In Situ Trace Element Analysis of Pyrite from Bangbu Orogenic Gold Deposit and Its Metallogenic Significance
-
摘要: 邦布金矿床是目前在雅江缝合带研究程度最高且唯一正在开采的大型造山型金矿床.为理解邦布金矿床中金的来源及迁移沉淀机制,运用原位微区分析技术对邦布矿床中不同世代含金黄铁矿的微量元素组成进行测定.结果显示,亲铁元素Co、Ni主要以类质同象的形式进入到黄铁矿的晶格中替代Fe,As和Se呈类质同象形式替换S,Au是以纳米颗粒的形式均匀或不均匀的分布于不同产状的黄铁矿之中.邦布金矿床中的含金石英脉中三个不同世代的黄铁矿的Co/Ni比值均小于1,保存了围岩中黄铁矿的信息,显示出一种沉积或沉积改造成因.Au与As和Se具有明显的正相关关系,As和Se对Au的迁移及富集具有重要的作用.Abstract: The Bangbu deposit is the only large orogenic gold deposit that is being exploited with the highest degree of research in the Yurlung-Zangbo suture zone. In order to understand the source, transportation and precipitation of Au in the Bangbu deposit, in situ microanalysis technique was used to obtain the trace elements compositions of Au-bearing pyrite from different generations. In situ trace elements results show that the siderophile elements Co and Ni mainly enter the lattice of pyrite to substitute Fe while As and Se substitute S in the form of isomorphism. Gold is distributed evenly in different generations of pyrite in the form of nanoparticles. The Co/Ni ratios of pyrite from three generations of Au-bearing quartz veins are all less than 1 which preserve the information of pyrite of the surrounding rocks indicating a kind of sedimentation or sedimentation-reformation origin. As and Se play important roles in the migration and accumulation of Au as Au has obvious positive correlation with As and Se.
-
Key words:
- In situ trace elements /
- pyrite /
- Bangbu gold deposit /
- Yurlung-Zangbo suture zone /
- deposits
-
图 1 青藏高原造山型金成矿带简图(a)、邦布金矿矿区地质简图(b)及Ⅲ号矿体素描图(c)
a图据侯增谦和王二七(2008)改编;b图据Pei et al.(2016);c图据Sun et al.(2016)
Fig. 1. Geological map of the orogenic Au belts in the Tibetan Plateau (a), Bangbu gold deposit (b) and map of Ⅲ orebody (c)
图 5 邦布金矿床黄铁矿Co-Ni成因图解
底图据赵振华等(1987)
Fig. 5. Correlation of Co and Ni in pyrite from the Bangbu gold deposit
-
Agangi, A., Hofmann, A., Wohlgemuth-Ueberwasser, C. C., 2013. Pyrite Zoning as a Record of Mineralization in the Ventersdorp Contact Reef, Witwatersrand Basin, South Africa. Economic Geology, 108(6): 1243-1272. https://doi.org/10.2113/econgeo.108.6.1243 Belissont, R., Boiron, M.C., Luais, B., et al., 2014.LA-ICP-MS Analyses of Minor and Trace Elements and Bulk Ge Isotopes in Zoned Ge-Rich Sphalerites from the Noailhac-Saint-Salvy Deposit (France):Insights into Incorporation Mechanisms and Ore Deposition Processes. Geochimica et Cosmochimica Acta, 126:518-540. https://doi.org/10.1016/j.gca.2013.10.052 Bralia, A., Sabatini, G., Troja, F., 1979.A Revaluation of the Co/Ni Ratio in Pyrite as Geochemical Tool in Ore Genesis Problems.Mineralium Deposita, 14(3):353-374. http://www.sciencedirect.com/science/article/pii/S1053811905001527 Brill, B., 1989.Trace-Element Contents and Partitioning of Elements in Ore Minerals from the CSA Cu-Pb-Zn Deposit, Australia.Canadian Mineralogist, 27:263-274. Chen, L.M., Song, X.Y., Danyushevsky, L.V., et al., 2015.A Laser Ablation ICP-MS Study of Platinum-Group and Chalcophile Elements in Base Metal Sulfide Minerals of the Jinchuan Ni-Cu Sulfide Deposit, NW China.Ore Geology Reviews, 65:955-967. https://doi.org/10.1016/j.oregeorev.2014.07.011 