• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    念扎金矿床热历史:锆石U-Pb、(U-Th)/He及磷灰石裂变径迹年代学的制约

    张雄 赵晓燕 杨竹森

    张雄, 赵晓燕, 杨竹森, 2019. 念扎金矿床热历史:锆石U-Pb、(U-Th)/He及磷灰石裂变径迹年代学的制约. 地球科学, 44(6): 2039-2051. doi: 10.3799/dqkx.2018.379
    引用本文: 张雄, 赵晓燕, 杨竹森, 2019. 念扎金矿床热历史:锆石U-Pb、(U-Th)/He及磷灰石裂变径迹年代学的制约. 地球科学, 44(6): 2039-2051. doi: 10.3799/dqkx.2018.379
    Zhang Xiong, Zhao Xiaoyan, Yang Zhusen, 2019. Thermal History of Nianzha Gold Deposit: Constraints from Zircon U-Pb, (U-Th)/He and Apatite Fission Track Geochronology. Earth Science, 44(6): 2039-2051. doi: 10.3799/dqkx.2018.379
    Citation: Zhang Xiong, Zhao Xiaoyan, Yang Zhusen, 2019. Thermal History of Nianzha Gold Deposit: Constraints from Zircon U-Pb, (U-Th)/He and Apatite Fission Track Geochronology. Earth Science, 44(6): 2039-2051. doi: 10.3799/dqkx.2018.379

    念扎金矿床热历史:锆石U-Pb、(U-Th)/He及磷灰石裂变径迹年代学的制约

    doi: 10.3799/dqkx.2018.379
    基金项目: 

    深地资源勘查开采专项 2016YFC0600307

    深地资源勘查开采专项 2016YFC0600306

    国家自然科学基金项目 4170020919

    中国地质科学院基本科研业务费项目 KK1709

    详细信息
      作者简介:

      张雄(1988-), 男, 工程师, 主要从事矿床学的研究

      通讯作者:

      赵晓燕

    • 中图分类号: P611

    Thermal History of Nianzha Gold Deposit: Constraints from Zircon U-Pb, (U-Th)/He and Apatite Fission Track Geochronology

    • 摘要: 念扎金矿床是近年来最新发现的位于雅鲁藏布江缝合带南侧仁布构造混杂岩带与蚀变闪长岩接触带的大型造山型金矿床.为约束念扎矿床的冷却及剥露历史,利用锆石的U-Pb、(U-Th)/He及磷灰石裂变径迹定年对新鲜及矿化闪长岩年龄进行测定.结果表明,新鲜闪长岩锆石U-Pb年龄为(46.32±0.53)Ma,(U-Th)/He年龄介于(7.14±0.24)Ma到(9.80±0.27)Ma,矿化闪长岩锆石(U-Th)/He年龄介于(8.38±0.24)Ma到(11.19±0.31)Ma之间,两件矿化闪长岩磷灰石裂变径迹年龄分别为(5.9±0.5)Ma和(5.3±1.0)Ma.念扎金矿床自闪长岩固结以来经历了两次快速冷却过程:第一次是从46.3 Ma开始持续到43.6 Ma,温度从750℃降至350℃,冷却速率高达约148℃/Ma;第二次为8.5~2.0 Ma,温度从约200℃降至30℃,冷却速率为26℃/Ma.念扎矿床成矿深度为9.7 km;在8.5 Ma时,矿床被抬升至4.6 km处;从8.5~5.6 Ma,矿床抬升至2.8 km;从5.6~2.0 Ma,念扎矿床被剥露至地表.

