Large Gravity Flow Deposits in the Member 1 of Paleogene Shahejie Formation, Qikou Sag, Bohai Bay Basin
-
摘要: 陆相重力流沉积是现今油气勘探领域的研究热点.发育在歧口凹陷滨海斜坡古近系沙河街组一段的大型重力流沉积体(沉积范围达到1 700 km2)具有多物源供给、长距离搬运、多级断坡传输、沿路沉积的发育过程与沉积机理特征.以渤海湾盆地富烃凹陷-歧口凹陷的大型重力流为研究对象,在构造-高精度层序地层格架下,以"源-渠-汇"的整体过程为思路,(1)研究多物源的形成、持续供给及匹配关系;(2)分析古地貌(断控陡坡带+多级断阶坡折带)的演化,及其对沉积物搬运、堆积、发育过程的控制作用;(3)针对该重力流具有大规模、多期次的沉积特征,解剖其平面展布及空间分布、沉积模式、时空演化规律;(4)综合探讨陆相重力流沉积体的成因机制、控制因素.综上可知:(1)歧口凹陷大型陆相重力流沉积体发育受多个物源体系的影响与控制,湖盆中心的重力流沉积体与供给物源之间有明确的匹配关系.在古近系沙一段沉积时期,滨海斜坡沉积区主要受北部燕山物源区的大神堂物源、茶淀物源以及西部沧县隆起物源区的葛沽物源和小站物源4个物源共同供给,持续的物源供给使得在歧口凹陷的陆相湖盆中,发育了大规模的重力流沉积体.(2)沙一段同沉积期,歧口凹陷滨海斜坡周缘整个古地貌格局主要表现为断控陡坡带与多级断阶坡折带复合体,断控陡坡带主要发育于滨海斜坡北部,多级断阶带主要呈近东西向发育于斜坡西部.这些断坡带既是物源水下搬运通道又是沉积物堆积的可容纳空间分布区,再加上这些断坡带差异性的持续沉降,对砂分散体系和相带展布具有关键的控制作用.(3)歧口凹陷沙一段重力流沉积过程机制主要表现为重力滑塌沉积、砂质碎屑流、泥质碎屑流、浊流等多种成因,具有横向连片,纵向叠置的沉积样式.Abstract: Continental gravity flow deposition is a research hotspot in the field of oil and gas exploration.The large scale gravity flow deposits (up to 1 700 km2) that developed in the Member 1 of Shahejie Formation (Paleogene) in the Binhai slope area in the Qikou Sag shows the sedimentary characters of multiple sediment sources, long distance and multi-fault transport, and preservation along the transfer path during the sedimentary processes. This study focus on the gravity flow deposits in the oil-rich Qikou Sag in Bohai Bay Basin. Under the sequence stratigraphy framework, the source-transport path-sink processes has been discussed. The aim of this study is to ① illuminate the formation of the multiple sources, the configuration relationship between different sources, and the origin of continuous sediment supply. ② analyze the controlling and evolution of the paleogeomorphology (fault-controlling steep slope and multi-step fault slope), sediment transport, the sedimentary develop mechanism in processes. ③ focus on the distributions, sedimentary patterns and space evolution of the large scale multi-stages gravity flow deposits. ④ discuss the formation mechanism and controlling factors of the gravity flow in Qikou Sag. The conclusions include:① the gravity flow was controlled by multiple sources. During the Member 1 of Shahejie Formation, the Binhai slope was supplied by sources from four different areas that include:Dashentang source from northern Yanshan Mountain, Chadian sources, Gegu and Xiaozhan sources from western Cangxian Uplift. The continuous sediment supply allows the large scale gravity flow to be formed in the lacustrine basin. ② the paleogeomorphology of the Member 1 of Shahejie Formation in the Qikou Sag is the complex of fault-controlling steep slope and multi-step fault slope. The fault-controlling steep slope is developed in the northern part of Binhai Slope, as the multi-step fault slope is mainly developed in the orientation of west to east in the west part of Binhai Slope. The fault zones play a role as the transport paths for the sediments and also provide accumulation space for the deposits to be preserved locally. The differential subsidence of the fault slope controls the distribution of the sedimentary systems. ③ the large scale gravity flow deposits that developed in the Member 1 of Shahejie Formation in the Binhai slope area in the Qikou Sag are mainly of gravity slump deposits, sandy debris flow deposits, muddy debris flow deposits, turbidities. The gravity flow deposits spread wide laterally and overlap onto each other vertically.
-
1. 前言
1.1 重力流沉积研究现状
陆相湖盆在我国油气勘探领域占据重要地位(李思田等, 1995; 刘招君, 2003; 赵文智等, 2003; 邹才能等, 2005; 黄传炎等, 2007; Feng et al., 2010; Liu et al., 2017), 经过几十年的发展, 现已进入重大发展瓶颈期, 一方面现阶段我国很难再发现新的大的陆相勘探区域; 另一方面, 现有勘探区域发现整装高效大规模的油气存储区带的几率明显减小.近十年来, 岩性油气藏成为陆相湖盆油气田勘探的重点突破方向, 在层序地层学理论指导下, 发现了一批盆底扇和低位楔地质体(贾承造等, 2008; Sun et al., 2012; 张善文, 2012; 朱红涛等, 2018), 它们与深湖泥岩互层, 多套砂体叠置展布, 出现多套油藏叠置, 油气勘探潜力巨大, 其沉积特征控制了有利储层的分布, 因此正确认识重力流沉积特征是提高岩性油气藏预测成功率的关键, 陆相重力流沉积成为油气勘探领域的研究热点.
重力流沉积广泛发育于海相和陆相等多种沉积环境之中, 其形成条件主要包括足够的坡度和密度差、充足的物源、一定的触发机制以及足够的水深等(Reading, 1996; Kneller, 2003; Weimer and Slatt, 2004; Parsons et al., 2010; 王华等, 2015).刘招君(2003)对伊通盆地莫里青断陷双阳组发育的深湖重力流研究指出, 陆相湖盆重力流沉积体的发育受同生断层、气候变化、基准面升降以及水体条件控制.黄传炎等(2007)通过对板桥凹陷沙河街组一段重力流沉积体发育特征研究发现, 断裂陡坡带控制重力流沉积的发育类型和空间展布, 并建立了断裂陡坡带重力流沉积模式.Feng et al.(2010)对松辽盆地湖盆中心嫩江组发育的大型重力流沉积体研究发现, 古地貌坡折带的坡度变化对重力流水道的宽度、砂体厚度和规模都有影响.鲜本忠等(2016)通过对东营凹陷始新统发育的深水重力流沉积的供给体系、搬运距离以及古地貌特征等控制因素综合研究, 识别出4类9种深水重力流沉积类型.现代湖泊重力流沉积研究成果显示(Simonneau et al., 2013; Kremer et al., 2015; Sasaki et al., 2016; 张青青等, 2017), 陆相湖泊中发育的重力流受到物源体系、地貌背景以及水动力条件的影响.如Corella et al.(2016)对Geneva湖重力流沉积研究发现, 重力流块状搬运沉积不仅受到湖泊边缘坡折带类型的控制, 同时, 块状搬运沉积对重力流水道的长度、宽度以及沉积的砂体规模都有重要的影响.因此, 在陆相湖盆中, 不同的物源供给、不同的坡折带地貌背景控制下发育的重力流沉积体, 不仅其沉积类型和沉积模式有差异, 其重力流水道的砂体岩相和规模也不相同.
Richards and Bowman(1998)针对深水重力流沉积提出要从区域构造作用、海平面变化、物源供给等方面考虑深水扇沉积的控制条件.Sømme et al.(2009)从整个源-汇系统出发, 将水系发育与汇聚(剥蚀)区、浅海陆架区、大陆斜坡区以及深海盆地沉积区联为一体, 根据地貌形态、水系长短、负载大小、供给速率、地貌坡度等地貌参数, 探讨深海重力流发育特征.庞雄(2012)指出深水重力流研究应以构建三级层序地层等时格架为基础, 以识别共同控制沉积分布的陆架坡折带、三级层序界面、低位体系域等结构单元为研究思路, 充分考虑陆架坡折带以下低位体系域的沉积物来源、输送体系与沉积体的响应关系, 建立"源-沟-扇"的沉积结构脉络关系.
1.2 重力流沉积研究的技术与方法现状
物源分析、地貌恢复与沉积特征识别是重力流沉积综合研究的重要内容(Weimer and Slatt, 2004; Robertson and Alongi, 2013; Sømme et al., 2013; 林畅松等, 2015).沉积岩的矿物组分、主量元素组成等被广泛用于判别物源的构造背景和母岩类型, 如Dickinson(1983)提出的三角图解, Bhatia(1985)提出的砂岩主量元素源区图解等.新的现代分析测试技术的出现, 大大丰富了沉积物物源研究的手段, 如磷灰石裂变径迹(AFT)低温热年代学研究和碎屑锆石U-Pb年代学研究已成为研究盆地构造热演化、隆升时代、隆升速率、源区示踪等最为简捷、有效的工具(Amelin et al., 1999; Martínez et al., 2012; Xie and Mann, 2014).地球物理技术的发展在物源体系、古地貌恢复、砂体精细刻画上显示出强大的实用性, 高分辨率的三维地震数据为地下三维沉积体的形态分析提供了有效的手段和方法, 尤其是在刻画错综复杂的水下河道沉积体系、物源通道等方面(Posamentier, 2001; Zeng, 2001; Abreu et al., 2003; Zhao et al., 2014).比如Posmentier(2001)利用地震属性成功识别出2个牛轭湖.(1)如今物源体系分析, 更是多种方法的综合应用, 采用构造格架及宏观古地貌区分物源区与沉积区, 根据碎屑矿物组合特征划分物源区块, 依据地震反射特征勾绘物源在盆内进积方向, 地层倾角测井则指示了古水流的方向, 利用砂体等厚图和砂地比等值线图、以及三维地震数据等各种技术, 可精细刻画物源分支(Kolla et al., 2001; Cartwright and Huuse, 2005; 黄传炎等, 2009; 操应长等, 2011; Zeng et al., 2001).(2)古地貌恢复采用定量的"回剥"分析技术, 通过计算盆地的沉降量, 定量恢复盆地发育某一时期的原始地貌形态, 然后结合盆地的构造、层序地层学和沉积体系的分析确立原始古地貌特征, 再应用三维地震数据实现古地貌特征的恢复(王敏芳等, 2006; Lin et al., 2009; Hubbard et al., 2011; 陈树光等, 2015).(3)沉积特征分析首先借助传统方法如岩心观察、镜下识别、测井曲线特征等开展基础地质分析, 再借助分频处理、90°相位转换、属性优选、地层切片、钻井约束反演等地球物理方法对砂体和沉积体系进行识别和精细刻画, 并预测有利岩性油气圈闭(朱筱敏等, 2013; Zhao et al., 2014; Zhu et al., 2014).