Cook, N.J., Chryssoulis, S.L., 1990.Concentrations of Invisible Gold in the Common Sulfides.The Canadian Mineralogist, 28(1):1-16. Cook, N.J., Ciobanu, C.L., Danyushevsky, L.V., et al., 2011. Minor and Trace Elements in Bornite and Associated Cu-(Fe)-Sulfides:A LA-ICP-MS Study Bornite Mineral Chemistry. Geochimica et Cosmochimica Acta, 75 (21): 6473-6496. https://doi.org/10.1016/j.gca.2011.08.021 Cook, N. J., Ciobanu, C. L., Pring, A., et al., 2009. Trace and Minor Elements in Sphalerite: A LA-ICP-MS Study. Geochimica et Cosmochimica Acta, 73(16): 4761-4791. https://doi.org/10.1016/j.gca.2009.05.045 Franchini, M., McFarlane, C., Maydagán, L., et al., 2015. Trace Metals in Pyrite and Marcasite from the Agua Rica Porphyry-High Sulfidation Epithermal Deposit, Catamarca, Argentina:Textural Features and Metal Zoning at the Porphyry to Epithermal Transition.Ore Geology Reviews, 66: 366-387. https://doi.org/10.1016/j.oregeorev.2014.10.022 Gong, W., Jiang, X. D., 2017. Thermal Evolution History and Its Genesis of the Ailao Shan-Red River Fault Zone in the Ailao Shan and Day Nui Con Voi Massif during Oligocene-Early Miocene.Earth Science, 42(2):223-239(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201702005 Hou, Z. Q., Cook, N. J., 2009. Metallogenesis of the Tibetan Collisional Orogen: A Review and Introduction to the Special Issue. Ore Geology Reviews, 36(1-3): 2-24. https://doi.org/10.1016/j.oregeorev.2009.05.001 Hou, Z. Q., Wang, E. Q., 2008. Metallogenesis of the Indo-Asian Collisional Orogen:New Advances.Acta Geoscientica Sinica, 29(3): 275-292(in Chinese with English abstract). Jiang, S.H., Nie, F.J., Hu, P., et al., 2009.Mayum:An Orogenic Gold Deposit in Tibet, China. Ore Geology Reviews, 36(1-3): 160-173. https://doi.org/10.1016/j.oregeorev.2009.03.006 Large, R.R., Bull, S.W., Maslennikov, V.V., 2011.A Carbonaceous Sedimentary Source-Rock Model for Carlin-Type and Orogenic Gold Deposits. Economic Geology, 106(3): 331-358. https://doi.org/10.2113/econgeo.106.3.331 Leng, C. B., 2017. Genesis of Hongshan Cu Polymetallic Large Deposit in the Zhongdian Area, NW Yunnan:Constraints from LA-ICP-MS Trace Elements of Pyrite and Pyrrhotite. Earth Science Frontiers, 24(6): 162-175(in Chinese with English abstract). Lin, Y., Cook, N.J., Ciobanu, C.L., et al., 2011.Trace and Minor Elements in Sphalerite from Base Metal Deposits in South China: A LA-ICP-MS Study. Ore Geology Reviews, 39(4): 188-217. https://doi.org/10.1016/j.oregeorev.2011.03.001 Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 Mikucki, E.J., Ridley, J.R., 1993.The Hydrothermal Fluid of Archæan Lode-Gold Deposits at Different Metamorphic Grades: Compositional Constraints from Ore and Wallrock Alteration Assemblages. Mineralium Deposita, 28 (6):469-481. https://doi.org/10.1007/bf02431603 Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2003. Response of Volcanism to the India-Asia Collision. Earth Science Frontiers, 10(3): 135-148(in Chinese with English abstract). Pals, D. W., Spry, P. G., Chryssoulis, S., 2003. Invisible Gold and Tellurium in Arsenic-Rich Pyrite from the Emperor Gold Deposit, Fiji:Implications for Gold Distribution