       

    • 图  1  青藏高原造山型金成矿带(a)及日喀则-仁布区域地质简图(b)

      a据侯增谦和王二七(2008)改编

      Fig.  1.  Geological maps of orogenic gold metallogenic belts in the Tibetan orogenic belt (a) and Xigaze-Renbu area, southern Tibet (b)

      图  2  念扎金矿矿区地质简图(a)、念扎金矿矿体分布图(b)和勘探线剖面图(c)

      Fig.  2.  (a) Geological map of Nianzha deposit; (b) map of orebody distribution of Nianzha deposit; (c) cross-section along the prospecting line

      图  3  念扎矿床岩石特征

      a~c.砂板岩野外露头手标本及镜下照片;d~f.闪长岩野外露头、手标本及镜下照片,由角闪石和斜长石组成;g~i.强蛇纹石化超基性岩野外露头、手标本及镜下照片;j~l.脉状煌斑岩野外露头、手标本及镜下照片

      Fig.  3.  Petrologic characteristics of rocks from the Nianzha deposit

      图  4  念扎矿区闪长岩锆石CL图像(a)及U-Pb定年结果(b)

      Fig.  4.  Zircon CL images (a) and U-Pb dating results (b) of diorite at Nianzha deposit

      图  5  念扎矿区中闪长岩(U-Th)/He定年锆石显微照片

      Fig.  5.  Microscopy images of zircons for (U-Th)/He dating in diorite at Nianzha deposit

      图  6  念扎闪长岩ZHe年龄和U含量关系

      Fig.  6.  Relationship between ZHe age and U contents in diorite at Nianzha deposit

      图  7  磷灰石单颗粒年龄分布雷达图和直方图

      Fig.  7.  Radical plots and histograms of apatite samples

      图  8  念扎矿区中闪长岩热历史模拟结果(a)及He扩散曲线(b)

      Fig.  8.  Modeling results for thermal history of diorite at Nianzha deposit (a) and diffusion curve (b)