2. 区域地质概况
我国东部地区陆相断陷盆地较为发育, 断陷盆地的构造变形强烈, 控制着油气藏的形成和分布(童晓光和牛嘉玉, 1989; 云金表等, 1994; 解建民, 1995; 王伟锋等, 1999; 付广和刘江涛, 2006; Lu et al., 2017; Wang Y S et al., 2017).黄骅坳陷位于渤海湾盆地中部, 是古近纪以来形成的新生代伸展盆地, 坳陷内以伸展构造为主, 并发育有与之相关的伸展变换构造.伸展构造多期活动, 产生了正断层控制的半地堑、地堑和半地垒、地垒, 伸展变换带以纵向位移变换带、横向凸起变换带为主特征, 控制了伸展断层组合和沉积凹陷的展布和发育, 盆地整体具有"南北分块, 东西分带"的特征(林畅松, 2006; 何书等, 2008).
歧口凹陷位于黄骅坳陷中部, 是黄骅坳陷内重要的富油气凹陷之一, 南起埕宁隆起, 北至北大港潜山构造带, 西到孔店构造带, 东临歧口沿岸带, 是黄骅坳陷新生代以来长期继承发育的大型生油凹陷(蒲秀刚等, 2007; Chen et al., 2011, 2012).歧口凹陷总体上体现了凹陷西部三隆夹三凹, 东部以歧口主凹为主要负构造单元的整体格局, 次凹均呈北部陡而深, 南部缓而浅的箕状不对称形态, 具有"西断东超"、"北断南超"的特点(王华等, 2009; Wang H et al., 2017).以凹陷中部为界, 西部断层主要为南西-北东走向, 东部断层有整体转变为东西走向的趋势(图 1).受海陆差异沉降, 滨海海域正向与洼陷构造单元之间整体表现为一近东西向继承性发育被断层复杂化的大型坡折带, 深浅构造差异大, 斜坡占整个歧口凹陷总平面面积的70%(周立宏等, 2011).古近系自下而上依次接受了孔店组、沙河街组和东营组的巨厚沉积, 受西部、北部古物源及古地貌等综合因素影响, 该区砂体储层具沉积类型多、横向变化快的特点(Chen et al., 2011, 2012).在歧口凹陷低斜坡区沙一下层段发现大规模远岸水下扇沉积体, 大量薄层砂岩堆积于深湖泥岩之中, 形成沉积体前端尖灭的砂泥互层, 易于形成大规模岩性圈闭.以歧中断层为界, 滨海海域南北储层分布具有一定的差异, 其中北部近源储层发育, 南部储层薄, 油气藏具有高油低气、北气南油的总体特点.
3. 研究思路与方法路线
本研究以渤海湾盆地歧口凹陷大型重力流砂体为研究对象, 在高精度层序地层格架基础上, 运用层序地层学、沉积学、地震沉积学、储层地质学以及开发地质等理论和技术方法(图 2), 利用钻井、岩心、测井、地震以及地化资料, 开展重力流沉积体研究(Jin et al., 2013, 2014).借助岩石矿物学分析划分物源区, 通过地震反射、沟-谷控制等分析, 借助三维地震资料, 精细刻画物源搬运路径, 理清大型重力流沉积体发育的物源汇聚与搬运机理(Zhao et al., 2018); 恢复研究区古地貌, 识别地貌成因类型; 计算构造沉降量, 明确各断坡带沉降差异, 总结古地貌演化规律; 综合应用岩心、钻井、地震、地化和古生物等资料, 建立歧口凹陷滨海斜坡古近系沙一段高精度层序地层格架; 在等时地层格架的约束下, 通过沉积古环境研究、单井相分析、连井剖面对比、微相识别、空间匹配与垂向演化分析, 总结滨海斜坡大型重力流沉积体的沉积特征, 探讨其主控因素, 总结成因机制, 最终建立该类陆相大型重力流沉积体的沉积模式(Chen et al., 2014a, 2014b).
(1) 大型陆相重力流沉积体物源供给体系分析方法:利用传统的物源体系研究方法与现代分析测试手段相结合、地质与地球学研究相结合的研究方法, 开展滨海斜坡沙一段大型重力流沉积体物源体系分析.①地质学研究方法.开展碎屑组分、重矿物含量、粘土矿物含量、沉积物粒度等岩石矿物分析; 编制砂岩厚度、百分率含量图、地层厚度图等平面图进行分析.②地球物理学研究方法.在等时层序地层格架内开展地震反射外部形态、内部结构特征描述, 如前积反射结构、下切谷或水下侵蚀特征的识别、判别物源体系的展布及物源输送路径.
(2) 控制发育大型陆相重力流沉积体的构造古地貌恢复分析方法:①在构造背景分析的基础上, 根据断层组合样式分析, 识别坡折带类型和组合样式, 建立各特定微地貌形态.②结合沉积特征以及物源体系分析, 综合探讨构造古地貌对沉积物分散体系的控制作用.
(3) 大型陆相重力流沉积体的沉积特征分析方法:①通过钻井资料(岩心、古生物、测井曲线)的观察与分析, 建立单井高精度层序地层格架; 通过井间对比, 开展连井剖面上的层序地层学分析; 井震结合, 开展骨干地震剖面层序地层学研究; 利用高精度地震资料, 借助削截、上超、顶超、下超等地震反射现象, 识别层序界面, 进行地震层序地层解释; 开展歧口凹陷沙一段层序地层精细解释与闭合工作, 建立歧口凹陷沙一段高精度等时层序地层格架.②通过岩心相分析(岩性、沉积结构、沉积构造识别与描述)、测井相分析(测井曲线形态、幅度、连续性、光滑程度等特征描述)、地震相分析(地震反射外部形态、内部结构等特征描述)、单井岩性组合特征和旋回分析, 沉积物粒度分析, 判别歧口凹陷沙一段滨海斜坡各级坡折带发育的重力流沉积体类型和沉积微相组合, 总结其宏观和微观识别标志, 并对比各自差异性.
4. 结果与讨论
在歧口凹陷滨海斜坡发育的沉积范围约1 700 km2的陆相大型重力流沉积体, 伴随着大物源的持续供给与长距离搬运、盆内特殊的古地貌控制与传输、沉积物大范围堆积的动态沉积演化过程, 此大型重力流沉积体的成因机制是物源供给、地貌控制、及沉积物堆积的整体系统过程.
4.1 大型陆相重力流沉积体的沉积特征和空间展布
歧口凹陷滨海斜坡沙一段大型陆相重力流沉积体的沉积过程主要包括:沉积物被长距离搬运、沿路沉积、三角洲前缘砂体的持续滑塌、大范围堆积, 最终在湖盆中心形成大规模多期叠置的陆相重力流沉积体.沉积物长距离搬运的主体机制包括重力流(重力滑塌与浊流)和牵引流.
4.1.1 歧口凹陷典型岩心、单井沉积特征分析
岩心相是识别沉积体系类型最直观、最具说服力的、最可有效判别沉积体系的证据.它们既可以以单个岩心成因标志解释沉积环境, 也可以借助平面分区来说明沉积环境和沉积作用的异同性.在建立的高精度层序地层格架下, 结合构造古地貌分析, 利用岩心、钻井、地化、录井以及地震等资料, 识别了沉积相类型, 划分了沉积相带, 通过分析陆相重力流水道-扇体匹配关系以及空间分布特征、时空演化, 结合歧口凹陷滨海斜坡沙一段沉积期的古气候、古水深、古水动力等沉积古环境背景及控制因素, 最终建立陆相重力流水道-扇体沉积模式.通过开展相标志分析, 识别沉积微相.歧口凹陷滨海斜坡沙一段的重力流岩心沉积特征主要表现为重力滑塌沉积、砂质碎屑流、浊流等多种成因的重力流沉积体类型; 沉积体内部构成、岩性与岩相组合、垂向序列和叠加特征主要为薄层的粉砂岩与薄层泥岩互层, 包含多种重力滑塌变形构造、块状构造、漂浮的泥岩碎屑与撕裂变形构造及鲍马序列等(图 3).图 3a可见大量混杂泥砾, 图 3b中可见沉积大量砂砾岩, 磨圆较好, 分选中等, 且一定程度上呈定向排列, 块状构造, 图 3c中可见灰色细砂岩中夹杂大量的深黑色撕裂状泥砾, 呈块状构造.以上都属于砂质碎屑流特征, 普遍具有块状构造, 漂浮的泥岩碎屑的特点.图 3d、3e中可见发育大量塑性变形构造, 夹杂深黑色撕裂状泥砾, 为滑塌作用所形成, 发育大量同沉积变形(塑性形变)构造.图 3f属浊积岩, 可见多期鲍马序列的AB段重复发育.由上述特征可以看出, 图 3a、3b、3c是具有丰富的物源供给以及较强的水动力环境下所形成的砂质碎屑流, 多发育于盆地底部, 可形成厚层、分布广泛的优质储层.图 3d, 3e发育大量滑塌变形构造, 指示断层活动作用导致了高度差的迅速变化和坡度的突变, 沉积物快速堆积多发育在碎屑流的上部.图 3f多见平行层理和递变层理, 指示了高流态、物源充足和快速堆积的形成过程.
图 3 歧口凹陷典型岩心沉积特征分析a~c.砂质碎屑流:块状构造, 漂浮的泥岩碎屑与撕裂变形构造.d~e.滑塌变形, 发育大量同沉积变形(塑性形变).f.浊积岩.鲍马序列a(3 410.12 m)、b(3 399.55 m), 块状构造沉积大量砾岩, 磨圆好, 分选中等, 且呈定向排列, 呈块状构造.c(3 295.00 m), 灰色细砂岩中夹杂大量的深黑色撕裂状泥砾, 呈块状构造; d(3 294.60 m), 发育大量塑性变形构造, 且夹杂撕裂状深黑色泥砾, 呈包卷层理; e(3 307.86 m), 呈滑塌变形构造.f(3 404.27 m), 呈平行层理, 多期鲍马序列的AB段重复发育Fig. 3. Typical core sediment features of the in Qikou Sag对歧口凹陷钻井的自然伽玛(GR)、自然电位(SP)和视电阻率(RT)曲线的形状、幅度、光滑程度以及顶底接触关系等特征进行研究, 将测井曲线按组合特征进行分区, 不同的组合特征在空间上的展布对划分沉积相带具有指示意义.电阻曲线与伽马曲线特征主要为箱形-钟形曲线组合, 反映了长期持续发育的较强水动力环境, 可能为三角洲平原的测井曲线响应.沙河街组自下段至上段依次发育扇三角洲、湖泊三角洲、湖泊等, 且自下而上砂岩减少泥岩增多.图 4中可见G4井沙一中亚段和上亚段、东二段, 岩心段和测井曲线综合判断为远岸水下扇的内扇部分.远岸水下扇的单井沉积特征主要表现为薄层的粉砂岩与薄层泥岩互层, 典型井见A1井岩相及曲线特征(图 5), 视电阻曲线与自然伽马曲线高频齿化, 外形以树状为主, 沉积微相主要发育远岸水下扇体的主水道、水道侧缘、水道间等, 陆相重力流水道-扇体直接沉积在深湖泥岩中, 形成以砂泥薄互层为主的沉积序列.远岸水下扇的主水道微相储层物性最好, 其次为水道侧缘, 储层物性最差的是浊积席状砂; 而对储层粒度和岩相分析发现, 主水道微相粒度相对较粗且泥质含量较低, 主要为石英和长石, 石英含量达到35%, 长石含量最高达到52%, 据岩相分析, 似乎岩相特征控制了优质储层分布.对A1井沙一下亚段优质储层岩性颗粒研究发现, 碎屑颗粒发育网状微裂缝, 而这些微裂缝明显提高了油气渗流能力, 从而改善了砂岩储层物性特征, 裂缝控制了A1井的优质储层分布.