and Deposition.Economic Geology, 98(3): 479-493. https://doi.org/10.2113/gsecongeo.98.3.479 Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences, 53: 3-14. https://doi.org/10.1016/j.jseaes.2011.12.018 Pei, Y. R., Sun, Q. Z., Zheng, Y. C., et al., 2016. Genesis of the Bangbu Orogenic Gold Deposit, Tibet: Evidence from Fluid Inclusion, Stable Isotopes, and Ar-Ar Geochronology. Acta Geologica Sinica (English Edition), 90(2): 722-737. https://doi.org/10.1111/1755-6724.12700 Phillips, G.N., Evans, K.A., 2004.Role of CO2 in the Formation of Gold Deposits.Nature, 429:860-863. https://doi.org/10.1038/nature02644 Phillips, G.N., Powell, R., 2010.Formation of Gold Deposits: A Metamorphic Devolatilization Model.Journal of Metamorphic Geology, 28(6): 689-718. https://doi.org/10.1111/j.1525-1314.2010.00887.x Reich, M., Kesler, S.E., Utsunomiya, S., et al., 2005.Solubility of Gold in Arsenian Pyrite.Geochimica et Cosmochim ica Acta, 69(11):2781-2796. https://doi.org/10.1016/j.gca.2005.01.011 Ridley, J. R., Diamond, L. W., 2000. Fluid Chemistry of Orogenic Lode Gold Deposits and Implications for Genetic Models.Reviews in Economic Geology, 13:141-162. Sun, Q. Z., Zheng, Y. C., Hou, Z. Q., et al., 2013. Genesis of Bangbu Orogenic Gold Deposit in Tibet: Constraints from Fluid Inclusions and Isotopic Composition. Mineral Deposits, 32(2): 353-366(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201302011.htm Sun, Q.Z., Zheng, Y.C., Li, W., et al., 2012.Study on the Occurrence State of Au in the Bangbu Orogenic Gold Deposit, Southern Tibet. Journal of East China Institute of Technology(Natural Science), 35(2): 136-142(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hddzxyxb201202006 Sun, X. M., Shi, G. Y., Xiong, D. X., et al., 2007. Platinum Group Elements Geochemistry and Re-Os Isotopic Compositions of Daping Gold Deposit in Ailaoshan Gold Belt, Yunnan Province, China and Their Metallogenic Implications. Acta Geologica Sinica, 81(3): 394-404(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200703011 Sun, X. M., Wei, H. X., Zhai, W., et al., 2016. Fluid Inclusion Geochemistry and Ar-Ar Geochronology of the Cenozoic Bangbu Orogenic Gold Deposit, Southern Tibet, China. Ore Geology Reviews, 74: 196-210. https://doi.org/10.1016/j.oregeorev.2015.11.021 Sun, X. M., Zhang, Y., Xiong, D. X., et al., 2009. Crust and Mantle Contributions to Gold-Forming Process at the Daping Deposit, Ailaoshan Gold Belt, Yunnan, China. Ore Geology Reviews, 36(1-3): 235-249. https://doi.org/10.1016/j.oregeorev.2009.05.002 Wei, H.X., Sun, X.M., Zhai, W., et al., 2010.He-Ar-S Isotopic Compositions of Ore-Forming Fluids in the Bangbu Large-Scale Gold Deposit in Southern Tibet, China.Acta Petrologica Sinica, 26(6): 1685-1691(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201006005 Ye, T., Li, N., 2015.The Application of Pyrite LA-ICP-MS Trace Element Analysis to Gold Deposits. Chinese Journal of Geology, 50(4):1178-1199(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx201504010 Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/annurev.earth.28.1.211 Zhang, X., Deng, X.G., Yang, Z.S., et al., 2017.Genesis of the Gold Deposit in the