Fluid-Rock Interactions and Reservoir Formation Driven by Multiscale Structural Deformation in Basin Evolution
-
摘要: 以往的流体-岩石作用研究,主要针对中小尺度的非构造应变机制,制约了盆地中大尺度客观规律的认识.从盆地形成演化动力学视角,梳理了盆地尺度构造驱动的流体-岩石作用的概念模型或工作模式,并结合典型实例,解析和讨论了构造-流体-岩石作用的关键过程、控制要素以及成储效应.对比研究表明,构造驱动的碳酸盐岩和碎屑岩的流体-岩石作用,无论类型、强度和分布均存在显著不同.对于碳酸盐岩储层,即便是弱应变阶段,与微裂缝有关的扩溶及充填-胶结作用在构造圈闭范围内也具有普遍意义.反观碎屑岩(砂岩),弱应变阶段发育了特征的变形条带及其构造成岩演变序列;而强应变将可能导致深层碎屑岩(微)裂缝及其相关构造-流体-岩石作用的发育,并可能在相当程度上改善储集性.研究表明,流体介质压力环境的强烈更变、应力/应变改造岩矿稳定性、以及流体-岩矿反应界面和空间的快速/强烈更变,是构造驱动流体-岩石作用研究的关键.Abstract: Fluid-rock interactions in sedimentary basins have been focused on the non-structural genetic mechanisms on medium and small scales in most papers published, which has constrained the understanding of the objective laws on basin-scale. The conceptual models or working modes of fluid-rock interactions driven by structural deformation (FRIDSD) in sedimentary basin evolution are presented in this paper. Conbined with the typical cases on carbonate and clastic reservoirs studied, key processes, control factors and reservoir-forming effects of FRIDSD are analysed and discussed. It is indicated that there are significant differences of FRIDSD between carbonates and sandstones in the type, intensity and distribution, exist between carbonates and sandstones. For carbonate reservoirs, it cannot be neglected that, even in weak structural deformation, dissolution and filling-cementation of carbonates related to a lot of microcracks also develop over structural traps. On the other hand, for clastic (sandstone) reservoirs, diagnostic deformation bands and their related structural diagenesis, with few microcracks, develop in weak structural deformation. However, intensive structural deformation most probably makes more (micro-) cracks and promotes FRIDSD in sandstones, which may also improve the deep-buried reservoir property to a certain extent. It is pointed out that key problems of FRIDSD mainly include intensive change of fluid pressure, petrological-mineral stabilities modified by strain, intensive/rapid change of reactive surface and volume on fluid-rock interactions.
-
0. 引言
孔隙流体异常压力是沉积盆地普遍存在的现象,地层压力演化与油气的生成、运移、聚集具有密切关系,对油气成藏过程具有重要影响(Powley,1990;Guo et al., 2016;刘华等,2020;Liu et al., 2022).据不完全统计,全球180多个沉积盆地中发育超压,其中约有160个盆地的油气聚集与超压有重要关系(Hunt,1990;杜栩等,1995).含油气盆地超压成因机制复杂,主要包括欠压实、流体膨胀,构造挤压和压力传递等作用,其中流体膨胀机制主要包括水热增压,有机质生烃作用以及粘土矿物脱水(Hunt,1990;Osborne and Swarbrick, 1997;Bowers,2002).对于非挤压型盆地,欠压实和有机质生烃作用可以独立形成大规模超压.据郝芳(2005)统计,在中国含油气超压盆地中,这两种超压成因机制占比约86%.超压成因机制准确识别是研究盆地超压与油气成藏的关键,针对不同成因机制超压,压力预测方法与压力演化过程不同,超压与油气成藏特征及分布规律亦存在差异.
莺歌海盆地位于中国南海西北部,是我国最为重要的含油气超压盆地之一.盆地中央底辟带乐东区迄今已发现乐东A-1、乐东A-2等浅层气田以及乐东A-3和乐东A-4等浅层含气构造.底辟区超压顶界面埋深最浅仅1 480 m,埋深在2 000 m附近的地层压力系数超过1.5.中新世以来的较高沉积速率和厚层海相泥质沉积导致的压实不均衡被认为是莺歌海组超压主要成因机制(朱芳冰,2000;冯冲等,2013).底辟区浅层渗透性地层发育的强超压为深部高温高压流体注入而发生超压传递引起(Luo et al., 2003;Jin et al., 2021).盆地具高地温梯度高热流值,水热增压作用也被认为是一种可能的超压成因机制(殷秀兰等,2000;周文等,2014).莺歌海盆地超压成因机制复杂,以往研究多局限于对盆地内可能的超压成因机制的定性判断,但均缺少可靠证据,对莺歌海组超压成因机制尚无统一的定论.针对底辟作用以及生烃作用对浅层泥岩超压发育相关研究甚少,缺乏各类型超压相对贡献量的定量化评价.因此,本文将以莺歌海盆地中央底辟带乐东区莺歌海组泥岩地层为研究对象,利用测井、声波速度-密度交会图、地层测试、地球化学以及盆地模拟分析,综合判识盆地超压成因机制和分布规律,定量评价不同成因超压贡献量,揭示莺歌海盆地底辟区流体压力传递和生烃作用对泥岩超压的贡献,为莺歌海盆地压力预测、压力演化研究以及下阶段油气勘探开发部署提供参考和技术支撑.
