• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    华北古元古代碳酸岩起源深度及现代板块构造启动

    许成 匡光喜 曾亮 宋文磊 邓淼 韦春婉

    许成, 匡光喜, 曾亮, 宋文磊, 邓淼, 韦春婉, 2019. 华北古元古代碳酸岩起源深度及现代板块构造启动. 地球科学, 44(4): 1083-1095. doi: 10.3799/dqkx.2018.318
    引用本文: 许成, 匡光喜, 曾亮, 宋文磊, 邓淼, 韦春婉, 2019. 华北古元古代碳酸岩起源深度及现代板块构造启动. 地球科学, 44(4): 1083-1095. doi: 10.3799/dqkx.2018.318
    Xu Cheng, Kuang Guangxi, Zeng Liang, Song Wenlei, Deng Miao, Wei Chunwan, 2019. Original Depth of Paleoproterozoic Carbonatites in North China Craton and Onset of Modern-Style Plate Tectonics. Earth Science, 44(4): 1083-1095. doi: 10.3799/dqkx.2018.318
    Citation: Xu Cheng, Kuang Guangxi, Zeng Liang, Song Wenlei, Deng Miao, Wei Chunwan, 2019. Original Depth of Paleoproterozoic Carbonatites in North China Craton and Onset of Modern-Style Plate Tectonics. Earth Science, 44(4): 1083-1095. doi: 10.3799/dqkx.2018.318

    华北古元古代碳酸岩起源深度及现代板块构造启动

    doi: 10.3799/dqkx.2018.318
    基金项目: 

    国家自然科学基金项目 41773022

    国家自然科学基金项目 41573033

    国家自然科学基金项目 41825008

    详细信息
      作者简介:

      许成(1976-), 男, 教授, 主要从事碳酸岩及其共生矿床研究

    • 中图分类号: P56

    Original Depth of Paleoproterozoic Carbonatites in North China Craton and Onset of Modern-Style Plate Tectonics

    • 摘要: 俯冲作用是改变地球内部物质演化的关键因素之一,而现代板块的启动时间一直存在争论.华北克拉通中部造山带内蒙古丰镇古元古代碳酸岩内超硅石榴石包体和榴辉岩捕虏体的发现,为研究岩浆起源深度和板块构造提供了窗口.矿物学和高温高压实验限定超硅石榴石(Si~3.18 pfu)富集三价铁(Fe3+/∑Fe~0.8),来源于地幔约400 km的深度表明碳酸岩岩浆起源于地幔过渡带.矿物对温压计和P-T视剖面图确定榴辉岩捕虏体变质峰期温压分别为~660 ℃和~2.65 GPa,温压梯度为~250 ℃·GPa-1,与现代板块深俯冲产物相似,说明现代板块构造在古元古代已经启动.统计显示全球古元古代碳酸岩与造山带内高压变质岩石密切共生.全球古元古代的板块俯冲可能与哥伦比亚超大陆的拼合有关.大规模板片俯冲携带地壳沉积物质进入深部地幔,形成碳酸岩岩浆及氧化的富Fe3+超硅石榴石.地壳物质在地幔源区循环约20亿年,导致了地幔源区的不均一性以及长时间的碳循环.

       

    • 图  1  全球古元古代碳酸岩、麻粒岩、榴辉岩及显生宙造山带碳酸岩分布示意图

      底图据Woolley and Kjarsgaard (2008); Xu et al.(2018)

      Fig.  1.  Distribution of Paleoproterozoic carbonatites, granulites, eclogites and Phanerozoic orogenic carbonatites worldwide

      图  2  华北克拉通丰镇-怀安碳酸岩地质特征

      a.华北克拉通地质简图;b.碳酸岩野外照片;c.碳酸岩显微照片(正交偏光)

      Fig.  2.  Geological characteristics of carbonatites from Fengzhen and Huai'an areas in the North China craton

      图  3  超硅石榴石及榴辉岩捕虏体照片

      a, b.超硅石榴石及其寄主石榴石背散射图像;c.榴辉岩捕虏体手标本;d.榴辉岩捕虏体背散射图像.底图据Xu et al.(2017, 2018)

