• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    胶东范家庄地区晚侏罗世低镁埃达克质花岗岩成因及构造背景

    刘晓阳 谭俊 王怀洪 王勇军 甘觐荣 王治华 张铭

    刘晓阳, 谭俊, 王怀洪, 王勇军, 甘觐荣, 王治华, 张铭, 2020. 胶东范家庄地区晚侏罗世低镁埃达克质花岗岩成因及构造背景. 地球科学, 45(2): 451-466. doi: 10.3799/dqkx.2018.376
    引用本文: 刘晓阳, 谭俊, 王怀洪, 王勇军, 甘觐荣, 王治华, 张铭, 2020. 胶东范家庄地区晚侏罗世低镁埃达克质花岗岩成因及构造背景. 地球科学, 45(2): 451-466. doi: 10.3799/dqkx.2018.376
    Liu Xiaoyang, Tan Jun, Wang Huaihong, Wang Yongjun, Gan Jinrong, Wang Zhihua, Zhang Ming, 2020. Petrogenesis and Tectonic Setting of the Late Jurassic Low-Mg Adakitic Granites in the Fanjiazhuang Area, Jiaodong Peninsula. Earth Science, 45(2): 451-466. doi: 10.3799/dqkx.2018.376
    Citation: Liu Xiaoyang, Tan Jun, Wang Huaihong, Wang Yongjun, Gan Jinrong, Wang Zhihua, Zhang Ming, 2020. Petrogenesis and Tectonic Setting of the Late Jurassic Low-Mg Adakitic Granites in the Fanjiazhuang Area, Jiaodong Peninsula. Earth Science, 45(2): 451-466. doi: 10.3799/dqkx.2018.376

    胶东范家庄地区晚侏罗世低镁埃达克质花岗岩成因及构造背景

    doi: 10.3799/dqkx.2018.376
    基金项目: 

    山东省煤田地质局2017年度科研专项基金项目 鲁煤地科字(2017)2号

    详细信息
      作者简介:

      刘晓阳(1993-), 男, 博士研究生, 主要从事矿床及矿产勘查研究工作

      通讯作者:

      谭俊

    • 中图分类号: P581

    Petrogenesis and Tectonic Setting of the Late Jurassic Low-Mg Adakitic Granites in the Fanjiazhuang Area, Jiaodong Peninsula

    • 摘要: 胶东地区广泛发育一系列晚侏罗世岩浆作用产生的埃达克质岩,其成因机制及构造背景研究为揭示胶东地区中生代构造演化提供了重要证据.选取出露于胶东苏鲁地区的范家庄花岗岩进行锆石U-Pb年龄、全岩主微量元素和Sr-Nd-Pb同位素组成分析,探讨了岩石成因及成岩构造背景.锆石U-Pb年龄结果表明范家庄花岗岩侵位于晚侏罗世(161±2 Ma).岩石主微量数据具有富硅(SiO2=68.94%~71.00%)、高铝(Al2O3>15.17%)、低镁(MgO=0.32%~0.41%);高Sr、低Y、Yb含量以及高(La/Yb)N(>38.59)比值的特点,同位素测试结果显示相对高的(87Sr/86Sr)i比值(0.709 28~0.711 41)、相对较低的εNdt)值(-20.5~-14.1)和高放射性Pb同位素组成(206Pb/204Pb)t=16.853~17.207,(207Pb/204Pb)t=15.436~15.495,(208Pb/204Pb)t=37.340~37.629.综合分析认为,范家庄岩体属于低镁埃达克质岩,产于增厚下地壳部分熔融,源区以扬子板块下地壳组分为主,混合有华北板块下地壳成分.晚侏罗世伊泽奈奇板块俯冲形成的弧后拉张环境诱发重力不稳定或者岩石圈伸展造成加厚的造山带垮塌,软流圈上涌的导致加厚地壳部分熔融可能是形成胶东范家庄低镁埃达克岩的地球动力学背景.