      图  9  念扎金矿床热演化模拟

      Fig.  9.  Hydrothermal evolution diagram of Nianzha gold deposit

      表  1  磷灰石裂变径迹分析结果

      Table  1.   The apatite fission track analysis results

      实验号 原样号 颗粒数
      (n)
      ρs(105/cm2)
      (Ns)
      ρi(105/cm2)
      (Ni)
      ρd(105/cm2)
      (N)
      P(χ2)
      (%)
      中值
      t(Ma)
      (±1σ)
      组合
      t(Ma)
      (±1σ)
      L(μm)
      (N)
      1 ZK1206-31
      硅化黄铁矿化闪长岩
      35 0.309
      (64)
      8.476
      (1 758)
      7.428
      (5 949)
      98.2 5.3±1 5.3±1 13.1±1.8
      (63)
      2 NZ15-3-2
      褐铁矿化闪长岩
      35 1.042
      (295)
      26.66
      (7 545)
      7.672
      (5 949)
      19.5 5.9±0.5 5.9±0.4 13.5±2.2
      (82)
      下载: 导出CSV
    • Bellemans, F., De Cort, F., van Den Haute, P., 1995.Composition of SRM and CN U-Doped Glasses:Significance for Their Use as Thermal Neutron Fluence Monitors in Fission Track Dating.Radiation Measurements, 24(2):153-160. https://doi.org/10.1016/1350-4487(94)00100-f
      Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., et al., 2002.Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
      Chu, M. F., Chung, S. L., Song, B., et al., 2006. Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet.Geology, 34(9): 745. https://doi.org/10.1130/g22725.1
      Copeland, P., Harrison, H.M., Kidd, W.S.F., et al., 1987.Rapid Early Miocene Acceleration of Uplift in the Gangdese Belt, Xizang (Southern Tibet), and Its Bearing on Accommodation Mechanisms of the India-Asia Collision.Earth and Planetary Science Letters, 86(2-4):240-252. doi: 10.1016/0012-821X(87)90224-X
      Dai, J.G., Wang, C.S., Hourigan, J., et al., 2013.Exhumation History of the Gangdese Batholith, Southern Tibetan Plateau:Evidence from Apatite and Zircon (U-Th)/He Thermochronology.The Journal of Geology, 121(2):155-172. doi: 10.1086/669250
      Deng, X. G., Zeng, P., Zhang, Q. S., et al., 2012. Geological Characteristics and Prospecting Potential of a Gold Deposit in the Yarlung Zangbo Suture Zone.Acta Geologica Sichuan, 32(Suppl.2):51-53(in Chinese).
      Dodson, M. H., 1973. Closure Temperature in Cooling Geochronological and Petrological Systems.Contributions to Mineralogy and Petrology, 40(3):259-274. https://doi.org/10.1007/bf00373790
      Dong, G.C., Mo, X.X., Zhao, Z.D., et al., 2006.Magma Mixing in Middle Part of Gangdise Magma Belt: Evidences from Granitoid Complex.Acta Petrologica Sinica, 22(4): 835-844(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200604007.htm
      England, P., Molnar, P., 1990.Surface Uplift, Uplift of Rocks, and Exhumation of Rocks.Geology, 18(12):1173-1177. doi: 10.1130/0091-7613(1990)018<1173:SUUORA>2.3.CO;2
      Fitzgerald, P.G., Baldwin, S.L., Webb, L.E., et al., 2006.Interpretation of (U-Th)/He Single Grain Ages from Slowly Cooled Crustal Terranes: A Case Study from the Transantarctic Mountains of Southern Victoria Land. Chemical Geology, 225(1-2):91-120. https://doi.org/ 10.1016/j.chemgeo.2005.09.001
      Flowers, R. M., 2009. Exploiting Radiation Damage Control on Apatite (U-Th)/He Dates in Cratonic Regions.Earth and Planetary Science Letters, 277(1-2): 148-155. https://doi.org/10.1016/j.epsl.2008.10.005
      Galbraith, R.F., 1981.On Statistical Models for Fission Track Counts. Journal of the International Association for Mathematical Geology, 13(6):471-478. https://doi.org/ 10.1007/bf01034498
      Ge, Y.K., Dai, J.G., Wang, C.S., et al., 2017.Cenozoic Thermo-Tectonic Evolution of the Gangdese Batholith Constrained by Low-Temperature Thermochronology.Gondwana Research, 41:451-462.https://doi.org/10.1016/j. gr.2016.05.006 doi: 10.1016/j.gr.2016.05.006