1. 区域地质概况
莺歌海盆地是我国南海北部海域的一个新生代转换-伸展盆地,盆地面积约为11×104 km2,呈北西-南东向菱形展布(龚再升等,1997).盆地东北侧毗邻北部湾盆地和海南隆起区,东侧沿1号断裂与琼东南盆地分隔,西侧与越南昆嵩隆起相接,在构造上莺歌海盆地可以划分为莺东斜坡带、中央坳陷带、莺西斜坡带3个一级构造单元(图 1).新生代最大沉积厚度超过17 km,最大沉积速率为1.4 mm/a,具快速沉积充填特征(Huang et al., 2003;李绪深等,2020).莺歌海组岩性以灰色泥岩夹薄层砂岩和粉砂岩,黄流组为灰色块状砂岩与灰色泥岩,砂岩储集体发育,中新统梅山组和三亚组以浅海-半深海厚层泥岩为主,被认为是中央底辟带气田的主要烃源岩(黄保家等,2010;Tong et al., 2015).盆地在右旋走滑伸展张应力的区域构造地质背景和快速沉积充填的巨厚欠压实海相泥岩作用下,泥-流体底辟构造发育.底辟构造走向呈近南北走向、北西走向和北东走向的长条形和近圆形,呈5排近南北向的雁行式排列,底辟构造分布位置与超压发育深度和强度具有明显的相关性(何家雄等,2006;韩光明等,2012).新生代3期拉张事件使莺歌海盆地地温梯度逐渐升高,新近系地温梯度平均值为4.04 ℃/100 m,最高为5.56 ℃/ 100 m,热流值平均为77.8±7.2 mW/m2,最大热流值为95 mW/m2(Yang and Huang, 2019).
2. 储层实测压力特征
渗透性砂岩地层实测地层压力数据是地层超压的直接反映,钻杆测试(DST)、重复地层测试(RFT)和标准动态测试(MDT)是获取地层原始压力信息的常见测试方法.莺歌海盆地中央底辟带乐东区钻井较少,共统计12口钻井144个有效测压数据(图 2),结果显示乐东组不发育超压,埋藏深度小于1 650 m的储层均为常压,压力系数在1.0~1.2.莺歌海组一段实测压力数据揭示储层发育超压,实测地层压力为13.55~42.92 MPa,压力系数介于0.99~1.95,最大剩余压力达20.97 MPa,属于常压-强超压.莺歌海组地层压力分布复杂,超压顶板埋深浅,层位新,浅层发育强超压,不同底辟构造区域,同一层位相同深度段附近实测地层压力差异明显.
3. 超压成因分析
3.1 泥岩超压测井响应特征
声波速度和电阻率对超压具有良好的响应,超压可导致岩石颗粒间的有效应力降低,从而降低声波速度(Hermanrud et al., 1998;何生等,2009).欠压实超压表现为异常高声波时差、低电阻率和低密度特征,而流体膨胀作用形成的超压表现为异常高声波时差和低电阻率,密度基本保持正常趋势(Teige et al., 1999;郭小文,2011;赵靖舟等,2017).本文选取了莺歌海盆地中央底辟带不同构造单元的2口典型超压井,利用声波时差、电阻率、密度和井径资料研究超压纵向上测井响应特征.井径数据用以检验井眼条件,局部低密度现象可能受扩径的影响(Tingay et al., 2009).采用Eaton(1972)方法预测泥岩孔隙流体压力,计算公式如下:
P=P0−(P0−Ph)(ΔtnΔti)N, (1) 式中:$ {P}_{0} $为静岩压力,MPa;$ {P}_{h} $为静水压力,MPa;$ \Delta {t}_{i} $为实测声波时差,μs/ft;$ \Delta {t}_{n} $为相应深度正常趋势声波时差,μs/ft;N为伊顿指数,通过泥岩预测压力和实测压力对比获取.对比研究区多口钻井莺歌海组预测地层压力和实测值确定Eaton指数取值为3.0.泥岩声波时差正常压实趋势采用指数关系式对常压数据进行逐井拟合,拟合关系如下:
Δtn=Δt0×e(−a×h), (2) 式中:$ \Delta {t}_{0} $为地表声波时差,μs/ft;h为深度,m;a为拟合系数.
莺歌海盆地单井泥岩声波时差、电阻率、密度、井径和预测的地层压力与深度关系显示(图 3),在超压段泥岩声波时差、电阻率和密度随深度变化规律与正常压力泥岩相比具有明显差异.浅层常压段泥岩声波时差随深度的增加而减小,电阻率和密度随深度增加而增加.A1和B1井超压段泥岩声波时差随深度增加而显著偏大,电阻率和密度随深度增加而偏小,具明显的低密度,指示泥岩具有欠压实特征.泥岩流体压力预测结果显示,泥岩声波时差偏离正常趋势幅度越大,泥岩超压越强,泥岩密度偏离正常趋势幅度越大,欠压实作用也越明显.A1井莺歌海组一段超压泥岩声波时差和密度偏离正常趋势幅度最大,泥岩地层压力发生突变,缺少压力过渡带.莺歌海组二段泥岩密度基本保持不变而声波时差由110 μs/ft迅速升高至165 μs/ft,指示泥岩中发育强超压,反映莺二段存在非欠压实成因机制超压作用.综合超压测井响应特征及预测压力结果识别出超压顶界面深度分别为2 050 m和1 800 m.钻井结果显示莺歌海组发育大套巨厚泥岩沉积物,最大单层泥岩厚度达466 m,莺歌海组一段泥质含量介于73.33%~90.98%,莺歌海组二段泥质含量介于81.68%~99.49%.计算莺歌海组一段沉积速率范围在1 000~1 400 m/Ma,莺歌海组二段沉积速率介于900~1 200 m/Ma,具快速沉积埋藏特征,是形成欠压实的有利地质环境.