       

    • 图  1  胶东地区区域地质简图(a), 范家庄地区地质简图(b)

      高太忠等(1999); 陈海燕(2010)修改

      Fig.  1.  Geological map of the Jiaodong area (a) and geological map of the Fanjiazhuang area(b)

      图  2  范家庄花岗岩宏观及镜下照片

      Qtz.石英; Pl.斜长石; Afs.碱性长石; Bt.黑云母; Ms.白云母; Spn.榍石; Ser.绢云母

      Fig.  2.  The wild and the microscopic photos of the Fanjiazhuang granite

      图  3  范家庄花岗岩样品(FJZ10-6)锆石CL图

      实线圈代表U-Pb同位素分析测试点

      Fig.  3.  Cathodoluminescence images for zircons of sample FJZ10-6

      图  4  范家庄花岗岩样品(FJZ10-6)U-Pb年龄协和图(a)和加权平均年龄图(b)

      Fig.  4.  Zircon U-Pb concordia diagram (a) and histogram of weighted average age (b)

      图  5  范家庄花岗岩TAS图解

      Fig.  5.  Total alkalis vs. silica(TAS) diagram

      图  6  (a) K2O-SiO2关系; (b)A/NK-A/CNK关系

      Fig.  6.  (a)K2O vs. SiO2 diagram, (b)A/NK-A/CNK diagram

      图  7  原始地幔标准化微量元素蛛网图(a)和球粒陨石标准化稀土元素配分图

      球粒陨石及原始地幔标准化数据据Sun and McDonough (1989), 大陆下地壳成分引自(Rudnick and Gao, 2003), 大别造山带低镁埃达克质岩引自(刘质彬, 2017)

      Fig.  7.  Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace elements spider diagram (b) for Fanjiazhuang granite

      图  8  埃达克质岩Sr/Y vs. Y和((La/Yb)N vs. YbN判别图解

      图a据Ma et al. (2013)修改

      Fig.  8.  Adakitic trace elemental discrimination diagrams for Fanjiazhuang granite

      图  9  范家庄花岗岩Dy/Yb-Dy图解(a), La/Sm-La图解(b), MgO-SiO2图解(c)与TiO2-SiO2图解(d)

      c, d.底图据Wang et al. (2007)Moyen(2009)修改

      Fig.  9.  Dy/Yb vs. Dydiagram(a), La/Sm-La diagram (b), MgO vs. SiO2 diagram (c) and TiO2 vs. SiO2 diagram for Fanjiazhuang granite

      图  10  范家庄花岗岩εNd(t)- (87Sr/86Sr)i图解

      图据Yang et al. (2012b)修改

      Fig.  10.  Initial 87Sr/86Sr vs. εNd(t) value for Fanjiazhuang granite.

      图  11  范家庄花岗岩207Pb/204Pb(t)- 206Pb/204Pb(t)和208Pb/204Pb(t)- 206Pb/204Pb(t),

      图据Yang et al. (2012a)修改, 蚌埠地区荆山及西庐山岩体引自(杨德彬, 2009).

      Fig.  11.  Initial 207Pb/204Pb and 208Pb/204Pb vs. initial206 Pb/204Pb diagrams for the Fanjiazhuang granite

      图  12  伊泽奈奇板块与太平洋板块相互关系复原图(a)及胶东范家庄埃达克质岩演化模式图(b)

      图a据肖庆辉等(2010)修改

      Fig.  12.  Restoration map of the Izanagi plate and the Pacific plate (a); Geodymanic model for the generation and emplacement of the Fanjiazhuang granite in the Shandong Peninsula(b)

      表  1  胶东范家庄地区花岗岩(FJZ10-6)锆石LA-ICP-MS U-Pb定年分析结果

      Table  1.   LA-ICP-MS zircon U-Pb dating results of The Fanjiazhuang granite sample(FJZ10-6) from Shandong Peninsula

      分析点号 Th U Th/U U-Th-Pb同位素比值 同位素年龄(Ma)
      10-6 10-6 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U
      FJZ10-6-02 534 844 0.63 0.173 2 0.013 2 0.025 5 0.000 5 162 11 162 3
      FJZ10-6-03 371 892 0.42 0.180 4 0.011 5 0.025 3 0.000 5 168 10 161 3
      FJZ10-6-04 273 461 0.59 0.183 1 0.017 9 0.025 1 0.000 6 171 15 160 4
      FJZ10-6-07 161 272 0.59 0.186 7 0.018 6 0.026 3 0.000 7 174 16 167 4
      FJZ10-6-08 141 186 0.76 0.178 1 0.016 4 0.024 7 0.000 7 166 14 157 4
      FJZ10-6-09 594 1 859 0.32 0.180 5 0.009 8 0.025 2 0.000 4 168 8 160 3
      FJZ10-6-10 296 1 228 0.24 0.183 4 0.012 1 0.025 6 0.000 5 171 10 163 3
      FJZ10-6-11 121 704 0.17 0.195 3 0.016 6 0.025 9 0.000 5 181 14 165 3
      FJZ10-6-12 176 413 0.43 0.180 8 0.017 0 0.025 0 0.000 5 169 15 159 3
      FJZ10-6-13 649 1 931 0.34 0.180 5 0.007 9 0.025 7 0.000 4 168 7 164 3
      FJZ10-6-14 2 364 4 718 0.50 0.182 2 0.007 7 0.024 8 0.000 3 170 7 158 2
      FJZ10-6-15 734 2 336 0.31 0.176 1 0.010 9 0.024 7 0.000 3 165 9 157 2
      下载: 导出CSV

