• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    琼北第四纪火山区电各向异性结构及其地质意义

    刘营 胡道功 许顺芳 李子梁 陈超

    刘营, 胡道功, 许顺芳, 李子梁, 陈超, 2020. 琼北第四纪火山区电各向异性结构及其地质意义. 地球科学, 45(1): 330-340. doi: 10.3799/dqkx.2018.336
    引用本文: 刘营, 胡道功, 许顺芳, 李子梁, 陈超, 2020. 琼北第四纪火山区电各向异性结构及其地质意义. 地球科学, 45(1): 330-340. doi: 10.3799/dqkx.2018.336
    Liu Ying, Hu Daogong, Xu Shunfang, Li Ziliang, Chen Chao, 2020. Electrical Anisotropic Structure in the Quaternary Volcanic Region of North Hainan Island and Its Geological Implications. Earth Science, 45(1): 330-340. doi: 10.3799/dqkx.2018.336
    Citation: Liu Ying, Hu Daogong, Xu Shunfang, Li Ziliang, Chen Chao, 2020. Electrical Anisotropic Structure in the Quaternary Volcanic Region of North Hainan Island and Its Geological Implications. Earth Science, 45(1): 330-340. doi: 10.3799/dqkx.2018.336

    琼北第四纪火山区电各向异性结构及其地质意义

    doi: 10.3799/dqkx.2018.336
    基金项目: 

    国家自然科学基金项目 41904079

    中国地质调查局项目 121201104000150002

    中国地质调查局项目 DD20190306

    详细信息
      作者简介:

      刘营(1989-), 男, 博士, 特任副研究员, 主要从事大地电磁电各向异性识别及定量提取研究

    • 中图分类号: P54

    Electrical Anisotropic Structure in the Quaternary Volcanic Region of North Hainan Island and Its Geological Implications

    • 摘要: 琼北地区广泛发育第四纪火山,然而其稳定性及与长流-仙沟断裂的关系仍存在争议.在琼北第四纪火山区,获得了覆盖雷虎岭火山系统的184个大地电磁测深数据.相位张量分析指示了电各向异性的存在,采用一维各向异性反演获得了地下电各向异性结构.结果显示浅部(~1~5 km)最小电阻率方向近平行于长流-仙沟断裂;而深部(~5~15 km)近南北向,与断裂斜交.研究表明长流-仙沟断裂不是深大断裂,且并不控制深部岩浆路径;深部各向异性可能反映了一个存储含盐流体的高孔隙度区域,其来源于更深位置的部分熔融,而这指示雷虎岭火山系统当前处于休眠状态.

       

    • 图  1  研究区地形及测点分布

      白色实心点为BBMT测点,浅蓝色实心点为AMT测点.LHL.雷虎岭火山口;RHL.儒黄岭火山口;YML.永茂岭火山口;LJP.罗京盘火山口;C-X Fault.长流-仙沟断裂;Profile 1, 2, 3.穿越火山口的3条剖面

      Fig.  1.  Research region topography and site distribution

      图  2  BBMT测点0.1 s (a)、1.1 s (b)、23.2 s (c)、216 s (d)四个周期的相位张量椭圆平面

      图中椭圆长轴归一化为同一常数,填充的颜色表示扭曲角大小,黄色表示|ψ| > 6°

      Fig.  2.  The phase tensor ellipses of BBMT sites for 0.1 s (a), 1.1 s (b), 23.2 s (c) and 216 s (d)

      图  3  AMT测点0.01 s (a)、0.1 s (b)、1.1 s (c)、23.2 s (d)四个周期的相位张量椭圆平面

      Fig.  3.  The phase tensor ellipses of AMT sites for 0.01 s (a), 0.1 s (b), 1.1 s (c) and 23.2 s (d)

      图  4  三维异常体平面示意及测点分布

      三维异常体顶面距地表 3 km,且尺寸为7 km×10 km×7.5 km,嵌入在100 Ω·m的半空间

      Fig.  4.  The plan view of 3D anomaly and site distribution

      图  5  模型正演响应的一维各向异性反演结果剖面

      a. x=0剖面;b. y=0剖面

      Fig.  5.  Vertical cross-sections of 1D anisotropic inversion result for the model forward responses

      图  6  模型正演响应的一维各向异性反演结果不同深度切片

      a. 2.1 km;b. 4.9 km;c. 9.1 km;d. 13.7 km;红色实线为理论模型最小电阻率方向

      Fig.  6.  Slices at different depths of 1D anisotropic inversion result for the model forward responses

