cn/Article_en/CJFDTotal-SYDQ198704010.htm
      Yee, E., Kosteniuk, P.R., Paulson, K.V., 1988.The Reconstruction of the Magnetotelluric Impedance Tensor:An Adaptive Parametric Time-Domain Approach.Geophysics, 53(8):1080-1087. https://doi.org/10.1190/1.1442544
      Yin, C.C., 2003.Inherent Nonuniqueness in Magnetotelluric Inversion for 1D Anisotropic Models.Geophysics, 68(1):138-146. https://doi.org/10.1190/1.1543201
      Zhang, Y., Zhang, S.Y., 2005.A study of the EH-4 Processing and Interpertation System.Chinese Journal of Engineering Geophysics, 2(4):311-315(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDQ200504010.htm
      Zohdy, A.A.R., 1989.A New Method for the Automatic Interpretation of Schlumberger and Wenner Sounding Curves.Geophysics, 54(2):245-253. https://doi.org/10.1190/1.1442648
      曹中林, 何展翔, 昌彦君, 2006.MT激电效应的模拟研究及在油气检测中的应用.地球物理学进展, 21(4):1252-1257. doi: 10.3969/j.issn.1004-2903.2006.04.032
      胡祖志, 胡祥云, 2005.大地电磁三维反演方法综述.地球物理学进展, 20(1):214-220. doi: 10.3969/j.issn.1004-2903.2005.01.037
      李德威, 王焰新, 2015.干热岩地热能研究与开发的若干重大问题.地球科学, 40(11):1858-1869. https://doi.org/10.3799/dqkx.2015.166
      刘文才, 张胜业, 杨龙彬, 等, 2015.西准噶尔阿克巴斯陶地区三维电性结构和深部地质特征.地球科学, 40(3):441-447. https://doi.org/10.3799/dqkx.2015.036
      王家映, 徐义贤, 1998.国外大地电磁响应函数估计方法.地学前缘, 5(2):217-222. doi: 10.3321/j.issn:1005-2321.1998.02.006
      王书明, 王家映, 2004.高阶统计量在大地电磁测深数据处理中的应用研究.地球物理学报, 47(5):928-934. doi: 10.3321/j.issn:0001-5733.2004.05.027
      张莹, 张胜业, 2005.EH-4资料处理解释系统的研究.工程地球物理学报, 2(4):311-315. doi: 10.3969/j.issn.1672-7940.2005.04.011
    • 加载中
    图(4) / 表(3)
    计量
    • 文章访问数:  4559
    • HTML全文浏览量:  2135
    • PDF下载量:  52
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-05-11
    • 刊出日期:  2018-10-20

    目录

      /

      返回文章
      返回