      表  2  胶东范家庄地区花岗岩石主量元素(%)、微量及稀土元素(10-6)分析结果

      Table  2.   Major(%) and trace element (10-6) compositions of the Fanjiazhuang granite from Shandong Peninsula

      岩性 范家庄花岗岩
      样品号 FJZ10-1 FJZ10-2 FJZ10-3 FJZ10-4 FJZ10-5 FJZ10-6 FJZ10-8 FJZ10-9
      SiO2 70.6 70.72 71.00 70.19 68.94 70.74 70.91 69.70
      TiO2 0.25 0.23 0.26 0.26 0.26 0.21 0.27 0.29
      Al2O3 15.52 15.17 15.56 15.60 15.74 15.46 16.33 15.82
      Fe2O3T 2.63 2.96 2.54 2.92 2.79 2.37 1.79 1.88
      MnO 0.04 0.05 0.04 0.05 0.04 0.04 0.03 0.03
      MgO 0.36 0.41 0.35 0.38 0.37 0.32 0.36 0.38
      CaO 1.98 1.74 1.94 1.86 2.00 1.84 2.08 2.04
      Na2O 4.36 4.15 4.29 4.31 4.39 4.20 4.31 4.31
      K2O 4.00 4.15 4.11 4.05 3.97 4.28 3.82 4.13
      P2O5 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.06
      LOI 0.22 0.41 0.33 0.48 0.31 0.27 0.30 0.24
      Total 100.02 100.05 100.48 100.16 98.87 99.78 100.25 98.87
      A/CNK 1.03 1.05 1.03 1.05 1.04 1.04 1.09 1.04
      Na2O+K2O 8.36 8.30 8.40 8.36 8.36 8.48 8.13 8.44
      K2O/Na2O 0.92 1.00 0.96 0.94 0.90 1.02 0.89 0.96
      Mg# 21 22 21 20 21 21 29 28
      La 50.82 44.67 42.58 51.39 49.43 48.26 48.81 56.04
      Ce 87.12 79.06 70.70 88.81 84.28 80.81 83.03 95.22
      Pr 7.78 7.86 7.34 9.00 9.14 8.33 8.24 9.42
      Nd 26.16 23.36 22.40 27.25 26.12 24.39 26.54 30.90
      Sm 3.49 3.60 3.47 3.75 3.76 3.02 3.58 4.42
      Eu 0.88 0.96 0.93 0.96 1.01 0.79 1.01 1.23
      Gd 2.32 2.48 2.32 2.24 2.46 1.66 2.11 2.71
      Tb 0.31 0.34 0.33 0.33 0.33 0.22 0.31 0.45
      Dy 1.35 1.71 1.62 1.37 1.50 0.72 1.69 2.36
      Ho 0.27 0.34 0.32 0.28 0.29 0.13 0.33 0.45
      Er 0.76 0.90 0.84 0.84 0.86 0.42 0.97 1.22
      Tm 0.11 0.13 0.11 0.13 0.12 0.05 0.13 0.19
      Yb 0.63 0.83 0.78 0.74 0.78 0.40 0.80 0.99
      Lu 0.09 0.10 0.09 0.11 0.12 0.06 0.11 0.13
      ∑REE 182.11 166.34 153.84 187.22 180.19 169.27 177.66 205.74
      LREE/HREE 30.14 23.33 22.96 29.97 26.93 45.14 26.55 23.19
      Sr/Y 102.7 76.8 85.9 101.7 108.5 206.1 106.6 81.7
      (La/Yb)N 57.6 38.6 39.2 49.7 45.6 87.6 43.8 40.7
      Eu/Eu* 0.89 0.93 0.94 0.94 0.95 0.97 1.04 1.01
      Sc 8.67 8.29 7.98 6.96 6.70 6.40 1.95 2.11
      V 4.9 8.2 6.4 8.9 7.9 7.3 6.4 6.7
      Cr 31.3 27.0 11.1 18.7 18.1 16.8 0.6 1.1
      Co 254.11 237.27 231.7 181.22 176.82 186.84 1.49 1.56
      Ni 30.4 28.2 23.4 22.5 20.5 23.2 0.7 1.0
      Rb 90 101 87 91 84 84 92 93
      Sr 911 849 898 946 995 874 1010 1045
      Y 8.87 11.05 10.45 9.30 9.17 4.24 9.47 12.80
      Zr 199 195 192 214 206 186 198 215
      Nb 4.88 12.70 6.68 6.89 7.23 3.78 7.50 8.84
      Ba 1 767 1 978 1 714 1 963 2 002 1 869 2 730 2 877
      Hf 4.23 4.78 4.24 5.00 4.87 4.75 4.84 5.14
      Ta 1.26 1.86 1.28 1.17 1.13 0.99 0.48 0.62
      Pb 23.4 31.0 23.0 26.7 27.0 28.3 29.5 29.6
      Th 9.81 9.10 7.81 10.05 10.19 9.16 9.02 10.30
      U 0.73 1.09 0.81 1.02 1.14 0.88 1.30 0.97
      注:LOI.烧失量; Mg#=100 × Mg2+/(Mg2++0.9 ×Fe2O3T); A/CNK = Al2O3/(CaO+Na2O+K2O)摩尔比
      下载: 导出CSV
    • Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144-146. https://doi.org/10.1038/362144a0
      Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467
      Cande, S. C., LaBreque, J. L., Larson, R. L, et al., 1989.Map of Magnetic Lineations of the World's Ocean Basins (Scale 1: 27 4 Million at the Equator). American Association of Petroleum Geologists, Tulsa.