      Fig.  3.  Photographs of the majoritic garnets and the eclogite xenolith

      图  4  超硅石榴石形成压力估计

      Fig.  4.  Estimated pressures for the formation of the majoritic garnets

      图  5  科马提岩与地幔潜能温度-时间分布及全球变质带峰期温压条件统计

      底图据van Thienen et al.(2004)Herzberg et al.(2007)Brown and Johnson(2018).a.科马提岩与地幔潜能温度-时间分布;b.全球变质带峰期温压条件统计图,NA、NC,北美克拉通、华北克拉通(Xu et al., 2018)

      Fig.  5.  Distribution of time-temperature of komatiites (a) and a global compilation of peak pressure-temperature conditions of metamorphic belts (b)

    • Agard, P., Yamato, P., Jolivet, L., et al., 2009.Exhumation of Oceanic Blueschists and Eclogites in Subduction Zones:Timing and Mechanisms.Earth-Science Reviews, 92(1-2):53-79. doi: 10.1016/j.earscirev.2008.11.002
      Bell, K., Keller, J., 1995.Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites.Springer, Berlin. https://www.researchgate.net/publication/321612811_Carbonatite_Volcanism_Oldoinyo_Lengai_and_the_Petrogenesis_of_Natrocarbonatites
      Belousova, E.A., Kostitsyn, Y.A., Griffin, W.L., et al., 2010.The Growth of the Continental Crust:Constraints from Zircon Hf-Isotope Data.Lithos, 119(3-4):457-466. doi: 10.1016/j.lithos.2010.07.024
      Brown, M., 2006.Duality of Thermal Regimes is the Distinctive Characteristic of Plate Tectonics since the Neoarchean.Geology, 34(11):961-964. doi: 10.1130/G22853A.1
      Brown, M., Johnson, T., 2018.Secular Change in Metamorphism and the Onset of Global Plate Tectonics.American Mineralogist, 103(2):181-196. doi: 10.2138/am-2018-6166
      Collerson, K.D., Williams, Q., Kamber, B.S., et al., 2010.Majoritic Garnet:A New Approach to Pressure Estimation of Shock Events in Meteorites and the Encapsulation of Sub-Lithospheric Inclusions in Diamond.Geochimica et Cosmochimica Acta, 74(20):5939-5957. doi: 10.1016/j.gca.2010.07.005
      Condie, K.C., 2011.Earth as an Evolving Planetary System.Academic Press, Amsterdam.
      Dasgupta, R., Hirschmann, M.M., 2006.Melting in the Earth's Deep Upper Mantle Caused by Carbon Dioxide.Nature, 440(7084):659-662. doi: 10.1038/nature04612
      Dasgupta, R., Mallik, A., Tsuno, K., et al., 2013.Carbon-Dioxide-Rich Silicate Melt in the Earth's Upper Mantle.Nature, 493(7431):211-215. doi: 10.1038/nature11731
      Dhuime, B., Storey, C.D., 2012.A Change in the Geodynamics of Continental Growth 3 Billion Years Ago.Science, 335(6074):1334-1336. doi: 10.1126/science.1216066
      Dobson, D.P., Jones, A.P., Rabe, R., et al., 1996.In-Situ Measurement of Viscosity and Density of Carbonate Melts at High Pressure.Earth and Planetary Science Letters, 143(1-4):207-215. doi: 10.1016/0012-821X(96)00139-2
      Feng, M., Xu, C., Kynicky, J., et al., 2016.Rare Earth Element Enrichment in Palaeoproterozoic Fengzhen Carbonatite from the North China Block.International Geology Review, 58(15):1940-1950. doi: 10.1080/00206814.2016.1193774
      Fischer, T.P., Burnard, P., Marty, B., et al., 2009.Upper-Mantle Volatile Chemistry at Oldoinyo Lengai Volcano and the Origin of Carbonatites.Nature, 459(7243):77-80. doi: 10.1038/nature07977
      Foley, S.F., Buhre, S., Jacob, D.E., 2003.Evolution of the Archaean Crust by Delamination and Shallow Subduction.Nature, 421(6920):249-252. doi: 10.1038/nature01319
      Frost, D.J., McCammon, C.A., 2008.The Redox State of Earth's Mantle.Annual Review of Earth and Planetary Sciences, 36(1):389-420. doi: 10.1146/annurev.earth.36.031207.124322
