• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    H Odé剪切变形理论在纳米尺度的表象

    孙岩 琚宜文 黄骋 周巍 晁洪太 王志才

    孙岩, 琚宜文, 黄骋, 周巍, 晁洪太, 王志才, 2018. H Odé剪切变形理论在纳米尺度的表象. 地球科学, 43(5): 1518-1523. doi: 10.3799/dqkx.2018.410
    引用本文: 孙岩, 琚宜文, 黄骋, 周巍, 晁洪太, 王志才, 2018. H Odé剪切变形理论在纳米尺度的表象. 地球科学, 43(5): 1518-1523. doi: 10.3799/dqkx.2018.410
    Sun Yan, Ju Yiwen, Huang Cheng, Zhou Wei, Chao Hongtai, Wang Zhicai, 2018. Representation of H Odé Shear Deformation Theory at Nanoscale. Earth Science, 43(5): 1518-1523. doi: 10.3799/dqkx.2018.410
    Citation: Sun Yan, Ju Yiwen, Huang Cheng, Zhou Wei, Chao Hongtai, Wang Zhicai, 2018. Representation of H Odé Shear Deformation Theory at Nanoscale. Earth Science, 43(5): 1518-1523. doi: 10.3799/dqkx.2018.410

    H Odé剪切变形理论在纳米尺度的表象

    doi: 10.3799/dqkx.2018.410
    基金项目: 

    国家重点基础研究计划(973计划) 2012CB416706

    国家自然科学基金项目 41530315

    国家自然科学基金项目 41372213

    山东省科学基金项目 ZR2012DM005

    详细信息
      作者简介:

      孙岩(1937-), 男, 教授, 博导, 构造地质学和构造地球化学

      通讯作者:

      琚宜文

    • 中图分类号: P54

    Representation of H Odé Shear Deformation Theory at Nanoscale

    • 摘要: 通常认为岩石是被剪破或张裂的,那么,为何我们能寻觅到位于同压力垂直方向的破裂构造呢?H Odé剪切变形理论给出一个精辟的回答:在塑性或粘-弹性变形中,由于介质的分异作用,存在一个从屈服条件中获得的速度不连续性,这样,其介质就能沿着等速的特征面剪切滑移.该理论亦称为塑性剪切作用准则,之前是从宏观-直观力学表象予以验证,如构造挤压带的破裂面、正压力下Griffith裂隙端点裂开和垂直压力下的碎裂流动等.进而,我们对花岗岩标本实施高温/高压实验,并取其位于轴压垂直方向裂隙的薄壳表层做扫描电镜观测.然后把从其表层观察的具有H Odé力学表象的微纳米现象,同一般剪切作用的屈服效应结构,从3个方面相比较鉴别.(1)粘-弹性变形:高温-高压的实验样品更容易产生塑性压缩容积流动,不仅具粘性也具弹性变形,随之,样品可展现纳米涂层作用和纳米分层作用.(2)纳米尺度结构:纳米尺度颗粒能成为单一纳米粒-纳米线-纳米层结构,且复体的纳米粒可细分成粒状的、线状的和片粒状的结构等.(3)有序组构:尽管H Odé破裂的粒化流动和纹理流动的优选方位,同普通剪切作用相比,处于弱势范畴,然而综合分析观之,这两者的屈服特征是完全一致的.反之,我们应用H Odé剪切理论去研究一些非常规的变形现象,必能拓展纳米地质学的研讨范畴和认知能力.

       

    • 图  1  质点间应力集中现象的光弹实验

      Berka(1982)简化;3个嵌入松脂实验材料的波利质点,相互间距为质点直径的1/10,曲线为干涉条纹

      Fig.  1.  A photo-elastic experiment of strain concentration phenomena between particles

      图  2  三轴压力实验产生H Odé剪切变形力学表象的试样

      许多垂直于主压力方向发育的裂隙显示出H Odé剪切变形的力学表象,实箭头标示SEM样品采集点.张裂垂直于上述剪裂隙生长,不仅张开延伸且引发脱落现象(虚箭头)

      Fig.  2.  A specimen with mechanical feature of H Odé shear deformation produced by the triaxial compression experiment

