• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    样品保存过程中降解对GDGTs环境代用指标的影响

    张佳皓 裴宏业 赵世锦 李越 杨欢

    张佳皓, 裴宏业, 赵世锦, 李越, 杨欢, 2020. 样品保存过程中降解对GDGTs环境代用指标的影响. 地球科学, 45(1): 317-329. doi: 10.3799/dqkx.2018.319
    引用本文: 张佳皓, 裴宏业, 赵世锦, 李越, 杨欢, 2020. 样品保存过程中降解对GDGTs环境代用指标的影响. 地球科学, 45(1): 317-329. doi: 10.3799/dqkx.2018.319
    Zhang Jiahao, Pei Hongye, Zhao Shijin, Li Yue, Yang Huan, 2020. The Impact of Degradation on the Tetraether-Based Proxies during the Sample Storage. Earth Science, 45(1): 317-329. doi: 10.3799/dqkx.2018.319
    Citation: Zhang Jiahao, Pei Hongye, Zhao Shijin, Li Yue, Yang Huan, 2020. The Impact of Degradation on the Tetraether-Based Proxies during the Sample Storage. Earth Science, 45(1): 317-329. doi: 10.3799/dqkx.2018.319

    样品保存过程中降解对GDGTs环境代用指标的影响

    doi: 10.3799/dqkx.2018.319
    基金项目: 

    国家自然科学基金项目 41602189

    国家自然科学基金项目 41330103

    详细信息
      作者简介:

      张佳皓(1994-), 女, 硕士研究生, 主要从事地质微生物研究

      通讯作者:

      杨欢

    • 中图分类号: P59

    The Impact of Degradation on the Tetraether-Based Proxies during the Sample Storage

    • 摘要: 微生物细胞膜脂甘油二烷基甘油四醚(GDGTs)样品在实验室冰箱储存过程中可能会遭受降解,进而对GDGTs各指标应用的准确性产生影响.了解GDGTs各类化合物抗降解能力的差异能够为指标的准确应用提供重要的判别手段.2017年,通过对2012年的石笋样品提取物(GDGTs)进行二次测试,发现GDGTs化合物绝对含量明显减少且各化合物的相对含量变化明显:细菌brGDGTs含量相对于古菌isoGDGTs含量变化较小,对应的干旱化指标Ri/b值略有减小,陆源输入指数BIT值增大,故细菌brGDGTs化合物在保存过程中更稳定;古菌isoGDGTs含环少的化合物变化较小,环化指数CBT值增加,表明少环的化合物在降解过程中更稳定;基于古菌isoGDGTs建立的古温度指标TEX86值显著降低;基于细菌brGDGTs建立的甲基化指数MBT值增加,表明甲基越多的化合物越易降解.

       

    • 图  1  GDGTs分子结构图及质子化后的质核比(m/z

      Fig.  1.  The structures of GDGTs and their protonated mass to charge ratio (m/z)

      图  2  采样点和尚洞地理位置(a),和尚洞口(b),HS4石笋(c)

      Fig.  2.  Map of China showing the sampling location in this study (a), the entrance of Heshang Cave (b) and the HS4 stalagmite (c)

      图  3  所有样品中各GDGTs化合物平均含量(a)和平均相对含量(b)的变化

      Fig.  3.  Changes in the average absolute (a) and the average relative abundances (b) of GDGTs for all the samples analyzed

      图  4  GDGTs各化合物含量主成分分析图

      a、b分别为石笋样品古菌isoGDGTs组分含量主成分分析图和化合物载荷图(loading);c、d分别石笋样品细菌brGDGTs组分含量主成分分析图和化合物载荷图(loading).图a和c中绿色圆点代表的是2012年样品数据点,蓝色圆点代表2017年样品数据点,红色小箭头代表了从2012年到2017年数据的变化方向和趋势.a和c中箭头指向实际上代表了图b和d中化合物含量变化趋势.