3.2 声波速度-密度关系
泥岩声波速度-密度交会图也是一种超压成因识别的有效方法,该方法在渤海湾盆地沾化凹陷和惠民凹陷、准噶尔盆地阜康凹陷以及西湖凹陷等区域超压成因识别研究中取得了良好效果(Li et al., 2019;侯志强等,2019;宫亚军等,2021;Hua et al., 2021).本文根据声波时差和密度测井资料,建立莺歌海盆地中央底辟带不同构造单元钻井泥岩声波速度-密度关系(图 4),结果显示莺一段超压数据点主要位于加载曲线上,A1井莺一段下段存在部分超压数据点偏离加载曲线,指示其超压成因主要是欠压实作用,局部还存在流体膨胀或传递作用超压;而莺二段超压数据明显偏离加载曲线位于卸载曲线附近,反映莺二段泥岩存在明显的流体膨胀或传递作用超压.
3.3 粘土矿物转化
成岩作用过程中蒙脱石晶体结构中含有丰富的层间水,蒙脱石脱水释放的层间水可使孔隙流体体积增加,从而使地层流体压力增加(Bruce,1984).莺歌海盆地泥岩中粘土矿物主要由蒙脱石(S)、伊利石(I)、伊蒙混层(I/S)、高岭石(K)以及绿泥石(C)组成,蒙脱石含量整体较低,在20%~30%之间.A1井在1 500 m发生粘土矿物异常转化,混层比由70%迅速减小至15%,伊利石含量保持不变(图 5b,5c).异常转化深度界面上下地层流体性质差异明显,异常转化界面之下CO2含量在75.17%~90.02%,δ13CO2大于-10‰,为典型的无机成因CO2.研究认为乐东底辟区CO2气体属于壳源无机成因,为深部碳酸盐岩矿物的热分解运移至浅层(Huang et al., 2005).因此,A1井粘土矿物发生异常转换为深部热流体垂向侵入引起.A1井粘土矿物转换深度远小于超压顶界面深度,表明粘土矿物转化对超压贡献不明显.B1井蒙脱石、伊利石以及混层比随着埋深的增加基本保持不变,粘土矿物转换作用微弱,超压顶界面以下反而出现蒙脱石含量略微增加,伊利石含量减小的现象(图 5g,5h).整体而言,莺歌海盆地莺歌海组粘土矿物转化对盆地地层超压发育贡献不明显.
3.4 泥岩地球化学参数
实测有机碳含量(TOC)、成熟度(Ro)和氢指数(HI)随深度变化关系显示(图 6),莺歌海组泥岩有机碳含量整体偏低,平均值为0.45%,部分样品TOC值超过0.60%.烃源岩生烃门限(Ro=0.5%)深度大约为2 000 m,在2 800 m处烃源岩进入中等成熟演化阶段(Ro=0.70%).莺歌海组实测氢指数值普遍介于10~100 mg/g,莺二段部分样品氢指数超过100 mg/g,最大可达231.81 mg/g.对比A1和B1井有机碳含量和氢指数与超压发育关系,两井莺歌海组超压段泥岩有机碳含量整体偏低,集中分布在0.35%~0.55%,A1井莺二段实测TOC值普遍超过0.5%(图 5d,5i).A1井莺歌海组氢指数值相对较高,介于50~120 mg/g,B1井莺歌海组氢指数值较低,在50 mg/g左右(图 5e,5j).莺歌海盆地单井超压顶界面深度小于生烃门限深度,泥岩有机质丰度及成熟度低,与强超压发育不具有对应关系,反映生烃作用不是莺一段泥岩超压主要成因.莺二段泥岩埋深较大,有机质成熟度高,有机碳含量和氢指数值相对偏高,生烃作用对超压发育具有一定贡献.
4. 超压贡献率定量评价
4.1 欠压实超压贡献量
地层的压实过程是不可逆的,后期孔隙流体压力增加不会促使孔隙体积增大而导致密度显著降低(Osborne and Swarbrick, 1997;郭小文等,2016).本研究基于实测泥岩密度资料的等效深度法计算欠压实作用形成的超压,选取莺歌海盆地中央底辟区位于3个不同底辟构造单元的A1、B1和C2井定量化评价欠压实超压贡献率(图 7).计算结果显示常压段采用伊顿法和等效深度法计算结果具有很好的一致性,说明两种方法能较好地预测地层压力,基于密度资料的等效深度法可以用于莺歌海盆地欠压实超压贡献率计算.A1井在莺一段开始发育超压,等效深度法计算的地层压力为27.24~40.78 MPa,伊顿法预测地层压力为38.98~54.38 MPa,最大剩余压力28.96 MPa.A1井由欠压实作用形成的超压贡献率为38%~95%,在2 200 m以上深度段欠压实超压贡献率达70%~95%,2 200 m以下深度段泥岩声波时差迅速增大,而泥岩密度值基本保持不变,计算欠压实超压贡献率迅速降低至40%左右,表明存在显著的非欠压实成因机制的超压作用.B1井在莺一段中段开始形成欠压实,等效深度法计算地层压力为19.56~33.09 MPa,伊顿法预测地层压力为20.14~39.96 MPa,最大剩余压力17.38 MPa,计算的由欠压实作用形成的超压贡献率在53.22%~100%.C2井莺二段泥岩超压发育,等效深度法计算欠压实地层压力为24.47~52.92 MPa,伊顿法预测地层压力为29.98~66.91 MPa,最大剩余压力30.96 MPa,计算的由欠压实作用形成的超压贡献率为50%~100%.3口井欠压实超压定量化评价均显示,随着埋深的增加,欠压实超压贡献率逐渐减小.