      Cheng, H. Y., 2010.Genetic Mineralogy and Deep Prospects of Jinqingding Gold Deposit in Rushan, East Shangdong Province (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Chen, J. Z., Jiang, N., 2011.Petrogenesis of the Late-Triassic Alkaline Magmatism in the Jiaodong area: Evidence from U-Pb age, Hf-O Isotopes of Zircons. Acta Petrologica Sinica, 27(12): 3557-3574(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201112005
      Chen, S., Li, X. P., Duan, W.Y., et al., 2018. Petrological and Geochronological Study of Amphibolite from Jiaobei Terrane. Earth Science, 43(3): 716-732(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201803005
      Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
      Dewey, J. F., 1988. Extensional Collapse of Orogens. Tectonics, 7(6): 1123-1139. https://doi.org/10.1029/tc007i006p01123
      Ding, Z. J., Sun, F. Y., Liu, F. L., et al., 2015. Mesozoic Geodynamic Evolution andMetallogenic Series of Major Metal Deposits in Jiaodong Peninsula, China. Acta Petrologica Sinica, 31(10):3045-3080(in Chinese with English abstract).
      Feeley, T. C., Hacker, M. D., 1995. Intracrustal Derivation of Na-Rich Andesitic and Dacitic Magmas: An Example from Volcán Ollagüe, Andean Central Volcanic Zone. The Journal of Geology, 103(2): 213-225. https://doi.org/10.1086/629737
      Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162
      Gao, T. Z., Yang, M. Z., Jin, C. Z., et al., 1999.Study on Fluid and Tectonodynamics of Quartz Vein-Type Gold Deposits in the Mouping-Rushan Gold Belt, Shandong Province, China. Geotectonica et Metallogenia, 23(2): 130-136 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx199902005
      Griffin, W. L., Belousova, E. A., Shee, S. R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131(3/4): 231-282. https://doi.org/10.1016/j.precamres.2003.12.011
      Hou, M. L., Jiang, Y. H., Jiang, S. Y., et al., 2007. Contrasting Origins of Late Mesozoic Adakitic Granitoids from the Northwestern Jiaodong Peninsula, East China: Implications for Crustal Thickening to Delamination. Geological Magazine, 144(4): 619-631. https://doi.org/10.1017/s0016756807003494
      Hu, J., Jiang, S. Y., Zhao, H. X., et al., 2012. Geochemistry and Petrogenesis of the Huashan Granites and their Implications for the Mesozoic Tectonic Settings in the Xiaoqinling Gold Mineralization Belt, NW China. Journal of Asian Earth Sciences, 56: 276-289. https://doi.org/10.1016/j.jseaes.2012.05.016
      Huang, T., Yang, L. Q., Liu, X. D., et al., 2014.Crustal Evolution of the JiaobeiTerrane: Evidence from U-Pb Ages, Trace Element Compositions and Hf Isotopes of Inherited Zircons of the Linglong Biotite Granite. Acta Petrologica Sinica, 30(9):2574-2594 (in Chinese with English abstract).
      Jiang, N., Chen, J. Z., Guo, J. H., et al., 2012. In Situ Zircon U-Pb, Oxygen and Hafnium Isotopic Compositions of Jurassic Granites from the North China Craton: Evidence for Triassic Subduction of Continental Crust and Subsequent Metamorphism-Related 18O Depletion. Lithos, 142-143: 84-94. https://doi.org/10.1016/j.lithos.2012.02.018
      Kay, R. W., Kay, S.M., 1993. Delamination and Delamination Magmatism. Tectonophysics, 219(1/2/3): 177–189. https://doi.org/10.1016/0040-1951(93)90295-u
      Kay, S. M., Ramos, V. A., Marquez, M., 1993. Evidence in Cerro Pampa Volcanic Rocks for Slab-Melting Prior to Ridge-Trench Collision in Southern South America. The Journal of Geology, 101(6): 703–714. https://doi.org/10.1086/648269