      Fig.  4.  Principal component analysis diagram of GDGTs

      图  5  GDGTs温度指标2017年数据与2012年数据之差(a~c)及利用MBT/CBT重建的温度值变化情况(d)

      a.∆TEX86(2017年与2012年数据之差);b.∆MBT(2017年与2012年数据之差);c.∆CBT(2017年与2012年数据之差);d.利用公式(6)计算的温度值变化情况(2017年与2012年数据之差).图a~d中黑线为0,两条虚线为误差线-0.02~0.02

      Fig.  5.  The difference in GDGT-based proxies (a-c) and the difference in temperature reconstructed from MBT/CBT (d) between the 2017 data set and 2012 data set

      图  6  2017年与2012年的BIT变化差值∆BIT(a),和Ri/b变化差值∆Ri/b(b)

      图中黑线为0,两条虚线为误差线-0.02~0.02

      Fig.  6.  The difference in BIT (a) and Ri/b (b) between the 2017 data set and 2012 data set

      表  1  2012年测试获得的石笋样品中各化合物占总GDGTs百分比

      Table  1.   The percentage of each GDGT compound in total GDGTs fromstalagmite samplesin the 2012 data set

      样品名称 样品编号 GDGT-0 GDGT-1 GDGT-2 GDGT-3 Crenarchaeol Crenarchaeol' Ia Ib Ic IIa IIb IIc IIIa IIIb IIIc
      HS4-112 1 0.10 0.11 0.08 0.08 0.60 0.02 0.14 0.07 0.01 0.27 0.23 0.03 0.18 0.04 0.02
      HS4-9 2 0.09 0.09 0.09 0.08 0.62 0.03 0.14 0.04 0.01 0.33 0.13 0.02 0.30 0.02 0.02
      HS4-15 3 0.09 0.10 0.08 0.08 0.62 0.03 0.15 0.07 0.02 0.27 0.22 0.03 0.18 0.04 0.03
      HS4-71 4 0.10 0.10 0.09 0.07 0.60 0.04 0.15 0.04 0.01 0.39 0.15 0.01 0.24 0.02 0.01
      HS4-198 5 0.10 0.11 0.10 0.08 0.60 0.02 0.10 0.09 0.04 0.13 0.33 0.09 0.10 0.04 0.07
      HS4-83 6 0.09 0.10 0.08 0.08 0.62 0.02 0.14 0.05 0.01 0.31 0.20 0.02 0.21 0.04 0.02
      HS4-204 7 0.12 0.09 0.09 0.07 0.59 0.03 0.12 0.09 0.03 0.20 0.31 0.07 0.11 0.04 0.04
      HS4-179 8 0.11 0.11 0.09 0.08 0.59 0.02 0.15 0.08 0.02 0.20 0.27 0.04 0.14 0.06 0.04
      HS4-144 9 0.10 0.10 0.08 0.08 0.59 0.03 0.13 0.04 0.01 0.37 0.10 0.02 0.30 0.02 0.01