      图  7  实测数据反演拟合差分布

      Fig.  7.  The RMS distribution of real data inversion

      图  8  BBMT测点一维各向异性反演结果不同深度切片

      a. 1 km;b. 3 km;c. 5 km;d. 8 km;e. 11 km;f. 15 km

      Fig.  8.  Different depth slices of 1D anisotropic inversion result for BBMT sites

      图  9  AMT测点一维各向异性反演结果不同深度切片

      a. 0.2 km;b. 0.5 km;c. 1 km;d. 3 km

      Fig.  9.  Different depth slices of 1D anisotropic inversion result for AMT sites

      图  10  一维各向异性反演结果剖面

      a.剖面1;b.剖面2;c.剖面3

      Fig.  10.  The vertical cross-sections of 1D anisotropic inversion result

    • Adetunji, A. Q., Ferguson, I. J., Jones, A. G., 2015. Reexamination of Magnetotelluric Responses and Electrical Anisotropy of the Lithospheric Mantle in the Grenville Province, Canada. Journal of Geophysical Research:Solid Earth, 120(3):1890-1908. https://doi.org/10.1002/2014jb011713
      Becker, T. W., Chevrot, S., Schulte-Pelkum, V., et al., 2006. Statistical Properties of Seismic Anisotropy Predicted by Upper Mantle Geodynamic Models. Journal of Geophysical Research:Solid Earth, 111(B8):B08309. https://doi.org/10.1029/2005jb004095
      Booker, J. R., 2014. The Magnetotelluric Phase Tensor:A Critical Review. Surveys in Geophysics, 35(1):7-40. https://doi.org/10.1007/s10712-013-9234-2
      Caldwell, T. G., Bibby, H. M., Brown, C., 2004. The Magnetotelluric Phase Tensor. Geophysical Journal International, 158(2):457-469. https://doi.org/10.1111/j.1365-246x.2004.02281.x
      Caricchi, L., Gaillard, F., Mecklenburgh, J., et al., 2011. Experimental Determination of Electrical Conductivity during Deformation of Melt-Bearing Olivine Aggregates:Implications for Electrical Anisotropy in the Oceanic Low Velocity Zone. Earth and Planetary Science Letters, 302(1-2):81-94. https://doi.org/10.1016/j.epsl.2010.11.041
      Davis, T. A., 2004. Algorithm 832:UMFPACK V4.3-An Unsymmetric-Pattern Multifrontal Method. ACM Transactions on Mathematical Software, 30(2):196-199. https://doi.org/10.1145/992200.992206
      Egbert, G. D., Booker, J. R., 1986. Robust Estimation of Geomagnetic Transfer Functions. Geophysical Journal International, 87(1):173-194. https://doi.org/10.1111/j.1365-246x.1986.tb04552.x
      Fan, Q. C., Sun, Q., Li, N., et al., 2004. Periods of Volcanic Activity and Magma Evolution of Holocene in North Hainan Island. Acta Petrologica Sinica, 20(3):533-544 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200403017
      Feng, C., Yang, J., Jiang, H. C., 2018. Diversity and Distribution of Nitrogen-Fixing Bacteria in Two Geothermal Channels in Tengchong Geothermal Zone, Yunnan Province. Earth Science, 43(Suppl. 1):10-18 (in Chinese with English abstract. http://d.old.wanfangdata.com.cn/Periodical/dqkx2018z1002
      Gamble, T. D., Goubau, W. M., Clarke, J., 1979. Magnetotellurics with a Remote Magnetic Reference. Geophysics, 44(1):53-68. https://doi.org/10.1190/1.1440923
      Gelman, S. E., Gutiérrez, F. J., Bachmann, O., 2013. On the Longevity of Large Upper Crustal Silicic Magma Reservoirs. Geology, 41(7):759-762. https://doi.org/10.1130/g34241.1
      Gerst, A., Savage, M.K., 2004. Seismic Anisotropy Beneath Ruapehu Volcano:A Possible Eruption Forecasting Tool. Science, 306(5701):1543-1547. https://doi.org/10.1126/science.1103445
      Guo, Q. H., Liu, M. L., Li, J. X., 2017. Thioarsenic Species in the High-Temperature Hot Springs from the Rehai Geothermal Field (Tengchong) and Their Geochemical Geneses. Earth Science, 42(2):286-297 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201702009
      Hamilton, M. P., Jones, A. G., Evans, R. L., et al., 2006. Electrical Anisotropy of South African Lithosphere Compared with Seismic Anisotropy from Shear-Wave Splitting Analyses. Physics of the Earth and Planetary Interiors, 158(2-4):226-239. https://doi.org/10.1016/j.pepi.2006.03.027