4.1.2 平面沉积特征及其展布规律分析
(1) 岩石颜色分区.碎屑岩的颜色可为沉积体系的判别提供重要的依据.以岩石氧化色厚度百分比为基础, 编制了歧口凹陷沙一段岩石颜色分区图(图 6).仅由氧化色百分含量判断出的环境是一种优势环境, 表示同沉积期或者后期剥蚀阶段以氧化作用为主, 同沉积阶段的氧化色则是重要的暴露标志.从氧化色平面图分布来看, 氧化色所占比例在30%的区域主要分布在北部区域、南部局部及东北小范围, 研究区沙河街组一段水深可能较小.
(2) 物源-重矿物分析.物源分析和重矿物分析旨在了解物源的主要来源与方向、物源的数量和每个物源体系对盆地腹地的影响范围.它不仅有助于揭示储集砂体的空间展布规律, 而且对于阐明沉积体系的发育特征等方面具有重要作用.物源体系的研究方法较多(Dickinson, 1985; Haughton et al., 1991; McLennan et al., 1993; Sambridge and Compston, 1994; Morton and Hurst, 1995; 焦养泉和周海民, 1998; Johnson and Winter, 1999; 和钟铧等, 2001; 赵俊兴等, 2001; 王家豪等, 2003), 任何一种研究方法在独立判别物源体系的过程中均具有一定的局限性和多解性(Taylor and McLennan, 1985; 王华等, 2009).
对歧口凹陷古近系沙河街组的物源体系研究综合利用了多种单因素-砂分散体系、重矿物、岩石颜色与有机地化、地震相与地震属性、微观标志、古构造、古地貌等, 系统地对歧口凹陷古近系的沙河街组的物源体系作了分析.重矿物分析主要是对重矿物组成成分、ZTR指数和稳定系数等的研究, 是研究凹陷物源区的重要手段.重矿物直方图分区特征能大致反映泛歧口凹陷物源个数、影响范围以及物源区母岩性质等.在靠近物源区, 不同的重矿物组合代表不同的物源体系, 同时表明各自物源区母岩的岩性特征; 在远离物源区, 沉积物在搬运、磨蚀、溶解等作用下进一步改造, 重矿物组合趋于稳定, 不同的重矿物组合仍能大致反应不同的物源体系, 但已基本不能反应母岩岩性特征.ZTR指数和稳定系数是指示物源区的两个重要指标, 其在平面上的变化规律可判断沉积物搬运距离的远近, 进而推断物源方向.对歧口凹陷沙一段中下亚段的重矿物进行分析, 重矿物类型包括锆石、金红石、电气石、石榴石、钛磁铁矿等(图 7).根据各类重矿的类聚特征, 划分了凹陷内:石榴石+锆石、磁铁矿+石榴石、锆石+磁铁矿、石榴石+锆石+磁铁矿、石榴石+磁铁矿+锆石、石榴石+锆石+少量磁铁矿、磁铁矿+锆石+少量电气石和磁铁矿、锆石+少量石榴石、锆石+少量磁铁矿和石榴石和磁铁矿+锆石10种组合.通过这些重矿组合, 可以初步区分至少3个主要物源:来自北部的燕山物源, 来自北西的沧县物源(葛沽、小站物源)和来自南部的埕宁隆起物源.
(3) 平面沉积相展布特征.歧口凹陷古近系沙河街组表现出北部为扇三角洲及远岸水下扇沉积体系, 南部为辫状河三角洲沉积体系为主的平面沉积体系分布特征(图 8).结合岩石颜色分区及重矿分析结果, 歧口凹陷全区沙一段沉积相带平面配置与空间展布特征主要表现为:横向分布上全区至少接受了来自4个方向的物源供给, 分别是①西部的远岸水下扇及浊积体系, 以及粒屑滩、碎屑岩滩坝和灰云坪、云灰湾; ②南部受埕宁隆起物源影响的辫状河三角洲沉积体系; ③北东部的大神堂物源所发育的辫状河三角洲体系及其控制的远岸水下扇沉积体系(内扇、中扇、外扇); ④北西部发育的受沧县物源影响的扇三角洲及其控制的远岸水下扇体系(内扇、中扇、外扇), 其中后两者为歧口凹陷湖盆中心重力流沉积体的主要沉积物质来源.
图 8 歧口凹陷沙河街组一下段沉积体系展布特征据蒲秀刚等(2007)修改Fig. 8. The sedimentary facies distribution of Member 1 of Shahejie Formation in Qikou Sag4.2 大型陆相重力流沉积体的物源供给体系与古地貌控制作用
在古近系沙一段沉积时期, 滨海斜坡沉积区主要受北部燕山物源区的大神堂物源、茶淀物源以及西部沧县隆起物源区的葛沽物源和小站物源等4个物源共同供给(吴元燕等, 1996; 杨池银和周宗良, 2000; 许淑梅等, 2001; Wang, 2003; 朱筱敏等, 2007; 蒲秀刚等, 2007; 黄传炎等, 2010; 王华等, 2010; 吕琳等, 2012; 赵贤正等, 2017b), 持续的物源供给使得在歧口凹陷的陆相湖盆中发育了大规模的重力流沉积体.
滨海斜坡受唐家河构造带、驴驹河构造带以及白水头构造带中一系列东西向、北东向、北北东向断层的控制, 形成由断控陡坡带与多级断阶坡折带组成的复杂古地貌背景(Wang, 2003; 祁鹏等, 2010; Zhou et al., 2012), 这些断坡带既是物源水下搬运通道又是沉积物堆积的可容纳空间分布区, 再加上这些断坡带持续的差异性沉降, 对砂分散体系和相带展布具有关键的控制作用(陈莹等, 2006; Huang et al., 2012).沙一段同沉积期歧口凹陷的隆凹格局十分明显(图 9), 北大港潜山和南大港潜山分割板桥次凹、歧北、歧南次凹.滨海斜坡周缘整个古地貌格局主要表现为断控陡坡带与多级断阶坡折带复合体, 断控陡坡带主要发育于滨海斜坡北部, 多级断阶带主要呈近东西向发育于斜坡西部, 结合构造特征与古地貌恢复结果, 歧口凹陷构造坡折带控相控砂体系模式按照构造坡折带构型和坡折点位置分为受沟槽控砂影响的高斜坡(主要发育下伏层序的高位辫状河三角洲、本层序的低位小型下切谷、高位扇三角洲、三角洲前缘等)、受坡折控砂影响的中斜坡(主要发育低位体系域辫状河三角洲、盆底扇、湖扩体系域远岸扇、高位体系域三角洲前缘及远岸扇)和受远扇控砂影响的低斜坡(主要发育远岸扇)(图 10).分别对应沟槽控砂、坡折控砂和远扇控砂的沉积模式.
因此, 滨海斜坡发育陆相大型重力流沉积体的主要原因是:(1)从古地貌角度看, 由北部物源体系供源的断控陡坡带高度差明显, 坡度较大, 一方面断坡带之上地层的遭受剥蚀, 形成了局部物源, 进一步补充了沉积物供给; 同时伴随着的构造运动越强烈, 沉降差异越大, 断坡之下的可容纳空间越大, 因此形成的差异沉降使得断坡下部的沉积空间变大, 为沉积物提供了巨大的堆积空间.受西部物源影响的近东西走向的多级缓坡断裂带在地区内形成一定的坡度差(图 11).从西到东, 可分为一级坡折带、一级平台、二级坡折带、二级平台、三级坡折带, 分别对应了沉积相带上的滨湖区、浅湖区、半深湖-深湖区.该坡折带为具伸展型边界断裂、断阶样式坡折带, 古地貌图显示斜坡区高度差明显, 具有明显的西高东低的特点(图 11), 这样的古地貌格局为沉积物长距离的搬运提供条件, 多级断阶为沉积物的搬运提供了路径, 断阶平台及湖盆中心的差异沉降为沉积物汇聚、堆积和空间展布提供了场所, 最终在湖盆中央形成超大型的、多期叠置的薄互层沉积体(图 12).(2)从地震相方面分析, 连井剖面局部建立歧口凹陷滨海斜坡沙一段高精度层序地层格架, 在高精度三级层序格架下进行井震对比(图 11), 横向上多期砂体横向变化明显, 空间上呈明显的相互叠置关系, 箱状和高频指状曲线横向变化快, 地震上表现为中弱反射, 断续和叠置行明显.(3)从沉积体系方面, 受西部物源控制由西至东发育三角洲前缘、远岸水下扇, 同时受垂直于西部物源方向的北西物源影响, 发育轴向的透镜状三角洲前缘砂体及远岸水下扇体(朵体横向展布范围为10~20 km), 纵向上多期次相互叠置薄互层(复合叠置砂体纵向规模为10~50 m层厚)的特征十分明显(图 12).
4.3 沉积体系的源-渠-汇过程
重力流沉积的发育是从沉积物的形成、搬运再到堆积这样一个整体过程, 林畅松等(2015)指出只有把物源形成与搬运、构造作用与地貌演化以及沉积作用作为一个整体过程来研究, 才能完整地认识盆地沉积充填特征.因此, 从"源"到"汇", 综合分析制约重力流沉积体形成与发育的诸多因素, 将重力流沉积的宏观发育背景与微观沉积特征相结合研究, 通过建立多级动态"源-渠-汇"耦合系统, 突破单纯分析盆内重力流沉积体内部构成与沉积特征来认识重力流沉积体成因机制的思路局限, 这样才能正确认识重力流沉积体的堆积机制(Allen, 2008; Martinsen et al., 2010; Carvajal and Steel, 2012; Sømme et al., 2013; 徐长贵, 2013; 林畅松等, 2015; Liu et al., 2016; Zhang et al., 2016, 2018; 朱红涛等, 2017).从"源"上说, 多物源的持续供给, 致使在歧口凹陷滨海斜坡古近系沙河街组一段发育了罕见的大型重力流沉积体, 沉积范围达到约1 700 km2.从"渠"上说, 在盆内物源的汇聚和特殊的古地貌控制与演化作用下, 沉积物的搬运过程机制主要为砂质碎屑流、泥质碎屑流、重力滑塌作用和经典的浊流沉积(蒲秀刚等, 2014).从"汇"上说, 沉积物持续堆积这一复杂演化过形成了歧口凹陷大型的重力流沉积体.因此歧口凹陷大型重力流模式可概括为多物源供给、长距离搬运、多级断坡带传输、沿路沉积、湖盆汇聚.