      Gaillard, F., Malki, M., Iacono-Marziano, G., et al., 2008.Carbonatite Melts and Electrical Conductivity in the Asthenosphere.Science, 322(5906):1363-1365. doi: 10.1126/science.1164446
      Genge, M.J., Price, G.D., Jones, A.P., 1995.Molecular Dynamics Simulations of CaCO3 Melts to Mantle Pressures and Temperatures:Implications for Carbonatite Magmas.Earth and Planetary Science Letters, 131(3-4):225-238. doi: 10.1016/0012-821X(95)00020-D
      Greber, N.D., Dauphas, N., Bekker, A., et al., 2017.Titanium Isotopic Evidence for Felsic Crust and Plate Tectonics 3.5 Billion Years Ago.Science, 357(6357):1271-1274. doi: 10.1126/science.aan8086
      Guo, J.H., Zhai, M.G., Zhang, Y.G., et al., 1993.Early Precambrian Manjinggou High-Pressure Granulite Melange Belt on the South Edge of the Huaian Complex, North China Craton:Geological Features, Petrology and Isotopic Geochronology.Acta Petrologica Sinica, 9(4):329-341 (in Chinese with English abstract).
      Hawkesworth, C.J., Kemp, A.I.S., 2006.Using Hafnium and Oxygen Isotopes in Zircons to Unravel the Record of Crustal Evolution.Chemical Geology, 226(3-4):144-162. https://doi.org/10.1016/j.chemgeo.2005.09.018
      Herzberg, C., Asimow, P.D., Arndt, N., et al., 2007.Temperatures in Ambient Mantle and Plumes:Constraints from Basalts, Picrites, and Komatiites.Geochemistry Geophysics Geosystems, 8(2):Q02006. doi: 10.1029-2006GC001390/
      Höfer, H.E., Brey, G.P., Schulz-Dobrick, B., et al., 1994.The Determination of the Oxidation State of Iron by the Electron Microprobe.European Journal of Mineralogy, 6(3):407-418. https://doi.org/10.1127/ejm/6/3/0407
      Hofmann, A.W., 1997.Mantle Geochemistry:The Message from Oceanic Volcanism.Nature, 385(6613):219-229. doi: 10.1038/385219a0
      Hofmeister, A.M., Giesting, P.A., Wopenka, B., et al., 2004.Vibrational Spectroscopy of Pyrope-Majorite Garnets:Structural Implications.American Mineralogist, 89(1):132-146. https://doi.org/10.2138/am-2004-0116
      Irifune, T., Sekine, T., Ringwood, A.E., et al., 1986.The Eclogite-Garnetite Transformation at High Pressure and Some Geophysical Implications.Earth and Planetary Science Letters, 77(2):245-256.https://doi.org/10.1016/0012-821x(86)90165-2 doi: 10.1016/0012-821X(86)90165-2
      Jacob, D.E., 2004.Nature and Origin of Eclogite Xenoliths from Kimberlites.Lithos, 77(1-4):295-316. https://doi.org/10.1016/j.lithos.2004.03.038
      Jahn, B.M., Caby, R., Monie, P., 2001.The Oldest UHP Eclogites of the World:Age of UHP Metamorphism, Nature of Protoliths and Tectonic Implications.Chemical Geology, 178(1-4):143-158.https://doi.org/10.1016/s0009-2541(01)00264-9 doi: 10.1016/S0009-2541(01)00264-9
      Kiseeva, E.S., Yaxley, G.M., Stepanov, A.S., et al., 2013.Metapyroxenite in the Mantle Transition Zone Revealed from Majorite Inclusions in Diamonds.Geology, 41(8):883-886. doi: 10.1130/G34311.1
      Kiseeva, E.S., Wood, B.J., Ghosh, S., et al., 2016.The Pyroxenite-Diamond Connection.Geochemical Perspectives Letters, 2(1):1-9. doi: 10.7185/geochemlet.1601
      Korh, A.E., Schmidt, S.T., Ulianov, A., et al., 2009.Trace Element Partitioning in HP-LT Metamorphic Assemblages during Subduction-Related Metamorphism, Ile de Groix, France:A Detailed LA-ICPMS Study.Journal of Petrology, 50(6):1107-1148. doi: 10.1093/petrology/egp034
      Labrosse, S., Jaupart, C., 2007.Thermal Evolution of the Earth:Secular Changes and Fluctuations of Plate Characteristics.Earth and Planetary Science Letters, 260(3-4):465-481. doi: 10.1016/j.epsl.2007.05.046