      HS4-165 10 0.10 0.10 0.09 0.08 0.60 0.03 0.14 0.08 0.02 0.22 0.28 0.04 0.12 0.05 0.04
      HS4-128 11 0.11 0.10 0.09 0.08 0.59 0.03 0.13 0.07 0.01 0.28 0.22 0.03 0.21 0.04 0.02
      HS4-30 12 0.10 0.10 0.09 0.08 0.60 0.02 0.15 0.07 0.01 0.29 0.18 0.03 0.21 0.03 0.03
      HS4-86 13 0.10 0.11 0.08 0.08 0.61 0.02 0.13 0.07 0.01 0.29 0.22 0.02 0.19 0.05 0.03
      HS4-52 14 0.11 0.11 0.10 0.08 0.58 0.03 0.15 0.06 0.01 0.36 0.14 0.02 0.22 0.01 0.02
      HS4-196 15 0.11 0.11 0.10 0.07 0.59 0.02 0.11 0.08 0.03 0.22 0.28 0.04 0.13 0.05 0.05
      HS4-21 16 0.10 0.11 0.09 0.08 0.60 0.02 0.15 0.06 0.01 0.33 0.17 0.03 0.19 0.03 0.03
      HS4-77 17 0.10 0.11 0.09 0.08 0.60 0.03 0.15 0.03 0.01 0.38 0.13 0.01 0.26 0.02 0.01
      HS4-120 18 0.10 0.11 0.09 0.09 0.59 0.03 0.13 0.08 0.02 0.23 0.27 0.05 0.14 0.04 0.03
      HS4-175 19 0.11 0.12 0.10 0.08 0.57 0.02 0.10 0.16 0.02 0.13 0.32 0.07 0.09 0.05 0.06
      HS4-64 20 0.10 0.11 0.09 0.08 0.60 0.03 0.12 0.08 0.01 0.29 0.20 0.03 0.19 0.03 0.04
      HS4-174 21 0.11 0.11 0.09 0.07 0.60 0.02 0.16 0.06 0.02 0.19 0.30 0.05 0.12 0.06 0.05
      HS4-130 22 0.09 0.10 0.09 0.08 0.61 0.03 0.13 0.06 0.01 0.26 0.23 0.03 0.20 0.05 0.02
      HS4-168 23 0.12 0.12 0.09 0.09 0.56 0.02 0.14 0.05 0.01 0.25 0.21 0.02 0.24 0.05 0.03
      HS4-132 24 0.09 0.09 0.08 0.08 0.62 0.03 0.14 0.05 0.01 0.32 0.17 0.02 0.25 0.03 0.01
      HS4-16 25 0.09 0.10 0.09 0.08 0.60 0.03 0.14 0.07 0.01 0.29 0.20 0.03 0.19 0.03 0.03
      HS4-60 26 0.10 0.09 0.10 0.07 0.59 0.05 0.15 0.04 0.00 0.43 0.09 0.01 0.26 0.01 0.01
      HS4-119 27 0.11 0.11 0.09 0.09 0.58 0.02 0.13 0.10 0.02 0.24 0.26 0.04 0.14 0.04 0.04
      下载: 导出CSV