4.4 陆相重力流砂体储层表征探讨
渤海湾盆地歧口凹陷滨海斜坡区古近系沙河街组一段发育的大型重力流沉积体, 受多个物源共同供给并被长距离搬运, 与深湖相泥岩互层堆积, 形成源储一体、多层系岩性油气藏叠置连片分布、高效成藏储集体, 被勘探证实为亿吨级整装高效储量区块, 该发现对陆相油气田取得重大的勘探突破具有重要的意义(蒲秀刚等, 2014; 赵贤正等, 2017a).滨海斜坡区处于海、陆两大块体差异沉降区, 其倾向与北东主物源相匹配, 易形成上倾尖灭的岩性油气藏.滨海海域南北储层分布具有一定的差异, 其中北部近源储层发育, 南部储层薄.圈闭的形成受原始沉积相带和古地貌特征的控制, 同时也受后期构造活动的改造和控制, 在强构造区域与弱构造区域形成不同的圈闭类型.
在储层地质模式的指导下, 利用岩心、录井、测井以及地震资料, 获取储层物性主控因素的参数(图 13), 研究物性非均质性, 开展储层建模, 总结储层表征方法, 评价有利储层, 预测有利目标, 指导油气开发.歧口凹陷大型重力流砂体位于优质烃源岩发育区, "源储一体", 含油目的层多, 油藏具有"纵向叠置、横向连片、多层系复式含油"的特征.结合沉积模式发育特征分析, 研究重力流砂岩储集体内部构型, 建立重力流砂岩储层地质模型, 预测重力流砂岩有利储集体, 对岩相控制下的储层分布特征三角图的分析表明, 主水道微相(如歧南水道)岩相上主要以沉积岩为主, 粒度相对较粗且泥质含量较低, 其岩相控制了优质储层分布(图 14).受埕宁东部物源影响的BH6、A1、GS33、GS48, 以及BH1、BH28、BH8、BH16x1、BH22、QS1、GS23、GS51、GS67岩相上主要为岩浆岩.开展储层岩石学、储层物性分析, 明确储层岩石成分, 理顺成岩演化序列和阶段、矿物组份控制下的优质储层分布特征, 例如A1井, 深度4 372.1 m, 岩性为岩屑长石砂岩, 正4×, 石英含量为25%, 长石含量为43%(图 15a); BH6井, 深度4 534.4 m, 岩性为岩屑长石砂岩, 正4×, 石英含量为26%, 长石含量为50%(图 15b).明确储集体内部矿物接触关系、孔隙类型和发育特征, 研究岩屑长石砂岩的颗粒粒间及粒内孔隙特征, 如A1井沙一下产层埋深超过4 000 m, 碎屑颗粒在压实与构造活动等外力作用下多见破裂, 产生网状微裂缝, 明显提高油气渗流能力, 为裂缝控优质储层(图 16).最后, 综合探讨控制因素, 寻求储集体表征方法, 确立评价参数, 建立评价体系(表 1), 通过解剖典型重力流砂岩型油藏, 建立适合大型重力流砂岩型油气藏的开发地质模式.对于11个层的评价参数进行了分析, 参数包括沉积微相、顶深、底深、厚度、解释结论、孔隙度、渗透率、含油饱和度, 其中孔隙度较高渗透率较高的主水道沉积微相为优势油气层.
图 16 岩屑长石砂岩的颗粒粒间及粒内孔隙特征a.(-) A1井, 4 298.0 m, Φ.11%, k.0.41×10-3 μm2; b.A1井, 4 310.7 m, Φ.10.9%, k.0.14×10-3 μm2; c. B3井, 4 182.6 m, 岩屑长石砂岩, 石英含量为26%, 长石含量为52%, 碎屑颗粒破裂; d.B4井, 4 336.4 m, 岩屑长石砂岩, 石英含量为27%, 长石含量为44%, 碎屑颗粒破裂; e.B4井, 4 336.4 m, 岩屑长石砂岩, 石英含量为27%, 长石含量为44%, 微裂缝; f.B1井, 4 413.4 m, 岩屑长石砂岩, 石英含量为28%, 长石含量为48%, 微裂缝Fig. 16. Interparticle pore and intragranular pore features in lithic feldspar sandstone表 1 不同沉积相带控制下的储层物性的非均质性特征Table Supplementary Table Aeolotropic characteristics of the reservoir physical property under the control of sedimentary facies belt层号 沉积微相 顶深(m) 底深(m) 厚度(m) 解释结论 孔隙度(%) 渗透率(%) 含油饱和度(%) 144 主水道 4 351.8 4 355.4 3.6 油气层 10.24 6.50 36.67 147 主水道 4 368.6 4 376.5 7.9 油气层 9.51 5.41 28.33 148 主水道 4 377.1 4 380.8 3.7 油气层 12.29 14.25 47.47 149 分流水道 4 393.8 4 397.3 3.5 干层 5.08 0.24 2.25 145 水道侧缘 4 358.3 4 359.4 1.1 干层 5.48 0.52 0.02 146 水道侧缘 4 362.6 4 367.6 5 干层 6.20 0.93 1.59 150 水道侧缘 4 398.3 4 399.3 1 干层 2.41 0.10 0 151 水道侧缘 4 402.5 4 404.6 2.1 干层 1.73 0.10 0 143 浊积席状砂 4 329.2 4 330.7 1.5 干层 6.14 0.89 4.98 152 浊积席状砂 4 411.0 4 411.8 0.8 干层 0.14 0.10 0 153 浊积席状砂 4 414.7 4 416.2 1.5 差气层 6.27 0.76 19.14 注:重力流砂体储层非均质性明显, A1井沙一下产层为扇体主水道微相, 其次为水道侧缘. 5. 结论
(1) 歧口凹陷大型陆相重力流沉积体发育受多个物源体系的影响与控制, 湖盆中心的重力流沉积体与供给物源之间有明确的匹配关系.在古近系沙一段沉积时期, 滨海斜坡沉积区主要受北部燕山物源区的大神堂物源、茶淀物源以及西部沧县隆起物源区的葛沽物源和小站物源4个物源共同供给, 持续的物源供给使得在歧口凹陷的陆相湖盆中, 发育了大规模的重力流沉积体.
(2) 沙一段同沉积期歧口凹陷滨海斜坡周缘整个古地貌格局主要表现为断控陡坡带与多级断阶坡折带复合体, 断控陡坡带主要发育于滨海斜坡北部, 多级断阶带主要呈近东西向发育于斜坡西部.这些断坡带既是物源水下搬运通道又是沉积物堆积的可容纳空间分布区, 再加上这些断坡带持续的差异性沉降, 对砂分散体系和相带展布具有关键的控制作用.
(3) 歧口凹陷沙一段重力流沉积体具有多物源供给、长距离搬运、多级断坡传输、沿路沉积的发育过程与沉积机理特征.重力流沉积过程机制主要表现为重力滑塌沉积、砂质碎屑流、泥质碎屑流、浊流等多种成因, 具有横向连片, 纵向叠置的沉积样式.
-
图 3 歧口凹陷典型岩心沉积特征分析
a~c.砂质碎屑流:块状构造, 漂浮的泥岩碎屑与撕裂变形构造.d~e.滑塌变形, 发育大量同沉积变形(塑性形变).f.浊积岩.鲍马序列a(3 410.12 m)、b(3 399.55 m), 块状构造沉积大量砾岩, 磨圆好, 分选中等, 且呈定向排列, 呈块状构造.c(3 295.00 m), 灰色细砂岩中夹杂大量的深黑色撕裂状泥砾, 呈块状构造; d(3 294.60 m), 发育大量塑性变形构造, 且夹杂撕裂状深黑色泥砾, 呈包卷层理; e(3 307.86 m), 呈滑塌变形构造.f(3 404.27 m), 呈平行层理, 多期鲍马序列的AB段重复发育
Fig. 3. Typical core sediment features of the in Qikou Sag
图 8 歧口凹陷沙河街组一下段沉积体系展布特征
据蒲秀刚等(2007)修改
Fig. 8. The sedimentary facies distribution of Member 1 of Shahejie Formation in Qikou Sag
图 16 岩屑长石砂岩的颗粒粒间及粒内孔隙特征
a.(-) A1井, 4 298.0 m, Φ.11%, k.0.41×10-3 μm2; b.A1井, 4 310.7 m, Φ.10.9%, k.0.14×10-3 μm2; c. B3井, 4 182.6 m, 岩屑长石砂岩, 石英含量为26%, 长石含量为52%, 碎屑颗粒破裂; d.B4井, 4 336.4 m, 岩屑长石砂岩, 石英含量为27%, 长石含量为44%, 碎屑颗粒破裂; e.B4井, 4 336.4 m, 岩屑长石砂岩, 石英含量为27%, 长石含量为44%, 微裂缝; f.B1井, 4 413.4 m, 岩屑长石砂岩, 石英含量为28%, 长石含量为48%, 微裂缝
Fig. 16. Interparticle pore and intragranular pore features in lithic feldspar sandstone
表 1 不同沉积相带控制下的储层物性的非均质性特征
Table 1. Aeolotropic characteristics of the reservoir physical property under the control of sedimentary facies belt
层号 沉积微相 顶深(m) 底深(m) 厚度(m) 解释结论 孔隙度(%) 渗透率(%) 含油饱和度(%) 144 主水道 4 351.8 4 355.4 3.6 油气层 10.24 6.50 36.67 147 主水道 4 368.6 4 376.5 7.9 油气层 9.51 5.41 28.33 148 主水道 4 377.1 4 380.8 3.7 油气层 12.29 14.25 47.47 149 分流水道 4 393.8 4 397.3 3.5 干层 5.08 0.24 2.25 145 水道侧缘 4 358.3 4 359.4 1.1 干层 5.48 0.52 0.02 146 水道侧缘 4 362.6 4 367.6 5 干层 6.20 0.93 1.59 150 水道侧缘 4 398.3 4 399.3 1 干层 2.41 0.10 0 151 水道侧缘 4 402.5 4 404.6 2.1 干层 1.73 0.10 0 143 浊积席状砂 4 329.2 4 330.7 1.5 干层 6.14 0.89 4.98 152 浊积席状砂 4 411.0 4 411.8 0.8 干层 0.14 0.10 0 153 浊积席状砂 4 414.7 4 416.2 1.5 差气层 6.27 0.76 19.14 注:重力流砂体储层非均质性明显, A1井沙一下产层为扇体主水道微相, 其次为水道侧缘. -
Abreu, V., Sullivan, M., Pirmez, C., et al., 2003.Lateral Accretion Packages (LAPs):An Important Reservoir Element in Deep Water Sinuous Channels.Marine and Petroleum Geology, 20(6-8):631-648. https://doi.org/10.1016/j.marpetgeo.2003.08.003 Allen, P.A., 2008.From Landscapes into Geological History.Nature, 451(7176):274-276. https://doi.org/10.1038/nature06586 Amelin, Y., Lee, D.C., Halliday, A.N., et al., 1999.Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons.Nature, 399(6733):1497-1503.https://doi.org/10.1038/20426 http://www.tandfonline.com/servlet/linkout?suffix=CIT0001&dbid=16&doi=10.1080%2F00206814.2017.1377121&key=10.1038%2F20426 Bhatia, M.R., 1985.Plate Tectonics and Geochemical Composition of Sandstones:A Reply.The Journal of Geology, 93(1):85-87. https://doi.org/10.1086/628922 Cao, Y.C., Zhou, L., Zhang, Y.M., et al., 2011.Discussion on Provenance Systems in Yingcheng Formation in Shiwu Area of Shiwu Fault Depression, Songliao Basin.Acta Sedimentologica Sinica, 29(6):1096-1104(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201106010.htm Cartwright, J., Huuse, M., 2005.3D Seismic Technology:The Geological 'Hubble'.Basin Research, 17(1):1-20.https://doi.org/10.1111/j.1365-2117.2005.00252.x doi: 10.1111/bre.2005.17.issue-1 Carvajal, C., Steel, R., 2012.Source-To-Sink Sediment Volumes within a Tectono-Stratigraphic Model for a Laramide Shelf-to-Deep-Water Basin:Methods and Results.Tectonics of Sedimentary Basins, 79:131-151.https://doi.org/10.1002/9781444347166.ch7 doi: 10.1002/9781444347166.ch7/references Chen, S., Wang, H., Wei, J., et al., 2014a.Sedimentation of the Lower Cretaceous Xiagou Formation and Its Response to Regional Tectonics in the Qingxi Sag, Jiuquan Basin, NW China.Cretaceous Research, 47:72-86. https://doi.org/10.1016/j.cretres.2013.11.006 Chen, S., Wang, H., Wu, Y.P., et al., 2014b.Stratigraphic Architecture and Vertical Evolution of Various Types of Structural Slope Breaks in Paleogene Qikou Sag, Bohai Bay Basin, Northeastern China.Journal of Petroleum Science and Engineering, 122:567-584. https://doi.org/10.1016/j.petrol.2014.07.003 Chen, S., Wang, H., Zhou, L.H., et al., 2011.Recognition and Depiction of Special Geologic Bodies of Member 3 of Dongying Formation in Littoral Slope Zone, Qikou Sag.Journal of Central South University of Technology, 18(3):898-908. https://doi.org/10.1007/s11771-011-0779-2 Chen, S., Wang, H., Zhou, L.H., et al., 2012.Sequence Thickness and Its Response to Episodic Tectonic Evolution in Paleogene Qikou Sag, Bohaiwan Basin.Acta Geologica Sinica(English Edition), 86(5):1077-1092. https://doi.org/10.1111/j.1755-6724.2012.00732.x Chen, S.G., Ren, J.Y., Wu, F., et al., 2015.Palaeogeomorphic Recovery and Its Application in Shabei Area, Central Bohai Depression.Special Oil & Gas Reservoirs, 22(2):52-55(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TZCZ201502012.htm Chen, Y., Lin, C.S., Yu, H.Z., et al., 2006.Controls of Paleogene Syndepositional