      Heise, W., Bibby, H. M., Caldwell, T. G., et al., 2007. Melt Distribution Beneath a Young Continental Rift:The Taupo Volcanic Zone, New Zealand. Geophysical Research Letters, 34(14):176-192. https://doi.org/10.1029/2007gl029629
      Heise, W., Caldwell, T. G., Bertrand, E. A., et al., 2016. Imaging the Deep Source of the Rotorua and Waimangu Geothermal Fields, Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research, 314:39-48. https://doi.org/10.1016/j.jvolgeores.2015.10.017
      Hill, G. J., Bibby, H. M., Ogawa, Y., et al., 2015. Structure of the Tongariro Volcanic System:Insights from Magnetotelluric Imaging. Earth and Planetary Science Letters, 432:115-125. https://doi.org/10.1016/j.epsl.2015.10.003
      Hong, H. Z., 2006. Introduction of the Program "Inspecting for the Qiongbei Volcano and Studies for Its Eruption Possibility". Recent Developments in World Seismology, (9):32-34 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gjdzdt200609008
      Hu, J. C., Bai, D. H., Wang, W. H., et al., 2007. Magnetotelluric Surveying and Electrical Structure of the Deep Underground Part in Leiqiong Volcanic Area. South China Journal of Selsmology, 27(1):1-7 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hndz200701001
      Jia, S. X., Li, Z. X., Xu, Z. F., et al., 2006. Crustal Structure Features of the Leiqiong Depression in Hainan Province. Chinese Journal of Geophysics, 49(5):1255-1266. https://doi.org/10.1002/cjg2.950
      Jiang, C. X., Schmandt, B., Farrell, J., et al., 2018. Seismically Anisotropic Magma Reservoirs Underlying Silicic Calderas. Geology, 46(8):727-730. https://doi.org/10.1130/g45104.1
      Jones, A. G., 2012. Distortion Decomposition of the Magnetotelluric Impedance Tensors from a One-Dimensional Anisotropic Earth. Geophysical Journal International, 189(1):268-284. https://doi.org/10.1111/j.1365-246x.2012.05362.x
      Li, Z. X., Lei, J. S., Zhao, D. P., et al., 2008. Three-Dimensional P-Wave Velocity Structure of the Crust Beneath Hainan Island and its Adjacent Regions, China. Acta Seismologica Sinica, 21(5):441-448. https://doi.org/10.1007/s11589-008-0441-8
      Liu, R. X., 2000. Active Volcanoes in China. Seismological Press, Beijing (in Chinese).
      Liu, Y., 2016. Investigation of Lithospheric Electrical Anisotropy in Western Junggar (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Liu, Z. F., Ma, J., Wei, G., et al., 2017. Magnetism of a Red Soil Core Derived from Basalt, Northern Hainan Island, China:Volcanic Ash Versus Pedogenesis. Journal of Geophysical Research:Solid Earth, 12(3):1677-1696. https://doi.org/10.1002/2016jb013834
      Mordret, A., Rivet, D., Landès, M., et al., 2015. Three-Dimensional Shear Velocity Anisotropic Model of Piton de La Fournaise Volcano (La Réunion Island) from Ambient Seismic Noise. Journal of Geophysical Research:Solid Earth, 120(1):406-427. https://doi.org/10.1002/2014jb011654
      Nover, G., 2005. Electrical Properties of Crustal and Mantle Rocks-A Review of Laboratory Measurements and their Explanation. Surveys in Geophysics, 26(5):593-651. https://doi.org/10.1007/s10712-005-1759-6
      Pek, J., Santos, F. A. M., 2006. Magnetotelluric Inversion for Anisotropic Conductivities in Layered Media. Physics of the Earth and Planetary Interiors, 158(2-4):139-158. https://doi.org/10.1016/j.pepi.2006.03.023
      Roux, E., Moorkamp, M., Jones, A. G., et al., 2011. Joint Inversion of Long-Period Magnetotelluric Data and Surface-Wave Dispersion Curves for Anisotropic Structure:Application to Data from Central Germany. Geophysical Research Letters, 38(5):387-404. https://doi.org/10.1029/2010gl046358