      Kelemen, P. B., 1995. Genesis of High Mg# Andesites and the Continental Crust. Contributions to Mineralogy and Petrology, 120(1): 1-19. https://doi.org/10.1007/s004100050054
      Li, G., 2010. Characterist of Middle and Late Jurassic Crustal Extension in Yiwulushan Area, Western of Liaoning Province(Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Li, J. W., Zhao, X. F., Zhou, M. F., et al., 2009. Late Mesozoic Magmatism from the Daye Region, Eastern China: U-Pb Ages, Petrogenesis, and Geodynamic Implications. Contributions to Mineralogy and Petrology, 157(3): 383-409. https://doi.org/10.1007/s00410-008-0341-x
      Liang, Q., Jing, H., Gregoire, D. C., 2000. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, 51(3): 507-513. https://doi.org/10.1016/s0039-9140(99)00318-5
      Liang, X. R., Wei, G. J., Li, X. H., et al., 2003.Precise Measurement of 143Nd/144Nd and Sm/Nd Ratios Using Multiple-CollectorsInductively Coupled Plasma-Mass Spectrometer (MC-ICPMS). Geochimica, 32(1): 91-96 (in Chinese with English abstract).
      Lin, B. L., Li, B. Y., 2013.Geochemistry, U-Pb Dating, Lu-Hf Isotopic Analysis andGeological Significance of Linglong granite in Jiaodong Peninsula. Journal of Chengdu University of Technology (Science & Technology Edition). 40(2): 147-160 (in Chinese with English abstract).
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Liu, Y., Gao, S., Hu, Z., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
      Liu, Z. B., 2010. A Geochemical Study of Postcollisional Adakitic Granitoids in the Dabie Orogeny (Dissertation). University of Science and Technology of China, Beijing (in Chinese with English abstract).
      Ma, L., Jiang, S. Y., Dai, B. Z., et al., 2013. Multiple Sources for the Origin of Late Jurassic Linglong Adakitic Granite in the Shandong Peninsula, Eastern China: Zircon U-Pb Geochronological, Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 162-163: 251-263. https://doi.org/10.1016/j.lithos.2013.01.009
      Macpherson, C. G., Dreher, S. T., Thirlwall, M. F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3/4): 581-593. https://doi.org/10.1016/j.epsl.2005.12.034
      Miao, L. C., Luo, Z. K., Guan, K., et al., 1998.The Implication of the SHRIMP U-Pb Age in Zirconto the Petrogenesis of the Linglong Granite, East Shangdong Province. Acta Petrologica Sinica, 14(2): 198-206 (in Chinese with English abstract).
      Moore, G. W., 1989.Mesozoic and Cenozoic Paleogeographic Development of the Pacific Region. Abstracts, of 28th International Geological Congress, 2-455-456.Washington DC, USA.
      Moyen, J. F., 2009. High Sr/Y and La/Yb Ratios: The Meaning of the "Adakitic Signature". Lithos, 112(3/4): 556-574. https://doi.org/10.1016/j.lithos.2009.04.001
      Muir, R. J., Weaver, S. D., Bradshaw, J. D., et al., 1995. The Cretaceous Separation Point Batholith, New Zealand: Granitoid Magmas Formed by Melting of Mafic Lithosphere. Journal of the Geological Society, 152(4): 689-701. https://doi.org/10.1144/gsjgs.152.4.0689
      Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521. https://doi.org/10.1093/petrology/37.6.1491
      Qiu, Y. M., Groves, D. I., McNaughton, N. J., et al., 2002. Nature, Age, and Tectonic Setting of Granitoid-Hosted, Orogenic Gold Deposits of the Jiaodong Peninsula, Eastern North China Craton, China. Mineralium Deposita, 37(3): 283-305. https://doi.org/10.1007/s00126-001-0238-3
      Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
      Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0
      Rapp, R. P., Xiao, L., Shimizu, N., 2002. Experimental Constraints on the Origin of Potassium-Rich Adakites in Eastern China. Acta Petrologica Sinica, 18(3): 293-302.https://doi.org/1000-0569/2002/018(03)-0293-02
      Rudnick, R. L., Gao., S., 2003.Composition of the Continental Crust. In: Rudnick, R. L. (Ed), The Crust. In: Holland, H. D., Turekian, K. K., eds. Treatise on Geochemistry. Elsevier-Pergamum, Oxford, 1-64.
      Sai, S. X., Zhao, T. M., Wang, Z. L., et al., 2016.Petrogenesis of Linglong Biotite Granite: Constraints from Mineralogical Characteristics. Acta Petrologica Sinica, 32(8) :2477-2493(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201608017
      Sen, C., Dunn, T., 1994. Dehydration Melting of a Basaltic Composition Amphibolite at 1.5 and 2.0 GPaImplications for the Origin of Adakites. Contributions to Mineralogy and Petrology, 117(4): 394-409. https://doi.org/10.1007/bf00307273
      Seton, M., Müller, R. D., 2008.Reconstructing the Junction between Panthalassa and Tediys Since the Early Cretaceous. In: PESA Eastern Australasian Basins Symposium Ⅲ. Sydney, 263-266.
      Song, L. H., Zhu, G., Zhao, T., et al., 2016.Deformation Records in Late Mesozoic Plutons in the Bengbu Uplift in the Southeastern North China Craton and Their Tectonic Implications. Geological Review, 62(2): 400-418.(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201602016
      Stern, C. R., Kilian, R., 1996. Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3): 263-281. https://doi.org/10.1007/s004100050155
      Sun, L. Q., Ling, H. F., Zhao, K. D., et al., 2017.Petrogenesis of Early Cretaceous Adakitic Granodiorite: Implication for a Crust Thickening Event within the Cathaysia Block, South China. Science China Earth Sciences, 60: 1237-1255(in Chinese). doi: 10.1007/s11430-016-5200-y
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society. London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007. Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China: Implications for Partial Melting and Delamination of Thickened Lower Crust. Geochimica et Cosmochimica Acta, 71(10): 2609-2636. https://doi.org/10.1016/j.gca.2007.03.008
      Wang, S. J., Wan, Y. S., Guo, R. P., et al., 2011. SHRIMP Zircon Dating of Linglong Type (Superunit) Granite in Eastern Shandong Province. Land and Resources in Shangdong Province, 27(4): 1-7 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sddz201104001
      Wang, Z. L., Zhao, R. X., Zhang, Q., et al., 2014.Magma Mixing for the High Ba-Sr Guojialing-Type Granitoids in Northwest Jiaodong Peninsula: Constraints from Petrogeochemistry and Sr-Nd Isotopes. Acta Petrologica Sinica, 30(9): 2595-2608(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201409011
      Wareham, C. D., Millar, I. L., Vaughan, A. P. M., 1997. The Generation of Sodic Granite Magmas, Western Palmer Land, Antarctic Peninsula. Contributions to Mineralogy and Petrology, 128(1): 81-96. https://doi.org/10.1007/s004100050295
      Xie, Z., Zheng, Y. F., Zhao, Z. F., et al., 2006. Mineral Isotope Evidence for the Contemporaneous Process of Mesozoic Granite Emplacement and Gneiss Metamorphism in the Dabie Orogen. Chemical Geology, 231(3): 214-235. https://doi.org/10.1016/j.chemgeo.2006.01.028