Faults on the Successions and Depositional Systems in the Qikou Depression, Bohai Bay.Journal of Geomechanics, 12(3):378-386(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX200603012.htm Corella, J.P., Loizeau, J.L., Kremer, K., et al., 2016.The Role of Mass-Transport Deposits and Turbidites in Shaping Modern Lacustrine Deepwater Channels.Marine and Petroleum Geology, 77:515-525. https://doi.org/10.1016/j.marpetgeo.2016.07.004 Dickinson, W.R., 1985.Interpreting Provenance Relations from Detrital Modes of Sandstones.Provenance of Arenites, 29:333-361.https://doi.org/10.1007/978-94-017-2809-6_15 http://www.tandfonline.com/servlet/linkout?suffix=CIT0020&dbid=16&doi=10.1080%2F0035919X.2017.1405853&key=10.1007%2F978-94-017-2809-6_15 Feng, Z.Q., Zhang, S., Cross, T.A., et al., 2010.Lacustrine Turbidite Channels and Fans in the Mesozoic Songliao Basin, China.Basin Research, 22(1):96-107.https://doi.org/10.1111/j.1365-2117.2009.00442.x doi: 10.1111/bre.2010.22.issue-1 Fu, G., Liu, J.T., 2006.Sealing and Preservation Conditions for Large and Medium Gas Fields of China.Petroleum Exploration and Development, 33(6):662-666(in Chinese with English abstract). Haughton, P.D.W., Todd, S.P., Morton, A.C., 1991.Sedimentary Provenance Studies.Geological Society, London, Special Publications, 57(1):1-11.https://doi.org/10.1144/gsl.sp.1991.057.01.01 doi: 10.1144/GSL.SP.1991.057.01.01 He, S., Yang, Q., Wang, J.D., 2008.Fractal Analysis of Fault System of Central Area in the Huanghua Depression.Geotectonica et Metallogenia, 32(4):455-461 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200804009.htm He, Z.H., Liu, Z.J., Zhang, F., 2001.Latest Progress of Heavy Mineral Research in the Basin Analysis.Geological Science and Technology Information, 20(4):29-32(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200104007.htm Huang, C.Y., Wang, H., Wang, J.H., et al., 2007.Deposi-Tional Character and Model of Fault-Controlling Gravity Flow in Banqiao Depression.Petroleum Geology and Recovery Efficiency, 14(6):14-16 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YQCS200706005.htm Huang, C.Y., Wang, H., Wu, Y.P., et al., 2010.Analysis of the Hydrocarbon Enrichment Regularity in the Sequence Stratigraphic Framework of Tertiary in Qikou Sag.Journal of Jilin University(Earth Science Edition), 40(5):986-995 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201005003.htm Huang, C.Y., Wang, H., Wu, Y.P., et al., 2012.Genetic Types and Sequence Stratigraphy Models of Palaeogene Slope Break Belts in Qikou Sag, Huanghua Depression, Bohai Bay Basin, Eastern China.Sedimentary Geology, 261-262:65-75. https://doi.org/10.1016/j.sedgeo.2012.03.005 Huang, C.Y., Wang, H., Zhou, L.H., et al., 2009.Provenance System Characters of the Third Member of Shahejie Formation in the Paleogene in Beitang Sag.Earth Science, 34(6):975-984(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx200906012 Hubbard, S.M., Smith, D.G., Nielsen, H., et al., 2011.Seismic Geomorphology and Sedimentology of a Tidally Influenced River Deposit, Lower Cretaceous Athabasca Oil Sands, Alberta, Canada.AAPG Bulletin, 95(7):1123-1145. https://doi.org/10.1306/12131010111 Jia, C.Z., Zhao, Z.Z., Du, J.H., et al., 2008.PetroChina Key Exploration Domains:Geological Cognition, Core Technology, Exploration Effect and Exploration Direction.Petroleum Exploration and Development, 35(4):385-396(in Chinese with English abstract). doi: 10.1016/S1876-3804(08)60087-7 Jiao, Y.Q., Zhou, H.M., 1998.The Integated Study of Sediment Sources in Sedimentary Basins:An Example from the Eogene Nanpu Rift Subbasin.Sedimentary Facies and Palaeogeography, 5:16-20(in Chinese with English abstract). Jin, S.D, Wang, H., Cao, H., et al., 2014.Sedimentation of the Paleogene Liushagang Formation and the Response to Regional Tectonics in the Fushan Sag, Beibuwan Basin, South China Sea.Austrian Journal of Earth Sciences, 107(2):112-130. Jin, S.D., Wang, H., Chen, S., et al., 2013.Control of Anticline Crest Zone on Depositional System and Its Geological Significance for Petroleum in Changshaling, Yinger Sag, Eastern Jiuquan Basin.Journal of Earth Science, 24(6):947-961. https://doi.org/10.1007/s12583-013-0388-0 Johnson, C.M., Winter, B.L., 1999.Provenance Analysis of Lower Paleozoic Cratonic Quartz Arenites of the North American Midcontinent Region:U-Pb and Sm-Nd Isotope Geochemistry.Geological Society of America Bulletin, 111(11):1723-1738.https://doi.org/10.1130/0016-7606(1999)1112.3.co;2 doi: 10.1130/0016-7606(1999)111<1723:PAOLPC>2.3.CO;2 Kneller, B., 2003.The Influence of Flow Parameters on Turbidite Slope Channel Architecture.Marine and Petroleum Geology, 20(6-8):901-910. https://doi.org/10.1016/j.marpetgeo.2003.03.001 Kolla, V., Bourges, P., Urru, J.M., 2001.Evolution of Deep-Water Tertiary Sinuous Channels Offshore Angola (West Africa) and Implications for Reservoir Architecture.AAPG Bulletin, 85(8):1373-1405.https://doi.org/10.1306/8626cac3-173b-11d7-8645000102c1865d Kremer, K., Hilbe, M., Simpson, G., et al., 2015.Reconstructing 4000 years of Mass Movement and Tsunami History in a Deep Peri-Alpine Lake (Lake Geneva, France-Switzerland).Sedimentology, 62(5):1305-1327. https://doi.org/10.1111/sed.12190 Li, S.T., Lin, C.S., Xie, X.N., et al., 1995.Approaches of Nonmarine Sequence Stratigraphy a Case Study on the Mesozoic Ordos Basin.Earth Science Frontiers, 2(4):133-136(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY504.000.htm Lin, C.S., 2006.Tectono-Stratigraphic Analysis of Sedimentary Basins:A Case Study on the Inland Tectonically Active Basins in China.Geoscience, 20(2):185-194(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ200602000.htm Lin, C.S., Xia, Q.L., Shi, H.S., et al., 2015.Geomorphological Evolution, source to Sink System and Basin Analysis.Earth Science Frontiers, 22(1):9-20(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201501002 Lin, C.S., Yang, H.J., Liu, J.Y., et al., 2009.Paleostructural Geomorphology of the Paleozoic Central Uplift Belt and Its Constraint on the Development of Depositional Facies in the Tarim Basin.Science in China Earth Science, 52(6):823-834. doi: 10.1007/s11430-009-0061-8 Liu, L., Chen, H.D., Zhong, Y.J., et al., 2017.Sedimentological Characteristics and Depositional Processes of Sediment Gravity Flows in Rift Basins:The Palaeogene Dongying and Shahejie Formations, Bohai Bay Basin, China.Journal of Asian Earth Sciences, 147:60-78. https://doi.org/10.1016/j.jseaes.2017.07.021 Liu, Z.F., Zhao, Y.L., Colin, C., et al., 2016.Source-To-Sink Transport Processes of Fluvial Sediments in the South China Sea.Earth-Science Reviews, 153:238-273. https://doi.org/10.1016/j.earscirev.2015.08.005 Liu, Z.J., 2003.Lacus Subaqueous Fan Sedimentary Characteristics and Influence Factors-A Case Study of Shuangyang Formation in Moliqing Fault Subsidence of Yitong Basin.Acta Sedimentologica Sinica, 21(1):148-154(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CJXB200301023.htm Lu, S.F., Liu, W., Wang, M., et al., 2017.Lacustrine Shale Oil Resource Potential of EsL3 Sub-Member of Bonan Sag, Bohai Bay Basin, Eastern China.Journal of Earth Science, 28(6):996-1005. https://doi.org/10.1007/s12583-016-0945-4 Lü, L., Jiao, Y.Q., Wu, L.Q., et al., 2012.Reconstruction of Provenance-Sedimentary System of the First Member of the Paleogene Shahejie Formation in the Qikou Sag, Bohai Bay Basin.Acta Sedimentologica Sinica, 30(4):629-638(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-cjxb201204002.htm