      表  2  2017年测试获得的石笋样品中各化合物占总GDGTs百分比

      Table  2.   The percentage of each GDGT compound in total GDGTs fromstalagmite samplesin the 2017 data set

      样品名称 样品编号 GDGT-0 GDGT-1 GDGT-2 GDGT-3 Crenarchaeol Crenarchaeol' Ia Ib Ic IIa IIb IIc IIIa IIIb IIIc
      HS4-112 1 0.16 0.13 0.14 0.10 0.45 0.02 0.19 0.07 0.01 0.27 0.21 0.03 0.16 0.03 0.02
      HS4-9 2 0.13 0.10 0.12 0.08 0.53 0.03 0.20 0.04 0.01 0.34 0.12 0.02 0.24 0.02 0.01
      HS4-15 3 0.13 0.11 0.12 0.09 0.53 0.02 0.22 0.07 0.02 0.26 0.18 0.03 0.16 0.03 0.02
      HS4-71 4 0.14 0.12 0.09 0.07 0.54 0.04 0.17 0.05 0.01 0.39 0.14 0.00 0.23 0.01 0.00
      HS4-198 5 0.12 0.11 0.10 0.09 0.55 0.02 0.11 0.08 0.05 0.15 0.30 0.09 0.11 0.05 0.05
      HS4-83 6 0.13 0.12 0.09 0.09 0.56 0.02 0.18 0.06 0.00 0.29 0.18 0.03 0.19 0.04 0.02
      HS4-204 7 0.14 0.10 0.09 0.07 0.57 0.03 0.13 0.07 0.03 0.20 0.31 0.08 0.11 0.04 0.03
      HS4-179 8 0.13 0.12 0.11 0.08 0.54 0.02 0.17 0.07 0.02 0.21 0.26 0.03 0.14 0.06 0.04
      HS4-144 9 0.15 0.12 0.09 0.08 0.53 0.03 0.18 0.04 0.01 0.37 0.09 0.02 0.26 0.02 0.01
      HS4-165 10 0.12 0.12 0.09 0.08 0.57 0.03 0.16 0.09 0.02 0.21 0.28 0.04 0.11 0.05 0.04
      HS4-128 11 0.13 0.11 0.08 0.08 0.56 0.03 0.16 0.08 0.01 0.28 0.21 0.03 0.18 0.03 0.01
      HS4-30 12 0.12 0.13 0.10 0.08 0.55 0.02 0.19 0.07 0.02 0.29 0.17 0.03 0.17 0.04 0.02
      HS4-86 13 0.13 0.12 0.10 0.08 0.55 0.02 0.16 0.05 0.01 0.30 0.22 0.02 0.17 0.05 0.02
      HS4-52 14 0.14 0.12 0.09 0.07 0.55 0.03 0.22 0.05 0.00 0.39 0.14 0.00 0.20 0.00 0.00
      HS4-196 15 0.13 0.12 0.10 0.08 0.56 0.02 0.13 0.08 0.03 0.24 0.26 0.05 0.14 0.03 0.03
      HS4-21 16 0.12 0.12 0.11 0.08 0.55 0.02 0.15 0.05 0.02 0.33 0.16 0.03 0.19 0.03 0.03
      HS4-77 17 0.14 0.13 0.08 0.09 0.55 0.00 0.16 0.03 0.00 0.27 0.17 0.09 0.18 0.00 0.00
      HS4-120 18 0.14 0.12 0.09 0.08 0.54 0.03 0.16 0.09 0.00 0.24 0.26 0.05 0.14 0.03 0.03
      HS4-175 19 0.13 0.12 0.09 0.09 0.54 0.02 0.16 0.07 0.03 0.18 0.30 0.05 0.11 0.05 0.04
      HS4-64 20 0.15 0.12 0.11 0.08 0.52 0.03 0.19 0.03 0.00 0.23 0.11 0.01 0.21 0.02 0.18
      HS4-174 21 0.14 0.14 0.10 0.08 0.53 0.02 0.19 0.07 0.03 0.19 0.27 0.05 0.10 0.06 0.04
      HS4-130 22 0.12 0.11 0.09 0.09 0.57 0.03 0.15 0.07 0.01 0.27 0.23 0.03 0.18 0.04 0.02
      HS4-168 23 0.15 0.14 0.09 0.09 0.51 0.02 0.17 0.06 0.01 0.26 0.21 0.02 0.20 0.04 0.03
      HS4-132 24 0.13 0.12 0.09 0.08 0.55 0.03 0.16 0.06 0.01 0.32 0.17 0.02 0.22 0.03 0.01
      HS4-16 25 0.14 0.12 0.10 0.08 0.53 0.03 0.20 0.05 0.00 0.31 0.18 0.00 0.21 0.06 0.00
      HS4-60 26 0.13 0.10 0.10 0.08 0.56 0.04 0.17 0.04 0.00 0.44 0.09 0.00 0.26 0.00 0.00
      HS4-119 27 0.13 0.12 0.10 0.09 0.54 0.02 0.18 0.08 0.02 0.24 0.25 0.04 0.13 0.03 0.03
      下载: 导出CSV