      Gleadow, A. J. W., Duddy, I. R., 1981. A Natural Long-Term Track Annealing Experiment for Apatite. Nuclear Tracks, 5(1-2): 169-174. https://doi.org/10.1016/ 0191-278x(81)90039-1 doi: 10.1016/0191-278x(81)90039-1
      Gleadow, A., Harrison, M., Kohn, B., et al., 2015. The Fish Canyon Tuff:A New Look at an Old Low-Temperature Thermochronology Standard. Earth and Planetary Science Letters, 424: 95-108. https://doi.org/10.1016/j. epsl.2015.05.003 doi: 10.1016/j.epsl.2015.05.003
      Gong, W., Jiang, X. D., 2017. Thermal Evolution History and Its Genesis of the Ailao Shan-Red River Fault Zone in the Ailao Shan and Day Nui Con Voi Massif during Oligocene-Early Miocene.Earth Science, 42(2):224-239(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201702005
      Green, P. F., 1986. On the Thermo-Tectonic Evolution of Northern England: Evidence from Fission Track Analysis.Geological Magazine, 123(5):493. doi: 10.1017/S0016756800035081
      Grove, M., Harrison, T.M., 1996.40Ar Diffusion in Fe-Rich Biotite.American Mineralogist, 81(7-8):940-951. doi: 10.2138/am-1996-7-816
      Harrison, T.M., Copeland, P., Kidd, W.S.F., et al., 1992.Raising Tibet. Science, 255(5052): 1663-1670. https://doi.org/10.1126/science.255.5052.1663
      Harrison, T. M., Duncan, I., McDougall, I., 1985. Diffusion of 40Ar in Biotite:Temperature, Pressure and Compositional Effects. Geochimica et Cosmochimica Acta, 49(11): 2461-2468. doi: 10.1016/0016-7037(85)90246-7
      Hou, Z. Q., Wang, E. Q., 2008. Metallogenesis of the Indo-Asian Collisional Orogen:New Advances.Acta Geoscientia Sinica, 29(3): 275-292(in Chinese with English abstract).
      Hurford, A. J., Green, P. F., 1982. A Users' Guide to Fission Track Dating Calibration. Earth and Planetary Science Letters, 59(2):343-354. https://doi.org/10.1016/0012-821x(82)90136-4
      Ketcham, R.A., 2005.Forward and Inverse Modeling of LowTemperature Thermochronometry Data.Reviews in Mineralogy and Geochemistry, 58(1): 275-314. https://doi.org/10.2138/rmg.2005.58.11
      Li, H. Y., Zhong, S. L., Wang, Y. B., et al., 2007. Age, Petrogenesis and Geological Significance of the Linzizong Volcanic Successions in the Linzhou Basin, Southern Tibet: Evidence From Zircon U-Pb Dates and Hf Isotopes.Acta Petrologica Sinica, 23(2):493-500(in Chinese with English abstract).
      Li, G. W., Kohn, B., Sandiford, M., et al., 2015. Constraining the Age of Liuqu Conglomerate, Southern Tibet:Implications for Evolution of the India-Asia Collision Zone. Earth and Planetary Science Letters, 426: 259-266. https://doi.org/10.1016/j.epsl.2015.06.010
      Li, G. W., Kohn, B., Sandiford, M., et al., 2016. Synorogenic Morphotectonic Evolution of the Gangdese Batholith, South Tibet: Insights from Low-Temperature Thermochronology. Geochemistry, Geophysics, Geosystems, 17(1): 101-112. https://doi.org/10.1002/2015gc006047
      Li, G.W., Liu, X.H., Alex, P., et al., 2010.In-Situ Detrital Zircon Geochronology and Hf Isotopic Analyses from Upper Triassic Tethys Sequence Strata. Earth and Planetary Science Letters, 297(3-4): 461-470. https://doi.org/10.1016/j.epsl.2010.06.050
      Li, G.W., Liu, X.H., Wei, L.J., et al., 2011.Discovery of the Late Cretaceous Detrital Zircon in Renbu Tectonic Mélange, South Tibet, and Its Tectonic Significance.Acta Petrologic Sinica, 27(11):3328-3334(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111014