Martínez, S.S., Horra, R.D.L., Arenas, R., et al., 2012.U-Pb Ages of Detrital Zircons from the Permo-Triassic Series of the Iberian Ranges:A Record of Variable Provenance during Rift Propagation.The Journal of Geology, 120(2):135-154. https://doi.org/10.1086/663983 Martinsen, O.J., Sømme, T.O., Thurmond, J.B., et al., 2010.Source-To-Sink Systems on Passive Margins:Theory and Practice with an Example from the Norwegian Continental Margin.Geological Society, London, Petroleum Geology Conference Series, 7(1):913-920. https://doi.org/10.1144/0070913 McLennan, S.M., Hemming, S., McDaniel, D.K., et al., 1993.Geochemical Approaches to Sedimentation, Provenance, and Tectonics.Geological Society of America Special Papers, 25:21-40.https://doi.org/10.1130/spe284-p21 http://www.nrcresearchpress.com/servlet/linkout?suffix=refg76/ref76&dbid=16&doi=10.1139%2Fcjes-2013-0144&key=10.1130%2FSPE284-p21 Morton, A., Hurst, A., 1995.Correlation of Sandstones Using Heavy Minerals:An Example from the Statfjord Formation of the Snorre Field, Northern North Sea.Geological Society, London, Special Publications, 89(1):3-22.https://doi.org/10.1144/gsl.sp.1995.089.01.02 doi: 10.1144/GSL.SP.1995.089.01.02 Pang, X., 2012.Sequence Stratigraphy Configuration of Deepwater Gravity-Flow Sediments and its Controls:A Line of Thinking in Sequence Stratigraphy of Gravity-Flow Sediments in Baiyun Deepwater Area, the Northern South China Sea.China Offshore Oil and Gas, 24(2):1-8(in Chinese with English abstract). Parsons, D.R., Peakall, J., Aksu, A.E., et al., 2010.Gravity-Driven Flow in a Submarine Channel Bend:Direct Field Evidence of Helical Flow Reversal.Geology, 38(12):1063-1066.https://doi.org/10.1130/g31121.1 doi: 10.1130/G31121.1 Posamentier, H.W., 2001.Lowstand Alluvial Bypass Systems:Incised vs.Unincised.AAPG Bulletin, 85(10):1771-1793. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ023759364/ Pu, X.G., Wu, Y.P., Zhou, J.S., et al., 2007.Characteristics and Exploration Potential of Lithologic-Stratigraphic Hydrocarbon Reservoirs in Qikou Sag of Dagang Oilfield.Acta Petrolei Sinica, 28(2):35-39(in Chinese with English abstract). Pu, X.G., Zhou, L.H., Han, W.Z., et al., 2014.Gravity Flow Sedimentation and Tight Oil Exploration in Lower First Member of Shahejie Formation in Slope Area of Qikou Sag, Bohai Bay Basin.Petroleum Exploration and Development, 41(2):138-149(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380414600185 Qi, P., Ren, J.Y., Shi S.S., et al., 2010.Features of the Cenozoic Structure of the Coastal Zone in Qikou Sag and Its Formation Mechanism.Acta Petrolei Sinica, 31(6):900-905(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-syxb201006004.htm Reading, H.G., 1996.Sedimentary Environments:Processes, Facies, and Stratigraphy.Encyclopedia of Geology, 688(5703):580-587. http://d.old.wanfangdata.com.cn/Periodical/dzlp201402009 Richards, M., Bowman, M., 1998.Submarine Fans and Related Depositional Systems Ii:Variability in Reservoir Architecture and Wireline Log Character.Marine and Petroleum Geology, 15(8):821-839.https://doi.org/10.1016/s0264-8172(98)00042-7 doi: 10.1016/S0264-8172(98)00042-7 Robertson, A.I., Alongi, D.M., 2013.Mangrove Sediments and Geomorphology.American Geophysical Union, Washington, DC. Sambridge, M.S., Compston, W., 1994.Mixture Modeling of Multi-Component Data Sets with Application to Ion-Probe Zircon Ages.Earth and Planetary Science Letters, 128(3-4):373-390.https://doi.org/10.1016/0012-821x(94)90157-0 doi: 10.1016/0012-821X(94)90157-0 Sasaki, H., Sasaki, Y., Saito-Kato, M., et al., 2016.Stratigraphic Variations in Lacustrine Sediment Gravity-Flow Deposits Intercalated in Varved Diatomite:An Example from the Hiruzenbara Formation, Okayama Prefecture, Southwest Japan.Quaternary International, 397:208-222. https://doi.org/10.1016/j.quaint.2015.08.032 Simonneau, A., Chapron, E., Vannière, B., et al., 2013.Mass-Movement and Flood-Induced Deposits in Lake Ledro, Southern Alps, Italy:Implications for Holocene Palaeohydrology and Natural Hazards.Climate of the Past, 9(2):825-840. https://doi.org/10.5194/cp-9-825-2013 Sømme, T.O., Helland-Hansen, W., Martinsen, O.J., et al., 2009.Relationships between Morphological and Sedimentological Parameters in Source-To-Sink Systems:A Basis for Predicting Semi-Quantitative Characteristics in Subsurface Systems.Basin Research, 21(4):361-387.https://doi.org/10.1111/j.1365-2117.2009.00397.x doi: 10.1111/bre.2009.21.issue-4 Sømme, T.O., Jackson, C.A.L., Vaksdal, M., 2013.Source-To-Sink Analysis of Ancient Sedimentary Systems Using a Subsurface Case Study from the Møre-Trøndelag Area of Southern Norway:Part 1-Depositional Setting and Fan Evolution.Basin Research, 25(5):489-511.https://doi.org/10.1111/bre.12013 doi: 10.1111/bre.2013.25.issue-5 Sun, Y., Chen, C., Ma, S.Z., et al., 2012.Hydrocarbon Accumulation Characteristics and Its Main Controlling Factors in Lithologic Reservoirs Area:Example of Fuyu Oil Layer in the Southern Fuxin Uplift of Songliao Basin.Advanced Materials Research, 524-527:134-139.https://doi.org/10.4028/www.scientific.net/amr doi: 10.4028/www.scientific.net/AMR.524-527 Taylor, S.R, Mclennan, S.M, 1985.Greywackes:The Continental Crust:Its Composition and Evolution.Blackwell Scientific Publication, Oxford. Tong, X.G., Niu, J.Y., 1989.Effects of Regional Cap Formation on Oil and Gas Accumulation.Petroleum Exploration and Development, 16(4):1-8(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK198904000.htm Wang, G., 2003.Formation and Evolution of the Cenozoic Tectonics within and Surrounding the Qikou Sag.Scientia Geologica Sinyangca, 38(2):230-240. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200302010.htm Wang, H., Bai, Y.F., Huang, C.Y., et al., 2009.Reconstruction and Application of the Paleogene Provenance System of the Dongying Formation in Qikou Depression.Earth Science, 34(3):448-456(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx200903009 Wang, H., Chen, S., Gan, H.J., et al., 2015.Accumulation Mechanism of Large Shallow Marine Turbidite Deposits:A Case Study of Gravity Flow Deposits of the Huangliu Formation in Yinggehai Basin.Earth Science Frontiers, 22(1):21-34 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201501003 Wang, H., Chen, S., Huang, C.Y., et al., 2017.Architecture of Sandstone Bodies of Paleogene Shahejie Formation in Northern Qikou Sag, Northeast China.Journal of Earth Science, 28(6):1078-1085. https://doi.org/10.1007/s12583-016-0937-4 Wang, H., Liao, Y.T., Lu, Y.C., et al., 2010.Sequence Architecture Styles of Cenozoic Continental Rift Basins in East China.Journal of Central South University(Science and Technology), 41(1):277-285(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZNGD201001048.htm Wang, J.H., Wang, H., Zhao, Z.X., et al., 2003.Sequence Stratigraphy in Paleogeomorphy Analysis:An Example from Tahe Oilfield.Earth Science, 28(4):425-430(in Chinese with English abstract).https://doi.org/10.3321/j.issn:1000-2383.2003.04.011 http://www.cqvip.com/qk/94035x/200304/8077068.html Wang, M.F., Jiao, Y.Q., Ren, J.Y., et al., 2006.Method and Thinking of Palaeogeomorphologic Reconstruction in Sedimentary Basin-Example from Depositional Stage of Xishanyao Formation in Junggar Basin.Xinjiang Geology, 24(3):326-330(in Chinese with English abstract). Wang, W.F., Lu, S.K., Jin, Q., 1999.Geodynamics of Sedimentary Basins in Eastern China.Journal of the University of Petroleum, China, 