      表  3  石笋样品GDGTs各指标值

      Table  3.   GDGT-based proxies for the stalagmite samples

      样品名称 样品编号 TEX86 MBT CBT BIT Ri/b
      2012年 2017年 2012年 2017年 2012年 2017年 2012年 2017年 2012年 2017年
      HS4-112 1 0.63 0.66 0.22 0.27 0.13 0.20 0.63 0.70 0.57 0.34
      HS4-9 2 0.68 0.70 0.19 0.25 0.43 0.52 0.61 0.78 0.77 0.40
      HS4-15 3 0.66 0.67 0.23 0.31 0.17 0.28 0.35 0.45 1.78 1.53
      HS4-71 4 0.67 0.63 0.19 0.23 0.47 0.46 0.62 0.66 0.79 0.79
      HS4-198 5 0.63 0.65 0.23 0.25 -0.26 -0.18 0.09 0.13 4.72 4.89
      HS4-83 6 0.65 0.62 0.20 0.24 0.26 0.30 0.54 0.56 0.92 0.94
      HS4-204 7 0.69 0.65 0.23 0.23 -0.10 -0.07 0.28 0.36 1.31 1.38
      HS4-179 8 0.63 0.62 0.25 0.26 0.00 0.06 0.23 0.30 2.86 2.21
      HS4-144 9 0.66 0.63 0.18 0.23 0.53 0.62 0.72 0.76 0.52 0.48
      HS4-165 10 0.67 0.63 0.24 0.27 0.00 0.01 0.34 0.40 1.58 1.30
      HS4-128 11 0.66 0.63 0.21 0.25 0.15 0.18 0.57 0.70 0.79 0.46
      HS4-30 12 0.65 0.60 0.23 0.29 0.24 0.29 0.40 0.56 1.65 0.94
      HS4-86 13 0.64 0.63 0.20 0.22 0.16 0.23 0.40 0.51 1.54 1.14
      HS4-52 14 0.65 0.62 0.22 0.27 0.41 0.52 0.52 0.64 1.17 0.84
      HS4-196 15 0.63 0.62 0.22 0.24 -0.03 0.05 0.11 0.16 5.99 4.71
      HS4-21 16 0.64 0.64 0.22 0.23 0.32 0.36 0.43 0.52 1.46 1.14
      HS4-77 17 0.65 0.56 0.22 0.24 0.17 0.23 0.42 0.56 1.44 0.73
      HS4-120 18 0.65 0.62 0.24 0.25 0.00 0.07 0.48 0.55 0.93 0.84
      HS4-175 19 0.64 0.63 0.28 0.26 -0.30 -0.24 0.16 0.25 2.93 2.56
      HS4-64 20 0.67 0.64 0.19 0.25 0.51 0.75 0.68 0.69 0.64 0.55
      HS4-174 21 0.62 0.59 0.25 0.29 0.00 0.05 0.25 0.32 2.34 1.94
      HS4-130 22 0.68 0.66 0.20 0.23 0.12 0.15 0.63 0.68 0.57 0.51
      HS4-168 23 0.62 0.60 0.20 0.24 0.19 0.22 0.57 0.58 0.87 0.89
      HS4-132 24 0.67 0.64 0.19 0.23 0.32 0.33 0.80 0.84 0.29 0.25
      HS4-16 25 0.66 0.65 0.22 0.23 0.19 0.38 0.31 0.47 2.25 1.50
      HS4-60 26 0.71 0.68 0.19 0.20 0.64 0.65 0.67 0.74 0.71 0.54
      HS4-119 27 0.65 0.63 0.24 0.28 0.02 0.10 0.31 0.44 1.93 1.31
      下载: 导出CSV
    • Beck, J. W., Zhou, W. J., Li, C., et al., 2018. A 550, 000-Year Record of East Asian Monsoon Rainfall from 10Be in Loess. Science, 360(6391):877-881. https://doi.org/10.1126/science.aam5825
      Dang, X. Y., Yang, H., Naafs, B. D. A., et al., 2016. Evidence of Moisture Control on the Methylation of Branched Glycerol Dialkyl Glycerol Tetraethers in Semi-Arid and Arid Soils. Geochimica et Cosmochimica Acta, 189:24-36. https://doi.org/10.1016/j.gca.2016.06.004
      Ding, W. H., Yang, H., He, G. Q., et al., 2013. Effects of Oxidative Degradation by Hydrogen Peroxide on Tetraethers-Based Organic Proxies. Quaternary Sciences, 33(1):39-47 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201301005
      Hoefs, M. J. L., Rijpstra, W. I. C., Sinninghe Damsté, J. S., 2002. The Influence of Oxic Degradation on the Sedimentary Biomarker Record I:Evidence from Madeira Abyssal Plain Turbidites. Geochimica et Cosmochimica Acta, 66(15):2719-2735. https://doi.org/10.1016/s0016-7037(02)00864-5
      Hopmans, E. C., Weijers, J. W. H., Schefuß, E., et al., 2004. A Novel Proxy for Terrestrial Organic Matter in Sediments Based on Branched and Isoprenoid Tetraether Lipids. Earth and Planetary Science Letters, 224(1-2):107-116. https://doi.org/10.1016/j.epsl.2004.05.012
      Hu, C. Y., Henderson, G. M., Huang, J. H., et al., 2008. Quantification of Holocene Asian Monsoon Rainfall from Spatially Separated Cave Records. Earth and Planetary Science Letters, 266(3-4):221-232. https://doi.org/10.1016/j.epsl.2007.10.015