      Li, S.Z., Dai, L.M., Zhang, Z., et al., 2015.Precambrian Geodynamics(Ⅲ):General Features of Precambrian Geology.Earth Science Frontiers, 22(6):27-45 (in Chinese with English abstract). https://www.researchgate.net/publication/287261159_Precambrian_geodynamics_III_General_features_of_Precambrian_geology
      Litasov, K., Ohtani, E., 2010.The Solidus of Carbonated Eclogite in the System CaO-Al2O3-MgO-SiO2-Na2O-CO2 to 32 GPa and Carbonatite Liquid in the Deep Mantle.Earth and Planetary Science Letters, 295(1-2):115-126. doi: 10.1016/j.epsl.2010.03.030
      Liu, F.L., Zhang, L.F., Li, X.L., et al., 2017.The Metamorphic Evolution of Paleoproterozoic Eclogites in Kuru-Vaara, Northern Belomorian Province, Russia:Constraints from P-T Pseudosections and Zircon Dating.Precambrian Research, 289:31-47. doi: 10.1016/j.precamres.2016.11.011
      Maruyama, S., Liou, J.G., Terabayashi, M., 1996.Blueschists and Eclogites of the World and Their Exhumation.International Geology Review, 38(6):485-594. doi: 10.1080/00206819709465347
      McCammon, C., 2005.The Paradox of Mantle Redox.Science, 308(5723):807-808. https://doi.org/10.1126/science.1110532
      Mints, M.V., Belousova, E.A., Konilov, A.N., et al., 2010.Mesoarchean Subduction Processes:2.87 Ga Eclogites from the Kola Peninsula, Russia.Geology, 38(8):739-742. doi: 10.1130/G31219.1
      Moyen, J.F., Martin, H., 2012.Forty Years of TTG Research.Lithos, 148(148):312-336. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7fd75643f9219d8289ed37b5662b384e
      Nakatsuka, A., Yoshiasa, A., Yamanaka, T., et al., 1999.Symmetry Change of Majorite Solid-Solution in the System Mg3Al2Si3O12-MgSiO3.American Mineralogist, 84(7-8):1135-1143. doi: 10.2138/am-1999-7-816
      Nelson, D.R., Chivas, A.R., Chappell, B.W., et al., 1988.Geochemical and Isotopic Systematics in Carbonatites and Implications for the Evolution of Ocean-Island Sources.Geochimica et Cosmochimica Acta, 52(1):1-17. doi: 10.1016/0016-7037(88)90051-8
      Palin, R.M., White, R.W., Green, E.C.R., 2016.Partial Melting of Metabasic Rocks and the Generation of Tonalitic-Trondhjemitic-Granodioritic (TTG) Crust in the Archaean:Constraints from Phase Equilibrium Modelling.Precambrian Research, 287:73-90. https://doi.org/10.1016/j.precamres.2016.11.001
      Powell, R., Holland, T., Worley, B., 1998.Calculating Phase Diagrams Involving Solid Solutions via Non-Linear Equations, with Examples Using THERMOCALC.Journal of Metamorphic Geology, 16(4):577-588. doi: 10.1111/jmg.1998.16.issue-4
      Rapp, R.P., Shimizu, N., Norman, M.D., 2003.Growth of Early Continental Crust by Partial Melting of Eclogite.Nature, 425(6958):605-609. doi: 10.1038/nature02031
      Rohrbach, A., Ballhaus, C., Golla-Schindler, U., et al., 2007.Metal Saturation in the Upper Mantle.Nature, 449(7161):456-458. doi: 10.1038/nature06183
      Scambelluri, M., Pettke, T., van Roermund, H.L.M., 2008.Majoritic Garnets Monitor Deep Subduction Fluid Flow and Mantle Dynamics.Geology, 36(1):59-62. doi: 10.1130/G24056A.1
      Shirey, S.B., Richardson, S.H., 2011.Start of the Wilson Cycle at 3 Ga Shown by Diamonds from Subcontinental Mantle.Science, 333(6041):434-436. doi: 10.1126/science.1206275
      Smithies, R.H., 2000.The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic Adakite.Earth and Planetary Science Letters, 182(1):115-125. doi: 10.1016/S0012-821X(00)00236-3
      Stein, M., Hofmann, A.W., 1994.Mantle Plumes and Episodic Crustal Growth.Nature, 372(6501):63-68. doi: 10.1038/372063a0