      图  3  三轴压力实验样品1(a,b)和样品2(c,d)纳米结构和有序组构特征的SEM图像

      a.变形早期形成的纳米层状构造已变成微米级碎块,稀少的拉长的纳米颗粒呈定向排列(箭头示),且同碎块的延长方向相一致;b.纳米颗粒构成了纳米线和纳米层(箭头),单体的纳米颗粒聚集成复体的纳米颗粒和多重复体的纳米颗粒,并显现花斑状构造(图片右边尤甚);c.长的碎块和拉长的微/纳米颗粒(箭头)大体上相互平行,在一定的程度上可以表示简单剪切作用的运动方向.其中央部分,一条粘性流变的条纹横过碎块分布范围,彰显了粘-弹态H Odé剪切运动中粘性和弹性变形中存在有不协调的现象;d.H Odé剪切面展现一光滑的面,剪切摩擦形成微/纳米复体颗粒泪滴状落在屈服界面上

      Fig.  3.  SEM images of the nanotexture and ordered fabrication characteristics about specimen 1 (a, b) and specimen 2 (c, d) in the triaxial compression experiment

      表  1  岩石单轴挤压强度测试数据

      Table  1.   Determining data about uniaxial pressure strength in rocks

      采样地点 地层岩性 标本编号 挤压强度RP(MPa) 强度比值
      破裂P1 破碎P2 粉碎P3 P2/ P1 P3/ P2
      江苏无锡大鸟嘴 中下泥盆统茅山群(D1-2 m)砂岩 B-102 39.20 71.00 20.98 1.81 2.95
      无锡南大浮 同上 B-108 21.74 34.39 26.08 1.56 2.50
      南京江宁湖山 中石炭统黄龙组(C2 h)灰岩 B-505 20.52 26.12 30.44 1.27 1.17
      南京江宁栖霞山 同上 B-306 46.79 67.14 76.71 1.43 1.12
      注:河海大学工程力学系朱文弦教授协助测试.
      下载: 导出CSV

      表  2  花岗岩样品三轴压力实验参数

      Table  2.   Experimental parameters of triaxial compression in the granitic specimens