      Huguet, A., Fosse, C., Laggoun-Défarge, F., et al., 2013. Effects of a Short-Term Experimental Microclimate Warming on the Abundance and Distribution of Branched GDGTs in a French Peatland. Geochimica et Cosmochimica Acta, 105(3):294-315. https://doi.org/10.1016/j.gca.2012.11.037
      Huguet, C., de Lange, G. J., Gustafsson, Ö., et al., 2008. Selective Preservation of Soil Organic Matter in Oxidized Marine Sediments (Madeira Abyssal Plain). Geochimica et Cosmochimica Acta, 72(24):6061-6068. https://doi.org/10.1016/j.gca.2008.09.021
      Huguet, C., Hopmans, E. C., Febo-Ayala, W., et al., 2006. An Improved Method to Determine the Absolute Abundance of Glycerol Dibiphytanyl Glycerol Tetraether Lipids. Organic Geochemistry, 37(9):1036-1041. https://doi.org/10.1016/j.orggeochem.2006.05.008
      Huguet, C., Kim, J. H., de Lange, G. J., et al., 2009. Effects of Long Term Oxic Degradation on the U37K', TEX86 and BIT Organic Proxies. Organic Geochemistry, 40(12):1188-1194. https://doi.org/10.1016/j.orggeochem.2009.09.003
      Jia, G. D., Rao, Z. G., Zhang, J., et al., 2013. Tetraether Biomarker Records from a Loess-Paleosol Sequence in the Western Chinese Loess Plateau. Frontiers in Microbiology, 4:1-9. https://doi.org/10.3389/fmicb.2013.00199
      Lengger, S. K., Kraaij, M., Tjallingii, R., et al., 2013. Differential Degradation of Intact Polar and Core Glycerol Dialkyl Glycerol Tetraether Lipids upon Post-Depositional Oxidation. Organic Geochemistry, 65:83-93. https://doi.org/10.1016/j.orggeochem.2013.10.004
      Liu, W. G., Wang, H. Y., Zhang, C. L., et al., 2013. Distribution of Glycerol Dialkyl Glycerol Tetraether Lipids Along an Altitudinal Transect on Mt. Xiangpi, Ne Qinghai-Tibetan Plateau, China. Organic Geochemistry, 57(4):76-83. https://doi.org/10.1016/j.orggeochem.2013.01.011
      Loomis, S. E., Russell, J. M., Sinninghe Damsté, J. S., 2011. Distributions of Branched GDGTs in Soils and Lake Sediments from Western Uganda:Implications for a Lacustrine Paleothermometer. Organic Geochemistry, 42(7):739-751. https://doi.org/10.1016/j.orggeochem.2011.06.004
      Luo, G. M., Yang, H., Algeo, T. J., et al., 2019. Lipid Biomarkers for the Reconstruction of Deep-Time Environmental Conditions. Earth-Science Reviews, 189:99-124. https://doi.org/10.1016/j.earscirev.2018.03.005
      Peterse, F., Prins, M. A., Beets, C. J., et al., 2011. Decoupled Warming and Monsoon Precipitation in East Asia over the Last Deglaciation. Earth and Planetary Science Letters, 301(1-2):256-264. https://doi.org/10.1016/j.epsl.2010.11.010
      Powers, L., Werne, J. P., Vanderwoude, A. J., et al., 2010. Applicability and Calibration of the TEX86 Paleothermometer in Lakes. Organic Geochemistry, 41(4):404-413. https://doi.org/10.1016/j.orggeochem.2009.11.009
      Robinson, S. A., Ruhl, M., Astley, D. L., et al., 2017. Early Jurassic North Atlantic Sea-Surface Temperatures from TEX86 Palaeothermometry. Sedimentology, 64(1):215-230. https://doi.org/10.1111/sed.12321
      Schouten, S., Hopmans, E. C., Schefuß, E., et al., 2002. Distributional Variations in Marine Crenarchaeotal Membrane Lipids:A New Tool for Reconstructing Ancient Sea Water Temperatures? Earth and Planetary Science Letters, 204(1-2):265-274. https://doi.org/10.1016/s0012-821x(02)00979-2