      Stern, R.J., 2005.Evidence from Ophiolites, Blueschists, and Ultrahigh-Pressure Metamorphic Terranes That the Modern Episode of Subduction Tectonics Began in Neoproterozoic Time.Geology, 33(7):557-560. doi: 10.1130/G21365.1
      Sweeney, R.J., 1994.Carbonatite Melt Compositions in the Earth's Mantle.Earth and Planetary Science Letters, 128(3-4):259-270. doi: 10.1016/0012-821X(94)90149-X
      Tang, M., Chen, K., Rudnick, R.L., 2016.Archean Upper Crust Transition from Mafic to Felsic Marks the Onset of Plate Tectonics.Science, 351(6271):372-375. doi: 10.1126/science.aad5513
      Tao, R.B., Fei, Y.W., Bullock, E.S., et al., 2018.Experimental Investigation of Fe3+-Rich Majoritic Garnet and Its Effect on Majorite Geobarometer.Geochimica et Cosmochimica Acta, 225:1-16. doi: 10.1016/j.gca.2018.01.008
      Thomson, A.R., Walter, M.J., Kohn, S.C., et al., 2016.Slab Melting as a Barrier to Deep Carbon Subduction.Nature, 529(7584):76-79. doi: 10.1038/nature16174
      Tomkins, H.S., Powell, R., Ellis, D.J., 2007.The Pressure Dependence of the Zirconium-in-Rutile Thermometer.Journal of Metamorphic Geology, 25(6):703-713. doi: 10.1111/jmg.2007.25.issue-6
      Trap, P., Faure, M., Lin, W., et al., 2009.The Zanhuang Massif, the Second and Eastern Suture Zone of the Paleoproterozoic Trans-North China Orogen.Precambrian Research, 172(1-2):80-98. doi: 10.1016/j.precamres.2009.03.011
      Treiman, A.H., Schedl, A., 1983.Properties of Carbonatite Magma and Processes in Carbonatite Magma Chambers.The Journal of Geology, 91(4):437-447. https://doi.org/10.1086/628789
      van der Hist, R., Engdahl, R., Spakman, W., et al., 1991.Tomographic Imaging of Subducted Lithosphere below Northwest Pacific Island Arcs.Nature, 353(6339):37-43. https://doi.org/10.1038/353037a0
      van Hunen, J., Moyen, J.F., 2012.Archean Subduction:Fact or Fiction?.Annual Review of Earth and Planetary Sciences, 40(1):195-219. https://doi.org/10.1146/annurev-earth-042711-105255
      van Thienen, P., Vlaar, N.J., van den Berg, A.P., 2004.Plate Tectonics on the Terrestrial Planets.Physics of the Earth and Planetary Interiors, 142(1-2):61-74. https://doi.org/10.1016/j.pepi.2003.12.008
      Walter, M.J., Bulanova, G.P., Armstrong, L.S., et al., 2008.Primary Carbonatite Melt from Deeply Subducted Oceanic Crust.Nature, 454(7204):622-625. https://doi.org/10.1038/nature07132
      Waters, D.J., Martin, H.N., 1993.Geobarometry of Phengite-Bearing Eclogites.Terra Abstracts, 5:410-411. http://cn.bing.com/academic/profile?id=6174123f308df636f644f1ff2449fa5a&encoded=0&v=paper_preview&mkt=zh-cn
      Wilson, J.T., 1966.Did the Atlantic Close and Then Re-Open?.Nature, 211(5050):676-681. doi: 10.1038/211676a0
      Wood, B.J., Kiseeva, E.S., Matzen, A.K., 2013.Garnet in the Earth's Mantle.Elements, 9(6):421-426. https://doi.org/10.2113/gselements.9.6.421
      Woolley, A.R., Kjarsgaard, B.A., 2008.Carbonatite Occurrences of the World: Map and Database.Geological Survey of Canada, Open File, 5796.
      Wyllie, P.J., 1989.Origin of Carbonatites: Evidence from Phase Equilibrium Studies.In: Bell, K., ed., Carbonatites: Genesis and Evolution.Unwin Hyman, London, 500-545.
      Xiong, X.L., 2006.Trace Element Evidence for Growth of Early Continental Crust by Melting of Rutile-Bearing Hydrous Eclogite.Geology, 34(11):945-948.https://doi.org/10.1130/g22711a.1 doi: 10.1130/G22711A.1