      Li, Y. L., Wang, C. S., Dai, J. G., et al., 2015. Propagation of the Deformation and Growth of the Tibetan-Himalayan Orogen:A Review.Earth-Science Reviews, 143:36-61. https://doi.org/10.1016/j.earscirev.2015.01.001
      Liu, J.L., Chen, X.Y., Wu, W.B., et al., 2015.New Tectono-Geochronological Constraints on Timing of Shearing along the Ailao Shan-Red River Shear Zone:Implications for Genesis of Ailao Shan Gold Mineralization. Journal of Asian Earth Sciences, 103: 70-86. https://doi.org/10.1016/j.jseaes.2014.11.006
      Jiang, S.H., Nie, F.J., Hu, P., et al., 2009.Mayum:An Orogenic Gold Deposit in Tibet, China. Ore Geology Reviews, 36(1-3): 160-173. https://doi.org/10.1016/j. oregeorev.2009.03.006 doi: 10.1016/j.oregeorev.2009.03.006
      Ma, S. W., 2017. Structural Framework and the Relationship with Mineralization of Jiama Copper-Polymetallic Deposit, Southern Tibet(Dissertation).Chinese Academy of Geological Sciences, Beijing(in Chinese with English abstract).
      Mo, X.X., Hou, Z.Q., Niu, Y.L., et al., 2007.Mantle Contributions to Crustal Thickening during Continental Collision: Evidence from Cenozoic Igneous Rocks in Southern Tibet.Lithos, 96(1-2):225-242.https://doi.org/10.1016/ j.lithos.2006.10.005 doi: 10.1016/j.lithos.2006.10.005
      Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences, 53:3-14. doi: 10.1016/j.jseaes.2011.12.018
      Reiners, P. W., Farley, K. A., 2001. Influence of Crystal Size on Apatite (U-Th)/He Thermochronology:An Example from the Bighorn Mountains, Wyoming.Earth and Planetary Science Letters, 188(3-4): 413-420. https://doi.org/10.1016/s0012-821x(01)00341-7
      Reiners, P.W., Spell, T.L., Nicolescu, S., et al., 2004.Zircon (U-Th)/He Thermochronometry:He Diffusion and Comparisons with 40Ar/39Ar Dating.Geochimica et Cosmochimica Acta, 68(8):1857-1887.https://doi.org/10.1016/j. gca.2003.10.021 doi: 10.1016/j.gca.2003.10.021
      Reiners, P.W., 2005.Zircon (U-Th)/He Thermochronometry. Reviews in Mineralogy and Geochemistry, 58(1): 151-179. https://doi.org/10.2138/rmg.2005.58.6
      Rohrmann, A., Kapp, P., Carrapa, B., et al., 2012. Thermochronologic Evidence for Plateau Formation in Central Tibet by 45 Ma. Geology, 40(2): 187-190. https://doi.org/10.1130/g32530.1
      Shuster, D.L., Flowers, R.M., Farley, K.A., 2006.The Influence of Natural Radiation Damage on Helium Diffusion Kinetics in Apatite.Earth and Planetary Science Letters, 249(3-4): 148-161. https://doi.org/10.1016/j.epsl.2006.07.028
      Sun, J.B., Chen, W., Yu, S., et al., 2017.Study on Zircon (U-Th)/He Dating Technique. Acta Petrologica Sinica, 33 (6):1947-1956(in Chinese with English abstract).
      Sun, Q. Z., Zheng, Y. C., Hou, Z. Q., et al., 2013. Genesis of Bangbu Orogenic Gold Deposit in Tibet:Constraints from Fluid Inclusions and Isotopic Composition. Mineral Deposits, 32(2):353-366(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201302011.htm
      Sun, X. M., Wei, H. X., Zhai, W., et al., 2016. Fluid Inclusion Geochemistry and Ar-Ar Geochronology of the Cenozoic Bangbu Orogenic Gold Deposit, Southern Tibet, China. Ore Geology Reviews, 74: 196-210. https://doi.org/10.1016/j.oregeorev.2015.11.021
      Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15):1554-1569(in Chinese). doi: 10.1007/BF03184122
      Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Yuan, W.M., Dong, J.Q., Bao, Z.K., et al., 2008.Apatite Fission Track Evidences for Neogene Tectono-Thermal History in Nimu Area, Southern Gangdese Terrane, Tibet Plateau.Atomic Energy Science and Technology, 42 (6):470-473(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YZJS200806023.htm