Indus-Yarlung Tsangpo Suture Zone, Southern Tibet: Evidence from Geological and Geochemical Data. Acta Geologica Sinica(English Edition), 91(3): 947-970. https://doi.org/10.1111/1755-6724.13318 Zhao, X.Y., Yang, Z.S., Hou, Z.Q., et al., 2019.The Structural Deformation Characteristics and the Control of Gold Mineralization of the Upper Triassic Flysch (Langjiexue Group) in Tibetan Plateau. Geological Journal, 54(3): 1331-1342. https://doi.org/10.1002/gj.3230 Zhao, Z.H., Zhao, H.L., Yang, W.H., et al., 1987.Trace Element Geochemical Characteristics of Cambrian-Ordovician Boundary Strata in the Duibian and Wushan Profiles.Geochimica, 16(2):99-112(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000258178 Zhou, F., Sun, X. M., Zhai, W., et al., 2011. Geochemistry of Ore-Forming Fluid and Metallogenic Mechanism for Zhemulang Gold Deposit in Southern Tibet, China. Acta Petrologica Sinica, 27(9): 2775-2785(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201109026.htm Zhou, T.F., Zhang, L.J., Yuan, F., et al., 2010.LA-ICP-MS in Situ Trace Element Analysis of Pyrite from the Xinqiao Cu-Au-S Deposit in Tongling, Anhui, and Its Constraints on the Ore Genesis. Earth Science Frontiers, 17 (2):306-319(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201002026 Zhu, X.Q., Guo, X.W., Zhang, X.H., et al., 2018.Thermochronological Constraints on Cenozoic Tectonic Evolution of South-Central Qinghai-Tibet Plateau. Earth Science, 43 (6):1903-1920(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201806009 宫伟, 姜效典, 2017.哀牢山-红河断裂带哀牢山-大象山段渐新世-早中新世热史演化及成因.地球科学, 42(2): 223-239. http://earth-science.net/WebPage/Article.aspx?id=3430 侯增谦, 王二七, 2008.印度-亚洲大陆碰撞成矿作用主要研究进展.地球学报, 29(3):275-292. doi: 10.3321/j.issn:1006-3021.2008.03.003 冷成彪, 2017.滇西北红山铜多金属矿床的成因类型:黄铁矿和磁黄铁矿LA-ICP-MS微量元素制约.地学前缘, 24 (6):162-175. http://d.old.wanfangdata.com.cn/Periodical/dxqy201706014 莫宣学, 赵志丹, 邓晋福, 等, 2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘, 10(3):135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013 孙清钟, 郑远川, 侯增谦, 等, 2013.西藏邦布石英脉型金矿床的成因:流体包裹体及氢-氧同位素证据.矿床地质, 32 (2):353-366. doi: 10.3969/j.issn.0258-7106.2013.02.010 孙清钟, 郑远川, 李为, 等, 2012.西藏邦布造山型金矿金的赋存状态研究.东华理工大学学报(自然科学版), 35(2): 136-142. doi: 10.3969/j.issn.1674-3504.2012.02.006 孙晓明, 石贵勇, 熊德信, 等, 2007.云南哀牢山金矿带大坪金矿铂族元素(PGE)和Re-Os同位素地球化学及其矿床成因意义.地质学报, 81(3):394-404. doi: 10.3321/j.issn:0001-5717.2007.03.011 韦慧晓, 孙晓明, 翟伟, 等, 2010.藏南邦布大型金矿成矿流体He-Ar-S同位素组成及其成矿意义.岩石学报, 26(6): 1685-1691. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201006005 叶甜, 李诺, 2015.黄铁矿原位LA-ICP-MS微量元素分析在金矿床中应用.地质科学, 50(4):1178-1199. doi: 10.3969/j.issn.0563-5020.2015.04.010 赵振华, 赵惠兰, 杨蔚华, 等, 1987.碓边和武山寒武-奥陶系界线剖面微量元素地球化学特征.地球化学, 16(2): 99-112. doi: 10.3321/j.issn:0379-1726.1987.02.001 周峰, 孙晓明, 翟伟, 等, 2011.藏南折木朗造山型金矿成矿流体地球化学和成矿机制.岩石学报, 27(9):2775-2785. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201109025 周涛发, 张乐骏, 袁峰, 等, 2010.安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约.地学前缘, 17(2):306-319. http://d.old.wanfangdata.com.cn/Periodical/dxqy201002026 朱晓青, 郭兴伟, 张训华, 等, 2018.青藏高原中-南部新生代构造演化的热年代学制约.地球科学, 43(6): 1903-1920. http://earth-science.net/WebPage/Article.aspx?id=3854 -
dqkx-44-6-2052-Table.pdf
-