      Xu, C., Chakhmouradian, A.R., Taylor, R.N., et al., 2014.Origin of Carbonatites in the South Qinling Orogen:Implications for Crustal Recycling and Timing of Collision between the South and North China Blocks.Geochimica et Cosmochimica Acta, 143:189-206. https://doi.org/10.1016/j.gca.2014.03.041
      Xu, C., Kynick, J., Song, W.L., et al., 2018.Cold Deep Subduction Recorded by Remnants of a Paleoproterozoic Carbonated Slab.Nature Communications, 9:2790. https://doi.org/10.1038/s41467-018-05140-5
      Xu, C., Kynick, J., Tao, R.B., et al., 2017.Recovery of an Oxidized Majorite Inclusion from Earth's Deep Asthenosphere.Science Advances, 3(4):e1601589. https://doi.org/10.1126/sciadv.1601589
      Xu, C., Zeng, L., Song, W.L., et al., 2017.Orogenic Carbonatite Petrogenesis and Deep Carbon Recycle.Bulletin of Mineralogy, Petrology and Geochemistry, 36(2):213-221, 183 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201702004
      Zack, T., Moraes, R., Kronz, A., 2004.Temperature Dependence of Zr in Rutile:Empirical Calibration of a Rutile Thermometer.Contributions to Mineralogy and Petrology, 148(4):471-488. https://doi.org/10.1007/s00410-004-0617-8
      Zeng, L., Xu, C., Li, Y.X., et al., 2017.Petrogenesis and Tectonic Implication of Paleoproterozoic Granites and Granulites in the Fengzhen Area of North China Craton.Precambrian Research, 302:298-311. https://doi.org/10.1016/j.precamres.2017.10.015
      Zhang, Q., Zhai, M.G., 2012.What is the Archean TTG? Acta Petrologica Sinica, 28(11):3446-3456 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201211002
      Zhao, G.C., Sun, M., Wilde, S.A., et al., 2004.A Paleo-Mesoproterozoic Supercontinent:Assembly, Growth and Breakup.Earth-Science Reviews, 67(1-2):91-123. https://doi.org/10.1016/j.earscirev.2004.02.003
      Zhao, G.C., Sun, M., Wilde, S.A., et al., 2005.Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited.Precambrian Research, 136(2):177-202. https://doi.org/10.1016/j.precamres.2004.10.002
      Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 2001.Archean Blocks and Their Boundaries in the North China Craton:Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution.Precambrian Research, 107(1):45-73.doi: 10.1016/S0301-9268(00)00154-6
      Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 2002.SHRIMP U-Pb Zircon Ages of the Fuping Complex:Implications for Late Archean to Paleoproterozoic Accretion and Assembly of the North China Craton.American Journal of Science, 302(3):191-226. https://doi.org/10.2475/ajs.302.3.191
      Zhou, L.G., Zhai, M.G., Lu, J.S., et al., 2017.Paleoproterozoic Metamorphism of High-Grade Granulite Facies Rocks in the North China Craton:Study Advances, Questions and New Issues.Precambrian Research, 303:520-547. https://doi.org/10.1016/j.precamres.2017.06.025
      郭敬辉, 翟明国, 张毅刚, 等, 1993.怀安蔓菁沟早前寒武纪高压麻粒岩混杂岩带地质特征、岩石学和同位素年代学.岩石学报, 9(4):329-341. doi: 10.3321/j.issn:1000-0569.1993.04.007
      李三忠, 戴黎明, 张臻, 等, 2015.前寒武纪地球动力学(Ⅲ):前寒武纪地质基本特征.地学前缘, 22(6):27-45. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201506005.htm
      许成, 曾亮, 宋文磊, 等, 2017.造山带碳酸岩起源与深部碳循环.矿物岩石地球化学通报, 36(2):213-221, 183. doi: 10.3969/j.issn.1007-2802.2017.02.004
      张旗, 翟明国, 2012.太古宙TTG岩石是什么含义?岩石学报, 28(11):3446-3456. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201211002
    • 加载中
    图(5)
    计量
    • 文章访问数:  5313
    • HTML全文浏览量:  2274
    • PDF下载量:  109
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-06-28
    • 刊出日期:  2019-04-15

    目录

      /

      返回文章
      返回