4.2 生烃增压贡献量
烃源岩生烃增压是因为高密度的干酪根转化成低密度的油和气而使孔隙流体发生膨胀的结果(Barker,1990).莺歌海盆地有机质类型以Ⅱ2-Ⅲ型为主,为混合型生源母质,具备良好的生气潜力(徐新德等,2019).本文基于烃源岩埋藏史、热史和成熟生烃史模拟基础之上,采用郭小文等(2013)腐殖型干酪根生烃增压数值模型,定量评价莺歌海组生烃增压贡献量,恢复莺歌海组烃源岩生烃演化过程.烃源岩埋藏史、热史和成熟生烃史模拟结果采用实测温度和镜质体反射率(Ro)进行校正.模拟的成熟度(Ro)和温度与实测数据吻合较好(图 8a,8d,8g),说明所采用的热史模型可靠性高.A1井成熟生烃史模拟结果显示(图 8b),莺歌海组埋藏深度在2 516 m处烃源岩在距今1.5 Ma开始生烃,但由于地层埋深浅,有机质成熟度低,泥岩生烃能力弱,模拟现今转化率仅为1.4%,模拟现今累计生气量仅1.45 mg/g TOC,累计生油量仅0.66 mg/g TOC.根据生烃增压方程计算出莺歌海组在距今1.2 Ma由生烃作用开始产生超压,在距今0.5 Ma,生烃增压作用显著增强,现今计算生烃增压量为2.37 MPa,有机质生烃作用对超压的贡献占比8.09%(图 8c).B1井完钻井深2 300 m,莺二段模拟现今转化率低于1%,生烃增压量小于0.5 MPa,生烃增压贡献率仅1.28%,生烃增压贡献可忽略不计(图 8e,8f).C2井莺歌海组钻遇深度大,成熟生烃史模拟结果显示,莺歌海组在距今2.5 Ma开始生烃,现今累计生气量为34.54 mg/g TOC,累计生油量为14.56 mg/g TOC,莺歌海组底界面模拟烃源岩转化率达到47.48%(图 8h).C2井莺歌海组底界面烃源岩在距今2.5 Ma泥岩生烃开始形成超压,在距今1.5 Ma生烃增压作用显著增强,现今计算生烃增压量为17.15 MPa,地层剩余压力33.28 MPa,有机质生烃作用对超压的贡献占比为51.53%(图 8i).
图 8 模拟温度和成熟度变化与实测值关系(a, d, g);莺歌海组成熟生烃史模拟结果(b, e, h);莺歌海组生烃增压演化(c, f, i)Fig. 8. Profiles of modeled temperature and Easy% Ro versus measured temperature and vitrinite reflectance (Ro) (a, d, g); Modeling results of the hydrocarbon generation history of Yinggehai Formation (b, e, h); The evolution of overpressure caused by hydrocarbon generation of Yinggehai Formation (c, f, i)4.3 超压传递贡献量
地层水的可压缩性很小,温度升高引起的流体体积膨胀有限且很容易通过渗漏而消散,数值模拟发现水热增压与不均衡压实相比,即使在非常不透水的岩石中(渗透率低至3.1×10-15 μm2),对产生地层超压的重要性几乎可以忽略不计(Luo and Vasseur, 1992).因此流体传递超压的大小可以由地层剩余压力减去欠压实作用和生烃增压作用形成的超压量得到.A1井位于乐东A-1底辟构造上,乐东A-1底辟构造向上刺穿莺歌海组二段地层,底辟核部发育大量的水力破裂微裂隙和断裂,在地震上表现为模糊带(图 9a);在底辟构造顶部识别出大量底辟断裂,断层倾角80°~90°之间,断距较小,微裂隙和底辟断裂可作为深部高压流体垂向运移的通道(图 9b).C2井位于乐东A-4底辟构造翼部,地震反射界面连续,微裂隙和底辟断裂不发育,缺少深部流体垂向运移通道(图 9a).
超压贡献率定量化评价结果显示,A1井莺歌海组计算欠压实超压贡献率为38%~100%,在埋藏深度为2 516 m处计算欠压实超压贡献率为40.17%,生烃增压贡献率为8.09%,欠压实成因超压量与生烃增压量远低于剩余地层压力值,由此确定出流体传递超压贡献率达51.74%.B1井位于乐东A-3底辟构造上,埋藏深度在2 300 m处地层欠压实超压量为10.81 MPa,欠压实超压贡献率55.18%,生烃增压量仅0.25 MPa,生烃增压贡献率仅1.28%,由此确定流体超压传递贡献率为43.54%.C2井莺二段底界面烃源岩生烃增压量为17.15 MPa,生烃增压贡献可达51.53%,欠压实超压贡献率为53.56%,生烃增压量和欠压实超压量与地层剩余压力相当,不存在流体传递超压的贡献.
5. 结论
(1)莺歌海盆地中央底辟带莺歌海组超压发育,实测地层压力在13.55~42.92 MPa,压力系数介于0.99~1.95,最大剩余压力达20.97 MPa,属于常压-强超压.超压泥岩表现为异常高声波时差、低电阻率和低密度,指示了莺歌海组超压泥岩具有明显欠压实特征.
(2)莺歌海盆地中央底辟带乐东区莺歌海泥岩超压成因机制包括欠压实作用、生烃增压作用以及超压传递作用3种类型,粘土矿物转化对盆地超压贡献不明显.莺一段以欠压实超压成因机制为主;莺二段为复合成因机制,除欠压实成因机制超压外,底辟区深部流体通过微裂隙和断裂而发生压力传递作用,深部成熟有机质的生烃增压作用也是一种极为重要的超压成因机制.