      Schouten, S., Hopmans, E. C., Sinninghe Damsté, J. S., 2004. The Effect of Maturity and Depositional Redox Conditions on Archaeal Tetraether Lipid Palaeothermometry. Organic Geochemistry, 35(5):567-571. https://doi.org/10.1016/j.orggeochem.2004.01.012
      Schouten, S., Hopmans, E. C., Sinninghe Damsté, J. S., 2013. The Organic Geochemistry of Glycerol Dialkyl Glycerol Tetraether Lipids:A Review. Organic Geochemistry, 54:19-61. https://doi.org/10.1016/j.orggeochem.2012.09.006
      Sinninghe Damsté, J. S., Hopmans, E. C., Pancost, R. D., et al., 2000. Newly Discovered Non-Isoprenoid Glycerol Dialkyl Glycerol Tetraether Lipids in Sediments. Chemical Communications, (17):1683-1684. https://doi.org/10.1039/b004517i
      Sinninghe Damsté, J. S., Rijpstra, W. I. C., Reichart, G. J., 2002. The Influence of Oxic Degradation on the Sedimentary Biomarker Record II. Evidence from Arabian Sea Sediments. Geochimica et Cosmochimica Acta, 66(15):2737-2754. https://doi.org/10.1016/s0016-7037(02)00865-7
      Tang, C. Y., Yang, H., Dang, X. Y., et al., 2017. Comparison of Paleotemperature Reconstructions Using Microbial Tetraether Thermometers of the Chinese Loess-Paleosol Sequence for the Past 350 000 Years. Science China Earth Sciences, 60(6):1159-1170. https://doi.org/10.1007/s11430-016-9035-y
      Tierney, J. E., Russell, J. M., 2009. Distributions of Branched GDGTs in a Tropical Lake System:Implications for Lacustrine Application of the MBT/CBT Paleoproxy. Organic Geochemistry, 40(9):1032-1036. https://doi.org/10.1016/j.orggeochem.2009.04.014
      Verschuren, D., Sinninghe Damsté, J. S., et al., 2009. Half-Precessional Dynamics of Monsoon Rainfall near the East African Equator. Nature, 462(7273):637-641. https://doi.org/10.1038/nature08520
      Wang, H. Y., Liu, W. G., Zhang, C. L., et al., 2013. Branched and Isoprenoid Tetraether (BIT) Index Traces Water Content along Two Marsh-Soil Transects Surrounding Lake Qinghai:Implications for Paleo-Humidity Variation. Organic Geochemistry, 59:75-81. https://doi.org/10.1016/j.orggeochem.2013.03.011
      Wang, M. D., Liang, J., Hou, J. Z., et al., 2016. Distribution of GDGTs in Lake Surface Sediments on the Tibetan Plateau and Its Influencing Factors. Science China Earth Sciences, 59(5):961-974. https://doi.org/10.1007/s11430-015-5214-3
      Weijers, J. W. H., Schouten, S., Sluijs, A., et al., 2007a. Warm Arctic Continents during the Palaeocene-Eocene Thermal Maximum. Earth and Planetary Science Letters, 261(1-2):230-238. https://doi.org/10.1016/j.epsl.2007.06.033
      Weijers, J. W. H., Schouten, S., van den Donker, J. C., et al., 2007b. Environmental Controls on Bacterial Tetraether Membrane Lipid Distribution in Soils. Geochimica et Cosmochimica Acta, 71(3):703-713. https://doi.org/10.1016/j.gca.2006.10.003
      Weijers, J. W. H., Schouten, S., Spaargaren, O. C., et al., 2006. Occurrence and Distribution of Tetraether Membrane Lipids in Soils:Implications for the Use of the TEX86 Proxy and the BIT Index. Organic Geochemistry, 37(12):1680-1693. https://doi.org/10.1016/j.orggeochem.2006.07.018
      Weijers, J. W. H., Steinmann, P., Hopmans, E. C., et al., 2011. Bacterial Tetraether Membrane Lipids in Peat and Coal:Testing the MBT-CBT Temperature Proxy for Climate Reconstruction. Organic Geochemistry, 42(5):477-486. https://doi.org/10.1016/j.orggeochem.2011.03.013