      Xiao, Q. H., Li, Y., Feng, Y. F., et al., 2010.A Preliminary Study of the Relationship between Mesozoic Lithosphere Evolutionin Eastern China and the Subduction of the Pacific. Geology in China, 37(4): 1092-1101.(in Chinese with English abstract).
      Xu, H. L., Zhang, D. Q., Sun, G. Y., 1997.Characteristics and Genesis of Kunyushan Granite and Its Relation with Gold Deposits in Jiaodong, Acta Petrologica et Mineralogica, 16(2): 131-143(in Chinese with English abstract).
      Xu, J. F., Wu, J. B., Wang, Q., et al., 2014.Research Advances of Adakites and Adakitic Rocks in China. Bulletin of Mineralogy. Petrology and Geochemistry, 33(1): 6-13(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201401002
      Xu, W. L., Hergt, J. M., Gao, S., et al., 2008. Interaction of Adakitic Melt-Peridotite: Implications for the High-Mg# Signature of Mesozoic Adakitic Rocks in the Eastern North China Craton. Earth and Planetary Science Letters, 265(1/2): 123-137. https://doi.org/10.1016/j.epsl.2007.09.041
      Xu, W. L., Wang, Q. H., Wang, D. Y., et al., 2006. Mesozoic Adakitic Rocks from the Xuzhou–Suzhou Area, Eastern China: Evidence for Partial Melting of Delaminated Lower Continental Crust. Journal of Asian Earth Sciences, 27(2): 230-240. https://doi.org/10.1016/j.jseaes.2005.03.005
      Yang, D. B., 2009.Chronology and Geochemistry of Granitoids in Bengbu Uplift, Central China: Constraints on Tectonic Evolution in the EasternNorth China Craton(Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Yang, D. B., Xu, W. L., Pei, F. P., et al., 2012a. Spatial Extent of the Influence of the Deeply Subducted South China Block on the Southeastern North China Block: Constraints from Sr-Nd-Pb Isotopes in Mesozoic Mafic Igneous Rocks. Lithos, 136-139: 246-260. https://doi.org/10.1016/j.lithos.2011.06.004
      Yang, K. F., Fan, H. R., Santosh, M., et al., 2012b. Reactivation of the Archean Lower Crust: Implications for Zircon Geochronology, Elemental and Sr-Nd-Hf Isotopic Geochemistry of Late Mesozoic Granitoids from Northwestern Jiaodong Terrane, the North China Craton. Lithos, 146-147: 112-127. https://doi.org/10.1016/j.lithos.2012.04.035
      Zhang, Q., Jin, W. J., Xiong, X. L., et al. 2009.Characteristics and Implication of O-Type Adakite in China during different Geological Periods. Geotectonica et Metallogenia, 33 (3): 433-447 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200903015
      Zhang, J., 2011.A Geochemical study of Mesozoic Magmatic Rocks in the Sulu Orogen (Dissertation). University of Science and Technology of China, Hefei(in Chinese with English abstract).
      Zhang, J., Zhao, Z. F., Zheng, Y. F., et al., 2010. Postcollisional Magmatism: Geochemical Constraints on the Petrogenesis of Mesozoic Granitoids in the Sulu Orogen, China. Lithos, 119(3/4): 512-536. https://doi.org/10.1016/j.lithos.2010.08.005
      Zhang, L. C., Wu, H. Y., Wan, B., et al., 2009. Ages and Geodynamic Settings of Xilamulun Mo–Cu Metallogenic Belt in the Northern Part of the North China Craton. Gondwana Research, 16(2): 243-254. https://doi.org/10.1016/j.gr.2009.04.005
      Zhao, Z. F., Zheng, Y. F., 2009. Remelting of Subducted Continental Lithosphere: Petrogenesis of Mesozoic Magmatic Rocks in the Dabie-Sulu Orogenic Belt. Science in China Series D: Earth Sciences, 52(9): 1295-1318. https://doi.org/10.1007/s11430-009-0134-8