(3)超压贡献率定量化评价结果揭示了莺歌海盆地底辟区流体压力传递和生烃作用对泥岩超压发育具有重要贡献.乐东区泥岩欠压实超压贡献率为38%~100%,随着埋藏深度的增加,欠压实超压贡献率逐渐减小,生烃增压贡献量逐渐增大,计算莺歌海组生烃增压贡献率最大可达51.53%.底辟区深部流体通过微裂隙和断裂而发生压力传递作用对莺歌海组超压贡献率最大超过50%.
-
图 2 盆地流体活动与相关流体-岩石作用要素示意图
据李忠(2016)修改
Fig. 2. Basin fluid flow and its related key factors on fluid-rock interactions
图 3 塔中鹰山组碳酸盐胶结物原位碳-氧同位素特征
据李忠等(2016)修改
Fig. 3. Scatter diagram for in-situ isotopic values of oxygen and carbon of the Yingshan Formation carbonate cements, Tazhong
表 1 盆地构造-流体-岩石作用研究的基本分类
Table 1. The principal classification for a research on structure deformation-fluid-rock interactions in sedimentary basins
理论模型 定义 类型划分及支撑依据 实例文献 大类 亚类 种类 一级 伸展型挠曲型冲断型走滑型 盆地尺度构造-流体活动; 穿层流体影响二级以上层序 按盆地构造类型划分:主要依据数值模拟; 实际地质记录支撑较弱或缺乏 Garven(1995)
Allen and Allen (2013)强应变构造 二级 (多种组合) 盆地区带尺度构造-流体活动:一系列成因相近的构造组成 按盆地区带构造组合类型划分:主要依据实际地质记录支撑, 但支撑较弱 Davies and Smith (2007) 三级 背斜向斜正断裂逆断裂 圈闭尺度构造-流体活动:单一构造及配套要素组成 按单一构造类型划分:主要依据实际岩石-矿物-地化等地质记录支撑, 流体证据丰富 Davies and Smith (2007) 弱应变构造 一级
二级
三级扩张剪切压实 构造单元边界断裂不活动, 内部岩层总体无显著应变, 变形条带、隐形裂缝发育; 流体穿层活动弱 按应变属性划分:依据实际岩石-矿物-地化等地质记录支撑; 盆地/一级、区带/二级尺度认识较弱, 三级构造内流体证据丰富 Fossen et al.(2007)
Schultz and Fossen (2008)表 2 盆地深埋过程中构造驱动的碳酸盐岩和碎屑岩的流体-岩石作用对比
Table 2. Comparision of fluid-rock interactions driven by structure deformation between carbonates and sandstones in basin deep-buried processes
岩类 作用类型 碳酸盐岩 碎屑岩(砂岩) 压实/压溶 内生节理广泛发育, 存在破裂作用, 微裂缝及压溶局域发育 压实变形条带广泛发育 弱应变 胶结/充填 在碱性介质条件下, 可促进局域粒间胶结和裂缝充填作用 对胶结和充填作用影响不大 溶蚀/扩溶 在酸性介质条件下, 可促进局域溶蚀和裂缝扩溶作用 对溶蚀和扩溶作用影响不大 压实/压溶 破裂和压溶作用广泛发育 促进压实/压溶作用, 微裂缝局域发育, 变形条带局域保存 强应变 胶结/充填 可促进应变区域范围内的粒间胶结和裂缝充填作用、交代/云化作用 可在应变范围内或局域促进粒间胶结和裂缝充填作用 溶蚀/扩溶 可促进应变区域范围内的溶蚀和裂缝扩溶作用 可在应变范围内或局域促进溶蚀和裂缝扩溶作用 -
Agar, S., Geiger, S., Léonide, P., et al., 2013.Summary of the AAPG-SPE-SEG Hedberg Research Conference on "Fundamental Controls on Flow in Carbonates".AAPG Bulletin, 97(4):533-552.https://doi.org/10.1306/12171212229 Allen, P.A., Allen, J.R., 1990.Basin Analysis:Principles and Applications.Blackwell Scientific Publications, Cambridge, 263-308. Allen, P.A., Allen, J.R., 2013.Basin Analysis:Principles and Application to Petroleum Play Assessment.Wiley-Blackwell, Oxford. Bethke, C.M., 1985.A Numerical Model of Compaction-Driven Groundwater Flow and Heat Transfer and Its Application to the Paleohydrology of Intracratonic Sedimentary Basins.Journal of Geophysical Research, 90(B8):6817-6828.https://doi.org/10.1029/jb090ib08p06817 doi: 10.1029/JB090iB08p06817 Bjørlykke, K., 1994.Fluid-Flow Processes and Diagenesis in Sedimentary Basins.Geological Society, London, Special Publications, 78(1):127-140.https://doi.org/10.1144/gsl.sp.1994.078.01.11 http://adsabs.harvard.edu/abs/1994GSLSP..78..127B Bjørlykke, K., Egeberg, P.K., 1993.Quartz Cementation in Sedimentary Basins.AAPG Bulletin, 9(9):1538-1548.https://doi.org/10.1306/bdff8ee8-1718-11d7-8645000102c1865d Bjørlykke, K., Mo, A., Palm, E., 1988.Modelling of Thermal Convection in Sedimentary Basins and Its Relevance to Diagenetic Reactions.Marine and Petroleum Geology, 5(4):338-351.https://doi.org/10.1016/0264-8172(88)90027-x http://www.sciencedirect.com/science/article/pii/026481728890027X Davies, G.R., Smith, L.B.Jr, 2007.Structurally Controlled Hydrothermal Dolomite Reservoir Facies:An Overview:Reply.AAPG Bulletin, 91(9):1342-1344. https://doi.org/10.1306/04290707031 Dewers, T., Ortoleva, P., 1988.The Role of Geochemical Self-Organization in the Migration and Trapping of Hydrocarbons.Applied Geochemistry, 3(3):287-316.https://doi.org/10.1016/0883-2927(88)90108-4 Dickinson, W.R., 1993.Basin Geodynamics.Basin Research, 5(4):195-196.https://doi.org/10.1111/j.1365-2117.1993.tb00066.x http://d.old.wanfangdata.com.cn/Periodical/dqkx200405001 Fossen, H., Schultz, R.A., Shipton, Z.K., et al., 2007.Deformation Bands in Sandstone:A Review.Journal of the Geological Society, 164(4):755-769. https://doi.org/10.1144/0016-76492006-036 Galloway, W.E., 1984.Hydrogeologic Regimes of Sandstone Diagenesis.In: McDonald, D.A., Surdam, R.C., eds., Clastic Diagenesis.AAPG Memoir 37, America Association