      Zhang, X., 2017. Mineralization of Orogenic Gold Deposits in the Indus-Yarlung Tsangpo Suture Zone of Tibetan Plateau(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Zhang, X., Deng, X.G., Yang, Z.S., et al., 2017.Genesis of the Gold Deposit in the Indus-Yarlung Tsangpo Suture Zone, Southern Tibet: Evidence from Geological and Geochemical Data. Acta Geologica Sinica(English Edition), 91(3):947-970. doi: 10.1111/acgs.2017.91.issue-3
      Zhang, X., Zhao, X.Y., Yang, Z.S., et al., 2018.Ar-Ar Dating on Muscovite of Nianzha Orogenic Gold Deposit in Yurlung-Zangbo Suture Zone and Its Geological Significance. Mineral Exploration, 9(5): 825-835(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ytgcj201805005
      Zhang, Y., Chen, W., 2011. Study on the 4He Content Measurement. Geological Review, 57(2): 300-304(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP201102017.htm
      Zhao, X.Y., Yang, Z.S., Hou, Z.Q., et al., 2018.The Structural Deformation Characteristics and the Control of Gold Mineralization of the Upper Triassic Flysch (Langjiexue Group) in Tibetan Plateau. Geological Journal, 54(3): 1331-1342. https://doi.org/10.1002/gj.3230
      Zhu, X.Q., Guo, X.W., Zhang, X.H., et al., 2018.Thermochronological Constraints on Cenozoic Tectonic Evolution of South-Central Qinghai-Tibet Plateau.Earth Science, 43 (6):1903-1920(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201806009
      邓学国, 曾攀, 张庆松, 等, 2012.雅鲁藏布江缝合带某金矿地质特征及找矿潜力远景.四川地质学报, 32(增刊2):51-53. http://d.old.wanfangdata.com.cn/Conference/8707722
      董国臣, 莫宣学, 赵志丹, 等, 2006.冈底斯岩浆带中段岩浆混合作用:来自花岗杂岩的证据.岩石学报, 22(4):835-844. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604007
      宫伟, 姜效典, 2017.哀牢山-红河断裂带哀牢山-大象山段渐新世-早中新世热史演化及成因.地球科学, 42(2):224-239. http://earth-science.net/WebPage/Article.aspx?id=3430
      侯增谦, 王二七, 2008.印度-亚洲大陆碰撞成矿作用主要研究进展.地球学报, 29(3):275-292. doi: 10.3321/j.issn:1006-3021.2008.03.003
      李皓扬, 钟孙霖, 王彦斌, 等, 2007.藏南林周盆地林子宗火山岩的时代、成因及其地质意义:锆石U-Pb年龄和Hf同位素证据.岩石学报, 23(2):493-500. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702025
      李广伟, 刘小汉, 韦利杰, 等, 2011.藏南仁布混杂岩带中晚白垩世碎屑锆石的发现及其启示.岩石学报, 27(11):3328-3334. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201111014.htm
      马士委, 2017.藏南甲玛铜多金属矿床构造格架与成矿的关系(博士学位论文).北京: 中国地质科学院. http://cdmd.cnki.com.cn/Article/CDMD-82501-1017055374.htm
      孙敬博, 陈文, 喻顺, 等, 2017.锆石(U-Th)/He定年技术研究.岩石学报, 33(6):1947-1956. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201706020.htm
      孙清钟, 郑远川, 侯增谦, 等, 2013.西藏邦布石英脉型金矿床的成因:流体包裹体及氢-氧同位素证据.矿床地质, 32(2):353-366. doi: 10.3969/j.issn.0258-7106.2013.02.010
      吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(15):1554–1569. http://d.old.wanfangdata.com.cn/Periodical/kxtb200416002
      袁万明, 董金泉, 保增宽, 等, 2008.西藏冈底斯地块尼木地区新第三纪构造热历史的磷灰石裂变径迹约束.原子能科学技术, 42(6):470-473. http://www.cnki.com.cn/Article/CJFDTotal-YZJS200806023.htm
      张雄, 2017.青藏高原雅鲁藏布江缝合带造山型金矿成矿作用研究(博士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1017126728.htm
      张雄, 赵晓燕, 杨竹森, 等, 2018.雅鲁藏布江缝合带念扎造山型金矿床白云母Ar-Ar年代学及其地质意义.矿产勘查, 9(5):825-835. doi: 10.3969/j.issn.1674-7801.2018.05.005
      张彦, 陈文, 2011.4He同位素含量测试技术研究.地质论评, 57(2):300-304. http://d.old.wanfangdata.com.cn/Periodical/dzlp201102016
      朱晓青, 郭兴伟, 张训华, 等, 2018.青藏高原中-南部新生代构造演化的热年代学制约.地球科学, 43(6):1903-1920. http://earth-science.net/WebPage/Article.aspx?id=3854
    • dqkx-44-6-2039-Table.pdf
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  5368
    • HTML全文浏览量:  1746
    • PDF下载量:  75
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-08-19
    • 刊出日期:  2019-06-15

    目录

      /

      返回文章
      返回