      Zheng, Y. F., 2008. A Perspective View on Ultrahigh-Pressure Metamorphism and Continental Collision in the Dabie-Sulu Orogenic Belt. Science Bulletin, 53(20): 3081-3104. https://doi.org/10.1007/s11434-008-0388-0
      Zhou, X. H., Yang, J. H., Zhang, L. C., et al., 2002.Metallogenesis of Superlage Gold Deposits in Jiaodong Region and Deep Processes of Subcontinental Lithosphere Beneath North China Craton in Measozoic. Science in China (Series D), 32(s1): 11-20(in Chinese)。
      陈爽, 李旭平, 段文勇, 等, 2018.胶北地块斜长角闪岩的岩石学与年代学研究.地球科学, 43(3): 716-732. http://d.old.wanfangdata.com.cn/Periodical/dqkx201803005
      陈海燕, 2010.胶东金青顶金矿成因矿物学与深部远景研究(硕士学位论文).北京: 中国地质大学.
      陈竟志, 姜能, 2011.胶东晚三叠世碱性岩浆作用的岩石成因——来自锆石U-Pb年龄、Hf-O同位素的证据.岩石学报, 27(12): 3557-3574. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201112005
      丁正江, 孙丰月, 刘福来, 等, 2015.胶东中生代动力学演化及主要金属矿床成矿系列.岩石学报, 31(10): 3045-3080. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201510011
      高太忠, 杨敏之, 金成洙, 等, 1999.山东牟乳石英脉型金矿流体成矿构造动力学研究.大地构造与成矿学, 23(2): 130-136. doi: 10.3969/j.issn.1001-1552.1999.02.005
      黄涛, 杨立强, 刘向东, 等, 2014.胶北地体地壳演化:玲珑黑云母花岗岩继承锆石U-Pb年龄、微量元素和Hf同位素证据.岩石学报, 30(9): 2574-2594. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201409010
      李刚, 2010.辽西医巫闾山地区中、晚侏罗世地壳伸展作用的特征(博士学位论文).长春: 吉林大学.
      梁细荣, 韦刚健, 李献华, 等, 2003.利用MC-ICP MS精确测定143Nd/144Nd和Sm/Nd比值.地球化学, 32(1): 91-96. doi: 10.3321/j.issn:0379-1726.2003.01.013
      林博磊, 李碧乐, 2013.胶东玲珑花岗岩的地球化学、U-Pb年代学、Lu-Hf同位素及地质意义.成都理工大学学报(自然科学版), 40(2): 147-160. doi: 10.3969/j.issn.1671-9727.2013.02.06
      刘质彬, 2017.大别造山带碰撞后埃达克质花岗岩地球化学研究(硕士学位论文).合肥: 中国科学技术大学.
      苗来成, 罗镇宽, 关康, 等, 1998.玲珑花岗岩中锆石的离子质谱U-Pb年龄及其岩石学意义.岩石学报, 14(2): 198-206. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199802007
      赛盛勋, 赵天明, 王中亮, 等, 2016.玲珑黑云母花岗岩成因:矿物学特征约束.岩石学报, 32(8):2477-2493.
      宋利宏, 朱光, 赵田, 等, 2016.华北克拉通东南部蚌埠隆起晚中生代花岗岩类岩体内变形记录与构造意义.地质论评, 62(2): 400-418. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201602016
      孙立强, 凌洪飞, 赵葵东, 等, 2017.华夏地块早白垩世埃达克质岩的岩石成因及地质意义.中国科学:地球科学, 47(7): 783-803. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201707003
      王世进, 万渝生, 郭瑞朋, 等, 2011.鲁东地区玲珑型(超单元)花岗岩的锆石SHRIMP定年.山东国土资源, 27(4): 1-7. doi: 10.3969/j.issn.1672-6979.2011.04.001
      王中亮, 赵荣新, 张庆, 等, 2014.胶西北高Ba-Sr郭家岭型花岗岩岩浆混合成因:岩石地球化学与Sr-Nd同位素约束.岩石学报, 30(9): 2595-2608. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201409011
      徐洪林, 张德全, 孙桂英, 1997.胶东昆嵛山花岗岩的特征、成因及其与金矿的关系.岩石矿物学杂志, 16(2): 131-143.
      肖庆辉, 刘勇, 冯艳芳, 等, 2010.中国东部中生代岩石圈演化与太平洋板块俯冲消减关系的讨论.中国地质, 37(4): 1092-1101. doi: 10.3969/j.issn.1000-3657.2010.04.023
      许继峰, 邬建斌, 王强, 等, 2014.埃达克岩与埃达克质岩在中国的研究进展.矿物岩石地球化学通报, 33(1): 6-13. doi: 10.3969/j.issn.1007-2802.2014.01.015
      杨德彬, 2009.蚌埠隆起区花岗岩的年代学和地球化学: 对华北克拉通东部构造演化的制约(博士学位论文).长春: 吉林大学.
      张旗, 金惟俊, 熊小林, 等, 2009.中国不同时代O型埃达克岩的特征及其意义.大地构造与成矿学, 33(3) : 433-447. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200903015
      张娟, 2011.苏鲁造山带中生代岩浆岩地球化学研究(博士学位论文).合肥: 中国科学技术大学.
      周新华, 杨进辉, 张连昌, 2002.胶东超大型金矿的形成与中生代华北大陆岩石圈深部过程.中国科学:地球科学, 32(s1): 11-20.
    • dqkx-45-2-451-Table3.pdf
    • 加载中
    图(12) / 表(2)
    计量
    • 文章访问数:  3802
    • HTML全文浏览量:  1526
    • PDF下载量:  65
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-12-03
    • 刊出日期:  2020-02-15

    目录

      /

      返回文章
      返回