of Petroleum Geologists, Tulsa, 3-13. Garven, G., 1995.Continental-Scale Groundwater Flow and Geologic Processes.Annual Review of Earth and Planetary Sciences, 23(1):89-117.https://doi.org/10.1146/annurev.earth.23.1.89 doi: 10.1146/annurev.ea.23.050195.000513 Garven, G., Bull, S.W., Large, R.R., 2001.Hydrothermal Fluid Flow Models of Stratiform Ore Genesis in the McArthur Basin, Northern Territory, Australia.Geofluids, 1(4):289-311.https://doi.org/10.1046/j.1468-8123.2001.00021.x Gonçalvès, J., Violette, S., Guillocheau, F., et al., 2004.Contribution of a Three-Dimensional Regional Scale Basin Model to the Study of the Past Fluid Flow Evolution and the Present Hydrology of the Paris Basin, France.Basin Research, 16(4):569-586.https://doi.org/10.1111/j.1365-2117.2004.00243.x Han, D.L., Li, Z., Shou, J.F., 2011.Reservoir Heterogeneities between Structural Positions in the Anticline:A Case Study from Kela-2 Gas Field in the Kuqa Depression, Tarim Basin, NW China.Petroleum Exploration and Development, 38(3):282-286(in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60034-7 Ingersoll, R.V., 2012.Tectonics of Sedimentary Basins.Busby C, Azor A.Tectonics of Sedimentary Basins:Recent Advances.Wiley-Blackwell, Oxford. Ingersoll, R.V., Busby, C.J., 1995.Tectonics of Sedimentary Basins.Blackwell Science, Oxford. Land, L.S., 1997.Mass Transfer During Burial Diagenesis in the Gulf of Mexico Sedimentary Basin: An Overview.In: Montaez, I.P., Gregg, J.M., Shelton, K.L., eds., Basin-Wide Diagenetic Patterns: Integrated Petrologic, Geochemical, and Hydrologic Considerations.SEPM Special Publication 57, Tulsa, 29-39. Laubach, S.E., Eichhubl, P., Hilgers, C., et al., 2010.Structural Diagenesis.Journal of Structural Geology, 32(12):1866-1872.https://doi.org/10.13039/100006151 doi: 10.1016/j.jsg.2010.10.001 Li, S.T., 1995.Geodynamics of Sedimentary Basins-The Trend of Basin Research.Earth Science Frontiers, 2(3-4):1-8 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201807006 Li, Z., 1992.Basic Ideas and Methods of Diagenesis Study in Oil-Bearing Basin.Natural Gas Geoscience, 3(5):1-6.(in Chinese with English abstract). Li, Z., 2013.Sedimentary Basin Geodynamics in China:Advances and Frontiers during the First Decade of the 21th Century.Bulletin of Mineralogy, Petrology, and Geochemistry, 32(3):290-300 (in Chinese with English abstract). Li, Z., 2016.Research Frontiers of Fluid-Rock Interaction and Oil-Gas Formation in Deep-Buried Basins.Bulletion of Mineralogy, Petrology and Geochemistry, 35(5):807-816 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201605004 Li, Z., Chen, J.S., Guan, P., 2006a.Scientific Problems and Frontiers of Sedimentary Diagenesis Research in Oil-Gas-Bearing Basins.Acta Petrologica Sinica, 22(8):1745-1754 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200608000.htm Li, Z., Han, D.L., Shou, J.F., 2006b.Diagenesis Systems and Their Spatio-Temporal Attributes in Sedimentary Basins.Acta Petrologica Sinica, 22(8):2151-2164 (in Chinese with English abstract). Li, Z., Fei, W.H., Shou, J.F., et al., 2003.Overpressure and Fluid Flow in Dongpu Depression, North China:Constraints on Diagenesis in Reservoir Sandstones.Acta Geologica Sinica, 77(1):126-134(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXE200301023.htm Li, Z., Li, J.W., Zhang, P.T., et al., 2016.Key Structural-Fluid Evolution and Reservoir Diagenesis of Deep-Buried Carbonates:An Example from the Ordovician Yingshan Formation in Tazhong, Tarim Basin.Bulletion of Mineralogy, Petrology and Geochemistry, 35(5):827-838 (in Chinese with English abstract). Li, Z., Liu, J.Q., 2009.Key Problems and Research Trend of Diagenetic Geodynamic Mechanism and Spatio-Temporal Distribution in Sedimentary Basins.Acta Sedimentologica Sinica, 27(5):837-848 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200905009.htm Mangenot, X., Gasparrini, M., Rouchon, V., et al., 2018.Basin-Scale Thermal and Fluid Flow Histories Revealed by Carbonate Clumped Isotopes (△47)-Middle Jurassic Carbonates of the Paris Basin Depocentre.Sedimentology, 65(1):123-150. https://doi.org/10.1111/sed.12427 Manzocchi, T., Childs, C., Walsh, J.J., 2010.Faults and Fault Properties in Hydrocarbon Flow Models.Geofluids, 10(1-2):94-113.https://doi.org/10.1111/j.1468-8123.2010.00283.x doi: 10.1002/9781444394900.ch8/pdf Mao, Y.K., Zhong, D.K., Neng, Y., et al., 2015.Fluid Inclusion Characteristics and Hydrocarbons Accumulation of the Cretaceous Reservoirs in Kuqa Foreland Thrust Belt, Tarim Basin, Northwest China.Journal of China University of Mining & Technology, 44(6):1033-1042 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201506011 Moore, C.H., 2001.Carbonate Reservoirs Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework.Developments in Sedimentology Vol.55, Elsevier, New York. Pan, R., Zhu, X.M., Tan, M.X., et al., 2018.Quantitative Research on Porosity Evolution of Deep Tight Reservoir in the Bashijiqike Formation in Kelasu Structure Zone, Kuqa Depression.Earth Science Frontiers, 25(2):159-169 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201802018 Pang, X.Q., Jiang, Z.X., Huang, H.D., et al., 2014.Formation Mechanisms, Distribution Models, and Prediction of Superimposed, Continuous Hydrocarbon Reservoirs.Acta Petrolei Sinica, 35(5):795-828 (in Chinese with English abstract). Potter, P.E., Pettijohn, F.J., 1963.Basin Analysis and the Sedimentary Model.Paleocurrents and Basin Analysis.Springer, Berlin, 224-251. http://d.old.wanfangdata.com.cn/Periodical/dqkx-e201301009 Powley, D.E., 1990.Pressures and Hydrogeology in Petroleum Basins.Earth-Science Reviews, 29(1-4):215-226.https://doi.org/10.1016/0012-8252(0)90038-w http://www.sciencedirect.com/science/article/pii/001282529090038W Roure, F., Cloetingh, S., Scheck, W.M., et al., 2010.Achievements and Challenges in Sedimentary Basin Dynamics: A Review.In: Cloetingh, S., Negendank, J., eds., New Frontiers in Integrated Solid Earth Sciences. Springer, Netherlands. Schultz, R.A., Fossen, H., 2008.Terminology for Structural Discontinuities.AAPG Bulletion, 92(7):853-867. doi: 10.1306/02200807065 Siever, R., 1979.Plate-Tectonic Controls on Diagenesis.The Journal of Geology, 87(2):127-155. https://doi.org/10.1086/628405 Sun, Y.C., Li, Z., Li, H.S., et al., 1996.Diagenesis of Oil-Gas Bearing Fault Basins in Eastern China.Science Press, Beijing (in Chinese with English abstract). Suppe, J., 2014.Fluid Overpressures and Strength of the Sedimentary Upper Crust.Journal of Structural Geology, 69:481-492.https://doi.org/10.13039/501100006477 doi: 10.1016/j.jsg.2014.07.009 Tigert, V., Alshaieb, Z., 1990.Pressure Seals:Their Diagenetic Banding Patterns.Earth-Science Reviews, 29(1-4):227-240.https://doi.org/10.1016/0012-8252(0)90039-x http://www.sciencedirect.com/science/article/pii/001282529090039X Vandeginste, V., Swennen, R., Allaeys, M., et al., 2012.Challenges of Structural Diagenesis in Foreland Fold-And-Thrust Belts:A Case Study on Paleofluid Flow in the Canadian Rocky Mountains West of Calgary.Marine and Petroleum Geology, 35(1):235-251.https://doi.org/10.1016/j.marpetgeo.2012.02.014 http://www.sciencedirect.com/science/article/pii/S0264817212000529 Wang, J.P., Zhang, R.H., Zhao, J.L., et al., 2014.Characteristics and Evaluation of Fractures in Ultra-Deep Tight Sandstones Reservoir:Taking Keshen Gasfield in Tarim Basin, NW China as an Example.Natural Gas Geoscience, 25(11):1735-1745 (in Chinese with English abstract). Wang, J.P., Zhang, H.L., Zhang, R.H., et al., 2018.Enhancement of Ultra-Deep Tight Sandstone Reservoir Quality by Fractures:A Case Study of Keshen Gas Field in Kuqa Depression, Tarim Basin.Oil & Gas Geology, 39(1):77-88 (in Chinese with English abstract). Wang, Z.M., Li, Y., Xie, H.W., et al., 2016.Geological Understanding on the Formation of Large-Scale Ultra-Deep Oil-Gas Field in Kuqa Foreland Basin.China Petroleum Exploration, 21(1):37-43 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-KTSY201601006.htm Williamson, M.A., 