      Small, C., Naumann, T., 2001. The Global Distribution of Human Population and Recent Volcanism. Global Environmental Change Part B:Environmental Hazards, 3(3-4):93-109. https://doi.org/10.1016/s1464-2867(02)00002-5
      Sun, Q., 2003. Quaternary Volcanic Activity and Magma Evolution in North Hainan Island (Dissertation). Institute of Geology, China Earthquake Administration, Beijing (in Chinese with English abstract).
      Wei, H. Q., Bai, Z. D., Hu, J. C., et al., 2003. Nomenclature of the Holocene Volcanic Systems and Research on the Textural Parameters of the Scoria Cones in Northern Hainan Island. Seismology and Geology, 25(Suppl.):21-32 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz2003z1004
      Whittington, A. G., Hofmeister, A. M., Nabelek, P. I., 2009. Temperature-Dependent Thermal Diffusivity of the Earth's Crust and Implications for Magmatism. Nature, 458(7236):319-321. https://doi.org/10.1038/nature07818
      Xia, S. H., Zhao, D. P., Sun, J. L., et al., 2016. Teleseismic Imaging of the Mantle Beneath Southernmost China:New Insights into the Hainan Plume. Gondwana Research, 36:46-56. https://doi.org/10.1016/j.gr.2016.05.003
      Xu, Y. X., Zhu, L. P., Wang, Q. Y., et al., 2017. Heat Shielding Effects in the Earth's Crust. Journal of Earth Science, 28(1):161-167. https://doi.org/10.1007/s12583-017-0744-6
      Yan, C. G., Jiang, W. L., 2007. Relationship between the Activity of the Changliu-Xiangou Fault Zone in Late-Quaternary and Volcanic Activity in North Hainan Island. Technology for Earthquake Disaster Prevention, 2(3):230-242 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zzfyjs200703002
      Zhao, Y. D., Gan, H. J., Shi, Y., et al., 2016. Characteristics of Geothermal Anomaly and its Effect on Oil and Gas Reservoir in Fushan Sag of Beibuwan Basin. Petroleum Geology and Recovery Efficiency, 23(3):40-46 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqdzycsl201603007
      Zhdanov, M. S., Varentsov, I. M., Weaver, J. T., et al., 1997. Methods for Modelling Electromagnetic Fields Results from COMMEMI-The International Project on the Comparison of Modelling Methods for Electromagnetic Induction. Journal of Applied Geophysics, 37(3-4):133-271. https://doi.org/10.1016/s0926-9851(97)00013-x
      樊祺诚, 孙谦, 李霓, 等, 2004.琼北火山活动分期与全新世岩浆演化.岩石学报, 20(3):533-544. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200403017
      冯灿, 杨渐, 蒋宏忱, 2018.云南腾冲两条热泉溪流的固氮细菌群落多样性.地球科学, 43(Suppl.1):10-18. http://d.old.wanfangdata.com.cn/Periodical/dqkx2018z1002
      郭清海, 刘明亮, 李洁祥, 2017.腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因.地球科学, 42(2):286-297. doi: 10.3969/j.issn.1672-6561.2017.02.013
      洪汉净, 2006."琼北火山探查及喷发危险性研究"项目成果介绍.国际地震动态, (9):32-34. doi: 10.3969/j.issn.0253-4975.2006.09.008
      胡久常, 白登海, 王薇华, 等, 2007.雷琼火山区地下深部大地电磁探测与电性结构分析.华南地震, 27(1):1-7. doi: 10.3969/j.issn.1001-8662.2007.01.001
      刘若新, 2000.中国的活火山.北京:地震出版社.
      刘营, 2016.西准噶尔岩石圈电各向异性研究(博士学位论文).武汉: 中国地质大学.
      孙谦, 2003.琼北第四纪火山活动与岩浆演化(博士学位论文).北京: 中国地震局地质研究所.
      魏海泉, 白志达, 胡久常, 等, 2003.琼北全新世火山区火山系统的划分与锥体结构参数研究.地震地质, 25(增刊):21-32. http://d.old.wanfangdata.com.cn/Periodical/dzdz2003z1004
      闫成国, 江娃利, 2007.琼北地区北西方向长流-仙沟断裂带晚第四纪活动及与火山活动关系的讨论.震灾防御技术, 2(3):230-242. doi: 10.3969/j.issn.1673-5722.2007.03.002
      赵迎冬, 甘华军, 时阳, 等, 2016.北部湾盆地福山凹陷异常地温特征及其对油气藏的影响.油气地质与采收率, 23(3):40-46. doi: 10.3969/j.issn.1009-9603.2016.03.007
    • 加载中
    图(10)
    计量
    • 文章访问数:  3307
    • HTML全文浏览量:  1188
    • PDF下载量:  102
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-10-09
    • 刊出日期:  2020-01-15

    目录

      /

      返回文章
      返回