23(4):1-5(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201807006 Wang, Y.S., Liang, C., Sun, X.N., 2017.Shale Oil Reservoir Characteristics and Enrichment in the Jiyang Depression, Bohai Bay Basin, East China.Journal of Earth Science, 28(6):977-986. https://doi.org/10.1007/s12583-016-0940-9 Weimer, P., Slatt, R.M., 2004.Petroleum Systems of Deepwater Settings.Geology, 25(10):939. http://ebooks.geoscienceworld.org/content/petroleum-systems-of-deepwater-settings Wu, Y.Y., Liu, Z., Wang, W.H., et al., 1996.Sequence Stratigraphy of Shahejie Formation in Qibei Sag.Acta Sedimentologica Sinica, 14(1):167-175(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB601.020.htm Xian, B.Z., Wang, L., Liu, J.P., et al., 2016.Sedimentary Characteristics and Model of Delta-Fed Turbidites in Eocene Eastern Dongying Depression.Journal of China University of Petroleum(Edition of Natural Science), 40(5):10-21(in Chinese with English abstract). Xie, J.M., 1995.Relations between Faulting and Petroleumgas Gathering in the Fault Basins.Journal of Xi'an Engineering University, 17(3):48-55(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XAGX503.007.htm Xie, X.Y., Mann, P., 2014.U-Pb Detrital Zircon Age Patterns of Cenozoic Clastic Sedimentary Rocks in Trinidad and Its Implications.Sedimentary Geology, 307:7-16. https://doi.org/10.1016/j.sedgeo.2014.04.001 Xu, C.G., 2013.Controlling Sand Principle of Source-Sink Coupling in Time and Space in Continental Rift Basins:Basic Idea, Conceptual Systems and Controlling Sand Models.China Offshore Oil and Gas, 25(4):1-11(in Chinese with English abstract). Xu, S.M., Zhai, S.K., Li, S.Z., et al., 2001.An Analysis on Sequence Stratigraphy and Sedimentary System of Early Neocene in Qikou Sag.Acta Sedimentologica Sinica, 19(3):363-367 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200103007.htm Yang, C.Y., Zhou, Z.L., 2000.Petroleum System and Petroleum Exploration in Qikou Sag.Petroleum Exploration in China, 5(3):64-70(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTSY200003011.htm Yun, J.B., Luo, D.Q., Li, Y.X., 1994.Tectonical Evolution and Petroleum Accumulation in the Rift Group in North-Eastern China.Petroleum Exploration and Development, 21(6):40-45(in Chinese with English abstract). Zeng, H.L, 2001.From Seismic Stratigraphy to Seismic Sedimentology:A Sensible Transition.AAPG Bulletin, 85:413-420.https://doi.org/10.1306/8626d031-173b-11d7-8645000102c1865d Zeng, H.L., Ambrose, W.A., Villalta, E., 2001.Seismic Sedimentology and Regional Depositional Systems in Mioceno Norte, Lake Maracaibo, Venezuela.The Leading Edge, 20(11):1260-1269. https://doi.org/10.1190/1.1487259 Zhang, J.Y., Covault, J., Pyrcz, M., et al., 2018.Quantifying Sediment Supply to Continental Margins:Application to the Paleogene Wilcox Group, Gulf of Mexico.AAPG Bulletin, 102(9):1685-1702. https://doi.org/10.1306/01081817308 Zhang, J.Y., Steel, R., Ambrose, W., 2016.Greenhouse Shoreline Migration:Wilcox Deltas.AAPG Bulletin, 100(12):1803-1831. https://doi.org/10.1306/04151615190 Zhang, Q.Q., Cao, Y.C., Liu, K.Y., et al., 2017.Sedimentary Characteristics of Re-Transported Gravity Flow Deposits and Their Distribution:Influence of Deltaic Sedimentation in the Dongying Sag.Earth Science, 42(11):2026-2038(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.129 Zhang, S.W., 2012.Thinking and Practice of Tertiary Oil and Gas Exploration of Maturing Region in Eastern China:A Case Study of Jiyang Depression.Acta Petrolei Sinica, 33(S1):53-62(in Chinese with English abstract). Zhao, D.N., Zhu, X.M., Dong, Y.L., et al., 2014.Application of Seismic Sedimentology to Prediction of Beach and Bar Sandbodies in Gentle Slope of Lacustrine Basin:A Case Study of the Lower Cretaceous in Chepaizi Area, Junggar Basin, NW China.Petroleum Exploration and Development, 41(1):60-67.https://doi.org/10.1016/s1876-3804(14)60006-9 doi: 10.1016/S1876-3804(14)60006-9 Zhao, J.X., Chen, H.D., Shi, Z.Q., 2001.The Way and Implications of Rebuilding Palaeogeomorphology-Taking the Research of Palaeogeomorphology of the Ordos Basin before Jurassic Deposition as Example.Journal of Chengdu University of Technology, 28(3):260-266(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-cdlg200103008.htm Zhao, R., Chen, S., Wang, H., et al., 2018.Paleogene Sedimentation Changes in Lenghu Area, Qaidam Basin in Response to the India-Eurasia Collision.International Journal of Earth Sciences, 1-22. https://doi.org/10.1007/s00531-018-1640-8 Zhao, W.Z., Zhang, G.Y., Wang, H.J., et al., 2003.Basic Features of Petroleum Geology in the Superimposed Petroliferous Basins of China and Their Research Methodologies.Petroleum Exploration and Development, 30(2):1-8(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SKYK200302000.htm Zhao, X.Z., Pu, X.G., Zhou, L.H., et al., 2017a.Geologic Characteristics of Deep Water Deposits and Exploration Discoveries in Slope Zones of Fault Lake Basin:A Case Study of Paleogene Shahejie Formation in Banqiao-Qibei Slope, Qikou Sag, Bohai Bay Basin.Petroleum Exploration and Development, 44(2):165-176(in Chinese with English abstract). Zhao, X.Z., Pu, X.G., Zhou, L.H., et al., 2017b.Reconstruction of Paleogene Sedimentary System and Reservoir Evaluation in Qikou Sag, Bohai Bay Basin, China.Journal of Chengdu University of Technology(Science & Technology Edition), 44(5):565-578(in Chinese with English abstract). Zhou, L.H., Fu, L.X., Lou, D., et al., 2012.Structural Anatomy and Dynamics of Evolution of the Qikou Sag, Bohai Bay Basin:Implications for the Destruction of North China Craton.Journal of Asian Earth Sciences, 47(1):94-106.https://doi.org/10.1016/j.jseaes.2011.06.004 http://www.sciencedirect.com/science/article/pii/S1367912011002410 Zhou, L.H., Lu, Y., Xiao, D.Q., et al., 2011.Basinal Texture Structure of Qikou Sag in Bohai Bay Basin and Its Evolution.Natural Gas Geoscience, 22(3):373-382 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201103001 Zhu, H.T., Yang, X.H., Zhou, X.H., et al., 2014.Three-Dimensional Facies Architecture Analysis Using Sequence Stratigraphy and Seismic Sedimentology:Example from the Paleogene Dongying Formation in the BZ3-1 Block of the Bozhong Sag, Bohai Bay Basin, China.Marine and Petroleum Geology, 51(2):20-33.https://doi.org/10.1016/j.marpetgeo.2013.11.014 http://www.sciencedirect.com/science/article/pii/S0264817213002900 Zhu, H.T., Liu, K.Y., Zhu, X.M., et al., 2018.Varieties of Sequence Stratigraphic Configurations in Continental Basins.Earth Science, 43(3):770-785(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2018.906 http://d.old.wanfangdata.com.cn/Periodical/dqkx201803008 Zhu, H.T., Xu, C.G., Zhu, X.M., et al., 2017.Advances of the Source-To-Sink Units and Coupling Model Research in Continental Basin.Earth Science, 42(11):1851-1869(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.117 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201711001.htm Zhu, X.M., Dong, Y.L., Guo, C.M., et al., 2007.Sequence Framework and Reservoir Quality of Sha 1 Member in Shahejie Formation, Qikou Sag.Acta Sedimentologica Sinica, 25(6):934-941 (in Chinese with English abstract). Zhu, X.M., Li, Y., Dong, Y.L., et al., 2013.The Program of Seismic Sedimentology and Its Application to Shahejie Formation in Qikou Depression of North China.Geology in China, 40(1):152-162(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201301012.htm Zou, C.N., Tao, S.Z., Xue, S.H., 2005.Connotation of 'Facies Control Theory' and Its Significance for Exploration.Petroleum Exploration and Development, 32(6):7-12(in Chinese with English abstract). 