      Wu, W. C., Ruan, J. P., Ding, S., et al., 2014. Source and Distribution of Glycerol Dialkyl Glycerol Tetraethers along Lower Yellow River-Estuary-Coast Transect. Marine Chemistry, 158:17-26. https://doi.org/10.1016/j.marchem.2013.11.006
      Xie, S. C., Huang, X. Y., Yang, H., et al., 2013. An Overview on Microbial Proxies for the Reconstruction of Past Global Environmental Change. Quaternary Sciences, 33(1):1-19 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201301001
      Xie, S. C., Pancost, R. D., Chen, L., et al., 2012. Microbial Lipid Records of Highly Alkaline Deposits and Enhanced Aridity Associated with Significant Uplift of the Tibetan Plateau in the Late Miocene. Geology, 40(4):291-294. https://doi.org/10.1130/g32570.1
      Yang, G. F., Chen, Z. H., Zhang, H. J., et al., 2018.Paleoclimatic Variations in Ningjinpo Area since Late Pleistocene as Indicated by n-Alkanes. Earth Science, 43(11):4001-4007 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201811016
      Yang, H., Ding, W. H., Zhang, C. L., et al., 2011. Occurrence of Tetraether Lipids in Stalagmites:Implications for Sources and GDGT-Based Proxies. Organic Geochemistry, 42(1):108-115. https://doi.org/10.1016/j.orggeochem.2010.11.006
      Yang, H., Pancost, R. D., Dang, X. Y., et al., 2014a. Correlations between Microbial Tetraether Lipids and Environmental Variables in Chinese Soils:Optimizing the Paleo-Reconstructions in Semi-Arid and Arid Regions. Geochimica et Cosmochimica Acta, 126:49-69. https://doi.org/10.1016/j.gca.2013.10.041
      Yang, H., Pancost, R. D., Tang, C. Y., et al., 2014b. Distributions of Isoprenoid and Branched Glycerol Dialkanol Diethers in Chinese Surface Soils and a Loess-Paleosol Sequence:Implications for the Degradation of Tetraether Lipids. Organic Geochemistry, 66:70-79. https://doi.org/10.1016/j.orggeochem.2013.11.003
      Yang, H., Pancost, R. D., Jia, C. L., et al., 2016. The Response of Archaeal Tetraether Membrane Lipids in Surface Soils to Temperature:A Potential Paleothermometer in Paleosols. Geomicrobiology Journal, 33(2):98-109. https://doi.org/10.1080/01490451.2014.1002956
      Zhang, C. L., Wang, J. X., Wei, Y. L., et al., 2012. Production of Branched Tetraether Lipids in the Lower Pearl River and Estuary:Effects of Extraction Methods and Impact on bGDGT Proxies. Frontiers in Microbiology, 2:1. https://doi.org/10.3389/fmicb.2011.00274
      Zhang, H. J., Yang, G. F., Chen, Z. H., et al., 2018. Distribution of n-Alkane Indicative of Paleoclimatic Change in Paleolake of Yanqing, Beijing. Earth Science, 43(11):4120-4127 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201811027
      Zheng, Y. H., Pancost, R. D., Liu, X. D., et al., 2017. Atmospheric Connections with the North Atlantic Enhanced the Deglacial Warming in Northeast China. Geology, 45(11):1031-1034. https://doi.org/10.1130/g39401.1
      丁伟华, 杨欢, 何钢强, 等, 2013.实验模拟氧化条件对微生物四醚脂的环境替代指标的影响.第四纪研究, 33(1):39-47. doi: 10.3969/j.issn.1001-7410.2013.01.05
      谢树成, 黄咸雨, 杨欢, 等, 2013.示踪全球环境变化的微生物代用指标.第四纪研究, 33(1):1-19. doi: 10.3969/j.issn.1001-7410.2013.01.01
      杨桂芳, 陈正洪, 张慧娟, 等, 2018.宁晋泊晚更新世以来气候变化的正构烷烃分子记录.地球科学, 43(11): 4001-4007. doi: 10.3799/dqkx.2018.575
      张慧娟, 杨桂芳, 陈正洪, 等, 2018.北京延庆古湖正构烷烃分布特征及古气候意义.地球科学, 43(11):4120-4127. doi: 10.3799/dqkx.2018.512
    • 加载中
    图(6) / 表(3)
    计量
    • 文章访问数:  3217
    • HTML全文浏览量:  927
    • PDF下载量:  50
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-08-19
    • 刊出日期:  2020-01-15

    目录

      /

      返回文章
      返回