1995.Overpressures and Hydrocarbon Generation in the Sable Sub-Basin, Offshore Nova Scotia.Basin Research, 7(1):21-34.https://doi.org/10.1111/j.1365-2117.1995.tb00092.x doi: 10.1111/bre.1995.7.issue-1 Wolf, K.H., Chilingar, G.V., 1992.Diagenesis Ⅲ.Elsevier, Amsterdam. Wolf, K.H., Chilingar, G.V., 1994.Diagenesis Ⅳ.Elsevier, Amsterdam. Worden, R.H., Benshatwan, M.S., Pott, G.J., et al., 2016.Basin-Scale Fluid Movement Patterns Revealed by Veins:Wessex Basin, UK.Geofluids, 16(1):149-174.https://doi.org/10.1111/gfl.12141 doi: 10.1111/gfl.2016.16.issue-1 Yang, X.Z., Mao, Y.K., Zhong, D.K., et al., 2016.Tectonic Compression Controls the Vertical Property Variation of Sandstone Reservoir:An Example of Cretaceous Bashijiqike Formation in Kuqa Foreland Thrust Belt, Tarim Basin.Natural Gas Geoscience, 27(4):591-599 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201604004 Zhang, H.L., Zhang, R.H., Yang, H.J., et al., 2014.Characterization and Evaluation of Ultra-Deep Fracture-Pore Tight Sandstone Reservoirs:A Case Study of Cretaceous Bashijiqike Formation in Kelasu Tectonic Zone in Kuqa Foreland Basin, Tarim, NW China.Petroleum Exploration and Development, 41(2):158-167 (in Chinese with English abstract). Zhang, Z.P., Wang, Q.C., Wang Y., et al., 2006.Brittle Structure Sequence in the Kuqa Depression and Its Implications to the Tectonic Paleostress.Earth Science, 31(3):309-316 (in Chinese with English abstract).https://doi.org/10.3321/j.issn:1000-2383.2006.03.004 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200603004 韩登林, 李忠, 寿建峰, 2011.背斜构造不同部位储集层物性差异——以库车坳陷克拉2气田为例.石油勘探与开发, 38(3):282-286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201103004 李思田, 1995.沉积盆地的动力学分析——盆地研究领域的主要趋向.地学前缘, 2(3-4):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500054555 李忠, 1992.含油气盆地成岩作用研究的基本思路及方法.天然气地球科学, 3(5):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003077121 李忠, 2013.中国的盆地动力学——21世纪开初十年的主要研究进展及前沿.矿物岩石地球化学通报, 32(3):290-300. doi: 10.3969/j.issn.1007-2802.2013.03.002 李忠, 2016.盆地深层流体-岩石作用与油气形成研究前沿.矿物岩石地球化学通报, 35(5):807-816. doi: 10.3969/j.issn.1007-2802.2016.05.001 李忠, 陈景山, 关平, 2006a.含油气盆地成岩作用的科学问题及研究前沿.岩石学报, 22(8):1745-1754. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200608001 李忠, 韩登林, 寿建峰, 2006b.沉积盆地成岩作用系统及其时空属性.岩石学报, 22(8):2151-2164. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200608005 李忠, 费卫红, 寿建峰, 等, 2003.华北东濮凹陷异常高压与流体活动及其对储集砂岩成岩作用的制约.地质学报, 77(1):126-134. doi: 10.3321/j.issn:0001-5717.2003.01.015 李忠, 李佳蔚, 张平童, 等, 2016.深层碳酸盐岩关键构造-流体演变与成岩-成储——以塔中奥陶系鹰山组为例.矿物岩石地球化学通报, 35(5):827-838. doi: 10.3969/j.issn.1007-2802.2016.05.003 李忠, 刘嘉庆, 2009.沉积盆地成岩作用的动力机制与时空分布研究若干问题及趋向.沉积学报, 27(5):837-848. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200905009.htm 毛亚昆, 钟大康, 能源, 等, 2015.库车前陆冲断带白垩系储层流体包裹体特征与油气成藏.中国矿业大学学报, 44(6):1033-1042. doi: 10.3969/j.issn.2095-2686.2015.06.025 潘荣, 朱筱敏, 谈明轩, 等, 2018.库车坳陷克拉苏冲断带深部巴什基奇克组致密储层孔隙演化定量研究.地学前缘, 25(2):159-169. http://d.old.wanfangdata.com.cn/Periodical/dxqy201802018 庞雄奇, 姜振学, 黄捍东, 等, 2014.叠复连续油气藏成因机制、发育模式及分布预测.石油学报, 35(5):795-828. http://d.old.wanfangdata.com.cn/Periodical/syxb201405001 孙永传, 李忠, 李蕙生, 等, 1996.中国东部含油气断陷盆地的成岩作用.北京:科学出版社. 王俊鹏, 张惠良, 张荣虎, 等, 2018.裂缝发育对超深层致密砂岩储层的改造作用——以塔里木盆地库车坳陷克深气田为例.石油与天然气地质, 39(1):77-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201801008 王俊鹏, 张荣虎, 赵继龙, 等, 2014.超深层致密砂岩储层裂缝定量评价及预测研究——以塔里木盆地克深气田为例.天然气地球科学, 25(11):1735-1745. doi: 10.11764/j.issn.1672-1926.2014.11.1735 王招明, 李勇, 谢会文, 等, 2016.库车前陆盆地超深层大油气田形成的地质认识.中国石油勘探, 21(1):37-43. doi: 10.3969/j.issn.1672-7703.2016.01.004 杨宪彰, 毛亚昆, 钟大康, 等, 2016.构造挤压对砂岩储层垂向分布差异的控制——以库车前陆冲断带白垩系巴什基奇克组为例.天然气地球科学, 27(4):591-599. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201604004 张惠良, 张荣虎, 杨海军, 等, 2014.超深层裂缝-孔隙型致密砂岩储集层表征与评价——以库车前陆盆地克拉苏构造带白垩系巴什基奇克组为例.石油勘探与开发, 41(2):158-167. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201402004 张仲培, 王清晨, 王毅, 等, 2006.库车坳陷脆性构造序列及其对构造古应力的指示.地球科学, 31(3):309-316.https://doi.org/10.3321/j.issn:1000-2383.2006.03.004 http://earth-science.net/WebPage/Article.aspx?id=1550 -