操应长, 周磊, 张玉明, 等, 2011.松辽盆地十屋断陷十屋地区营城组物源体系探讨.沉积学报, 29(6):1096-1104. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201106010.htm 陈树光, 任建业, 吴峰, 等, 2015.渤中坳陷沙北地区古地貌恢复及其应用.特种油气藏, 22(2):52-55. doi: 10.3969/j.issn.1006-6535.2015.02.012 陈莹, 林畅松, 余宏忠, 等, 2006.歧口凹陷古近纪同沉积断裂对层序和沉积体系的控制.地质力学学报, 12(3):378-386. doi: 10.3969/j.issn.1006-6616.2006.03.013 付广, 刘江涛, 2006.中国高效大中型气田形成的封盖保存条件.石油勘探与开发, 33(6):662-666 doi: 10.3321/j.issn:1000-0747.2006.06.004 何书, 杨桥, 王家鼎, 2008.黄骅坳陷中区断裂系统分形研究.大地构造与成矿学, 32(4):455-461. doi: 10.3969/j.issn.1001-1552.2008.04.008 和钟铧, 刘招君, 张峰, 2001.重矿物在盆地分析中的应用研究进展.地质科技情报, 20(4):29-32. doi: 10.3969/j.issn.1000-7849.2001.04.006 黄传炎, 王华, 王家豪, 等, 2007.板桥凹陷断控重力流沉积特征及沉积模式.油气地质与采收率, 14(6):14-16. doi: 10.3969/j.issn.1009-9603.2007.06.004 黄传炎, 王华, 吴永平, 等, 2010.歧口凹陷第三系层序格架下的油气藏富集规律.吉林大学学报(地球科学版), 40(5):986-995. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201005002 黄传炎, 王华, 周立宏, 等, 2009.北塘凹陷古近系沙河街组三段物源体系分析.地球科学, 34(6):975-984. doi: 10.3321/j.issn:1000-2383.2009.06.012 贾承造, 赵政璋, 杜金虎, 等, 2008.中国石油重点勘探领域——地质认识、核心技术、勘探成效及勘探方向.石油勘探与开发, 35(4):385-396. doi: 10.3321/j.issn:1000-0747.2008.04.001 焦养泉, 李珍, 周海民, 1998.沉积盆地物质来源综合研究.岩相古地理, 5:16-20. http://www.cnki.com.cn/Article/CJFDTOTAL-YXGD805.002.htm 李思田, 林畅松, 解习农, 等, 1995.大型陆相盆地层序地层学研究——以鄂尔多斯中生代盆地为例:地学前缘, 2(4):133-136. doi: 10.3321/j.issn:1005-2321.1995.04.001 林畅松, 2006.沉积盆地的构造地层分析——以中国构造活动盆地研究为例.现代地质, 20(2):185-194. doi: 10.3969/j.issn.1000-8527.2006.02.001 林畅松, 夏庆龙, 施和生, 等, 2015.地貌演化、源-汇过程与盆地分析.地学前缘, 22(1):9-20. http://d.old.wanfangdata.com.cn/Periodical/dxqy201501002 刘招君, 2003.湖泊水下扇沉积特征及影响因素——以伊通盆地莫里青断陷双阳组为例.沉积学报, 21(1):148-154. doi: 10.3969/j.issn.1000-0550.2003.01.024 吕琳, 焦养泉, 吴立群, 等, 2012.渤海湾盆地歧口凹陷古近系沙一段物源-沉积体系重建.沉积学报, 30(4):629-638. http://d.wanfangdata.com.cn/Periodical/cjxb201204003 庞雄, 2012.深水重力流沉积的层序地层结构与控制因素——南海北部白云深水区重力流沉积层序地层学研究思路.中国海上油气, 24(2):1-8. doi: 10.3969/j.issn.1673-1506.2012.02.001 蒲秀刚, 吴永平, 周建生, 等, 2007.歧口凹陷岩性地层油气藏特征及勘探潜力.石油学报, 28(2):35-39. doi: 10.3321/j.issn:0253-2697.2007.02.006 蒲秀刚, 周立宏, 韩文中, 等, 2014.歧口凹陷沙一下亚段斜坡区重力流沉积与致密油勘探.石油勘探与开发, 41(2):138-149. http://d.old.wanfangdata.com.cn/Periodical/syktykf201402002 祁鹏, 任建业, 史双双, 等, 2010.歧口凹陷沿岸带新生代构造特征及其形成机制.石油学报, 31(6):900-905. http://d.old.wanfangdata.com.cn/Periodical/syxb201006005 童晓光, 牛嘉玉, 1989.区域盖层在油气聚集中的作用.石油勘探与开发, 16(4):1-8. doi: 10.3321/j.issn:1000-0747.1989.04.002 王华, 白云风, 黄传炎, 等, 2009.歧口凹陷古近纪东营期古物源体系重建与应用.地球科学, 34(3):448-456. doi: 10.3321/j.issn:1000-2383.2009.03.009 王华, 陈思, 甘华军, 等, 2015.浅海背景下大型浊积扇研究进展及堆积机制探讨:以莺歌海盆地黄流组重力流为例.地学前缘22(1):21-34. http://d.old.wanfangdata.com.cn/Periodical/dxqy201501003 王华, 廖远涛, 陆永潮, 等, 2010.中国东部新生代陆相断陷盆地层序的构成样式.中南大学学报(自然科学版), 41(1):277-285. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201001047 王家豪, 王华, 赵忠新, 等, 2003.层序地层学应用于古地貌分析——以塔河油田为例.地球科学, 28(4):425-430. doi: 10.3321/j.issn:1000-2383.2003.04.011 王敏芳, 焦养泉, 任建业, 等, 2006.沉积盆地中古地貌恢复的方法与思路——以准噶尔盆地西山窑组沉积期为例.新疆地质, 24(3):326-330. doi: 10.3969/j.issn.1000-8845.2006.03.024 王伟锋, 陆诗阔, 金强, 1999.中国大陆东部盆地构造动力学分析.中国石油大学学报(自然科学版), 23(4):1-5. doi: 10.3321/j.issn:1000-5870.1999.04.001 吴元燕, 刘震, 王伟华, 等, 1996.歧口凹陷滨海地区沙河街组深层碎屑岩储层特征及主控因素.沉积学报, 14(1):167-175. doi: 10.1071-AH090601/ 鲜本忠, 王璐, 刘建平, 等, 2016.东营凹陷东部始新世三角洲供给型重力流沉积特征与模式.中国石油大学学报:自然科学版, 40(5):10-21. http://d.old.wanfangdata.com.cn/Periodical/sydxxb201605002 解建民, 1995.断陷盆地中断裂作用与油气的关系.西安工程学院学报, 17(3):48-55. http://cdmd.cnki.com.cn/Article/CDMD-10615-2006146334.htm 徐长贵, 2013.陆相断陷盆地源-汇时空耦合控砂原理:基本思想、概念体系及控砂模式.中国海上油气, 25(4):1-11. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201304001 许淑梅, 翟世奎, 李三忠, 等, 2001.歧口凹陷滩海区下第三系层序地层分析及沉积体系研究.沉积学报, 19(3):363-367. doi: 10.3969/j.issn.1000-0550.2001.03.008 杨池银, 周宗良, 2000.歧口凹陷含油气系统与油气勘探.中国石油勘探, 5(3):64-70. http://www.cnki.com.cn/Article/CJFDTOTAL-KTSY200003011.htm 云金表, 罗笃清, 李玉喜, 1994.东北地区中生代断陷盆地群构造演化与成油关系探讨.石油勘探与开发, 21(6):40-45. http://www.cnki.com.cn/Article/CJFDTotal-SKYK406.007.htm 张青青, 操应长, 刘可禹, 等, 2017.东营凹陷滑塌型重力流沉积分布特征及三角洲沉积对其影响.地球科学, 42(11):2026-2038.https://doi.org/10.3799/dqkx.2017.129 http://earth-science.net/WebPage/Article.aspx?id=3677 张善文, 2012.中国东部老区第三系油气勘探思考与实践——以济阳坳陷为例.石油学报, 33(s1):53-62. doi: 10.7623/syxb2012S1007 赵俊兴, 陈洪德, 时志强, 2001.古地貌恢复技术方法及其研究意义——以鄂尔多斯盆地侏罗纪沉积前古地貌研究为例.成都理工学院学报, 28(3):260-266. doi: 10.3969/j.issn.1671-9727.2001.03.008 赵文智, 张光亚, 王红军, 等, 2003.中国叠合含油气盆地石油地质基本特征与研究方法.石油勘探与开发, 30(2):1-8. doi: 10.3321/j.issn:1000-0747.2003.02.001 赵贤正, 蒲秀刚, 周立宏, 等, 2017a.断陷湖盆深水沉积地质特征与斜坡区勘探发现——以渤海湾盆地歧口凹陷板桥-歧北斜坡区沙河街组为例.石油勘探与开发, 44(2):165-176. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=SKYK201702002&dbname=CJFD&dbcode=CJFQ 赵贤正, 蒲秀刚, 周立宏, 等, 2017b.渤海湾盆地歧口凹陷古近系沉积体系重建与储集层评价.成都理工大学学报(自科版), 44(5):565-578. http://d.old.wanfangdata.com.cn/Periodical/cdlgxyxb201705007 周立宏, 卢异, 肖敦清, 等, 2011.渤海湾盆地歧口凹陷盆地结构构造及演化.天然气地球科学, 22(3):373-382. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201103001 朱红涛, 刘可禹, 朱筱敏, 等, 2018.陆相盆地层序构型多元化体系.地球科学, 43(3):770-785.https://doi.org/10.3799/dqkx.2018.906 http://earth-science.net/WebPage/Article.aspx?id=3765 朱红涛, 徐长贵, 朱筱敏, 等, 2017.陆相盆地源-汇系统要素耦合研究进展.地球科学, 42(11):1851-1869.https://doi.org/10.3799/dqkx.2017.117 http://earth-science.net/WebPage/Article.aspx?id=3691 朱筱敏, 董艳蕾, 郭长敏, 等, 2007.歧口凹陷沙河街组一段层序格架和储层质量分析.沉积学报, 25(6):934-941. doi: 10.3969/j.issn.1000-0550.2007.06.016 朱筱敏, 李洋, 董艳蕾, 等, 2013.地震沉积学研究方法和歧口凹陷沙河街组沙一段实例分析.中国地质, 40(1):152-162. doi: 10.3969/j.issn.1000-3657.2013.01.010 邹才能, 陶士振, 薛叔浩, 2005."相控论"的内涵及其勘探意义.石油勘探与开发, 32(6):7-12. doi: 10.3321/j.issn:1000-0747.2005.06.002 期刊类型引用(21)
1. 聂芬意,姜宁宁,李敏,王博,赵子豪,何成山. 大港油田滨海地区钻井地质风险分析及应对措施. 录井工程. 2024(02): 147-152 . 百度学术
2. 赵林丰,李晓静,王晶晶,纪建峥,赵永峰,周连敏. 多属性神经网络反演在重力流储层预测中的应用——以歧口凹陷歧南斜坡沙一段为例. 石油地质与工程. 2024(05): 7-12 . 百度学术
3. 王启明,杜晓峰,官大勇,张宏国,付鑫. 辽中凹陷中南部西斜坡东三段湖底扇沉积特征与发育模式. 地球科学. 2023(08): 2979-2992 . 本站查看
4. 汪晓鸾,马志超,张明振. 歧口凹陷滨海地区断裂特征及其对油气成藏的控制作用. 录井工程. 2023(03): 139-146 . 百度学术
5. 舒婷,刘桂珍,郭健. 鄂尔多斯盆地华庆地区长6_3重力流沉积特征. 地质科技通报. 2023(06): 140-150 . 百度学术
6. 刘军钊,官大勇,王志萍,王启明,李晓辉. 莱州湾凹陷沙三段低位域湖底扇沉积特征及水道构型. 科学技术与工程. 2023(35): 14979-14987 . 百度学术
7. 高欢欢,邰春磊,刘会纺,刘长城,王静,孙鹏. 歧口凹陷滨海地区沙一段远岸湖底扇沉积特征及形成机制. 录井工程. 2023(04): 112-118+125 . 百度学术
8. 巩天浩,吴琳娜,陈思,潘凯,余政宏,张悦辉. 歧口凹陷中部沙一下亚段异重流沉积识别特征与控制因素分析. 地质科技通报. 2022(04): 69-83 . 百度学术
9. 吴丰,罗莹莹,李昱翰,杨宗恒,张洪千,刘建锋,石祥超. 四川盆地公山庙油田大安寨段湖相灰岩-页岩裂缝特征与测井识别. 地质科技通报. 2022(05): 55-67 . 百度学术
10. 王华,陈思,刘恩涛,何杰,甘华军,孟福林,年伟豪. 南海北部莺-琼盆地典型重力流沉积特征与物源体系. 地质科技通报. 2022(05): 5-18 . 百度学术
11. 赵贤正,金凤鸣,周立宏,韩国猛,蒲秀刚,柴公权,陈长伟,周素彦,刘学伟,韩文中,姜文亚,周育文,马建英,周可佳. 渤海湾盆地风险探井歧页1H井沙河街组一段页岩油勘探突破及其意义. 石油学报. 2022(10): 1369-1382 . 百度学术
12. 宫立园,胡德胜,满晓,张璐,赵晔. 涠西南凹陷流一段高位域早期湖底扇沉积特征及有利储层预测. 中国海上油气. 2022(06): 54-64 . 百度学术
13. 张家强,李士祥,李宏伟,周新平,刘江艳,郭睿良,陈俊霖,李树同. 鄂尔多斯盆地延长组7油层组湖盆远端重力流沉积与深水油气勘探——以城页水平井区长7_3小层为例. 石油学报. 2021(05): 570-587 . 百度学术
14. 石倩茹,巩天浩,董越崎,唐鹿鹿,司维柳,尹玲玲. 歧口凹陷沙一下亚段重力流沉积特征及储层精细描述. 成都理工大学学报(自然科学版). 2021(05): 558-572 . 百度学术
15. 王华,陈思,巩天浩,余政宏,黄传炎,张悦辉,赵睿. 牵引流化重力流沉积过程与堆积机制:以渤海湾盆地歧口凹陷为例. 地质科技通报. 2020(01): 95-104 . 百度学术
16. 秦春雨,王华,姜平,杨希冰,邹康. 断陷盆地轴向沉积体系空间展布及演化特征——以北部湾盆地涠西南凹陷为例. 中国矿业大学学报. 2020(03): 542-551 . 百度学术
17. 石倩茹,韩国猛,董越崎,胡瑨男,范德军,唐鹿鹿,司维柳,任仕超,侯璐. 梦想云平台在歧口凹陷成熟区精细勘探中的应用. 中国石油勘探. 2020(05): 64-70 . 百度学术
18. 于超,肖娟,马玉荣,侯国文,杨佩峰,董洪闯. 随钻测井技术计算有效孔隙度方法研究与应用——以埕海油田中生界储层为例. 复杂油气藏. 2020(03): 12-17 . 百度学术
19. 韩国猛,牟连刚,董越崎,付东立,周素彦,吴佳朋,王锦程. 歧口凹陷板桥斜坡区新生代断裂特征及油气地质意义. 地质科技通报. 2020(06): 1-9 . 百度学术
20. 刘可行,甘华军,陈思,赵忠新,李潇鹏,马江浩,柯友亮,王思洋,巩天浩,张亦康. 高精度层序格架下的陆相断陷湖盆沉积体系演化:以南堡凹陷老爷庙地区东营组三段为例. 地质科技情报. 2019(03): 88-102 . 百度学术
21. 尤丽,招湛杰,代龙,吴仕玖,李才,徐守立. 莺-琼盆地中新统高温超压储层特征及形成机制. 地球科学. 2019(08): 2654-2664 . 本站查看
其他类型引用(7)
-