      样品号 轴压(MPa) 围压(MPa) 温度(℃) 实验用时(h) 应变率(s-1)
      样品-1 1 600 260 365 10 7.63×10-6
      样品-3 1 753 320 600 10 9.72×10-6
      注:中国科学院地球化学研究所吴学益教授协助测试.
      下载: 导出CSV
    • Aydin, A., Borja, R. I., Eichhubl, P., 2006.Geological and Mathematical Framework for Failure Modes in Granular Rock.Journal of Structural Geology, 28(1):83-98. https://doi.org/10.1016/j.jsg.2005.07.008
      Berka, L., 1982.On Stress Distribution in a Structure of Polycrystals.Journal of Materials Science, 17(5):1508-1512. doi: 10.1007/BF00752267
      Cashman, S.M., Baldwin, J.N., Cashman, K.V., et al., 2007.Microstructures Developed by Coseismic and Aseismic Faulting in Near-Surface Sediments, San Andreas Fault, California.Geology, 35(7):611-614. https://doi.org/10.1130/G23545A.1
      Feng, D., 1975.Physics of Metals.Science Press, Beijing, 623-822 (in Chinese).
      Griffith, A.A., 1921.The Phenomena of Rupture and Flow in Solids.Philosophical Transactions of the Royal Society of London.Containing Papers of a Mathematical or Physical Character (Series A), 221:163-198. https://www.wenkuxiazai.com/doc/194f4b067e21af45b307a872-2.html
      Hills, E.L., 1961.Elements of Structural Geology.Chapman and Hall Ltd., London, 95-97. https://doi.org/10.1007/978-94-009-5843-2
      Hochella, M.F., 2002.Nanoscience and Technology:The Next Revolution in the Earth Sciences.Earth and Planetary Science Letters, 203(2):593-605. https://doi.org/10.1016/S0012-821X(02)00818-X
      Ju, Y.W., Sun, Y., Wan, Q., et al., 2016.Nanogeology:A Revolutionary Challenge in Geosciences.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):1-20 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601001
      Lajtai, E.Z., 1971.A Theoretical and Experimental Evaluation of the Griffith Theory of Brittle Fracture.Tectonophysics, 11(2):129-156. https://doi.org/10.1016/0040-1951(71)90060-6
      Lu, X.C., Sun, Y., Shu, L.S., et al., 2005.Cataclastic Rheology of Carbonate Rocks.Science China Earth Sciences, 48(8):1227-1233. doi: 10.1360/04yd0085
      Odé, H., 1960.Memoir.Geology Society America, 79:293-322. doi: 10.1130/MEM79
      Paggi, M., Reinoso, J., 2015.An Anisotropic Large Displacement Cohesive Zone Model for Fibrillar and Crazing Interfaces.International Journal of Solids and Structures, 69:106-120. https://doi.org/10.1016/j.ijsolstr.2015.04.042
      Reiner, M., Leaderman, H., 1960.Deformation, Strain, and Flow.Physics Today, 13:47. https://doi.org/10.1063/1.3057119
      Shen, B.Y., Liu, B., Liu, H.L., et al., 2016.Xiaomei Ductile Shear Zone on Hainan Island in a Nanoscale Perspective.Earth Science, 41(9):1489-1498 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.504
      Sun, Y., Han, K.C., 1985.Division of Fractured Tectonic Zone.Science Press, Beijing, 1-163 (in Chinese).
      Sun, Y., Jiang, S.Y., Wei, Z., et al., 2013.Nano-Coating Texture on the Shear Slip Surface in Rocky Materials.Advanced Materials Research, 669:108-114. https://doi.org/10.4028/www.scientific.net/AMR.669.108
      Sun, Y., Jiang, S.Y., Zhou, W., et al., 2014.Mechanical Analysis and Identification Markings of Nanoparticle Distribution in Narrow Friction Zones.Trans.Tech.Publications, 924:312-318. https://doi.org/10.4028/www.scientific.net/AMR.924.312
      Sun, Y., Lu, X.C., Zhang, X.H., et al., 2008.Nano-Texture of Penetrative Foliation in Metamorphic Rocks.Science China Earth Sciences, 51(12):1750. https://doi.org/10.1007/s11430-008-0138-9
      Sun, Y., Shen, X.Z., Gou, F.Y., 1986.Observation and Experiments on the H Odé Shearing Deformation.Journal of Guilin College of Geology, 6(4):347-351 (in Chinese with English abstract). http://eprints.whiterose.ac.uk/109369/
      Sun, Y., Yang, S.F., Zhang, Q.L., et al., 1992.Dissipative Structures of Rock-and Ore-Forming Systems in Faults.Chinese Journal of Geochemistry, 11(2):121-132. https://doi.org/10.1007/BF02871999
      Thorkelson, D.J., Breitsprecher, K., 2005.Partial Melting of Slab Window Margins:Genesis of Adakitic and Non-Adakitic Magmas.Lithos, 79(1):25-41. https://doi.org/10.1016/j.lithos.2004.04.049
      Viti, C., Hirose, T., 2009.Dehydration Reactions and Micro/Nanostructures in Experimentally-Deformed Serpentinites.Contributions to Mineralogy and Petrology, 157(3):327-338. https://doi.org/10.1007/s00410-008-0337-6
      Wang, P.F., Jiang, Z.X., Li, Z., et al., 2017.Micro-Nano Pore Structure Characteristics in the Lower Cambrian Niutitang Shale, Northeast Chongqing.Earth Science, 42(7):1147-1156 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.093
      Wang, X.G., Hu, B., Tang, H.M., et al., 2016.A Constitutive Model of Granite Shear Creep under Moisture.Journal of Earth Science, 27(4):677-685. https://doi.org/10.1007/s12583V016-0709-1
      Yang, T.Q., Luo, W.B., Xu, P., et al., 2004.Viscoelastic Theory and Application.Science Press, Beijing, 1-414 (in Chinese).
      Zhou, W., Jiang, S.Y., Ju, Y.W., et al., 2017.Studies on Micro/Nano-Sized Grinding Grains on Shear-Slip Surfaces in Rocks.Journal of Nanoscience and Nanotechnology, 17(9):7069-7075. https://doi.org/10.1166/jnn.2017.14527
      冯端, 1975.金属物理.北京:科学出版社, 623-822.
      琚宜文, 孙岩, 万泉, 等, 2016.纳米地质学:地学领域革命性挑战.矿物岩石地球化学通报, 35(1):1-20. http://www.cqvip.com/QK/84215X/201601/668146269.html
      沈宝云, 刘兵, 刘海龄, 等, 2016.海南岛小妹韧性剪切带的纳米尺度.地球科学, 41(9):1489-1498. http://www.earth-science.net/WebPage/Article.aspx?id=3354
      孙岩, 韩克丛, 1985.断裂构造岩带的划分.北京:科学出版社, 1-163.
      孙岩, 沈修志, 勾佛仪, 1986.H Odé剪切变形的观察和实验研究.桂林冶金地质学院学报, 6(4):347-351. http://mall.cnki.net/magazine/Article/YYLX201303011.htm
      王朋飞, 姜振学, 李卓, 等, 2017.渝东北下寒武统牛蹄塘组页岩微纳米孔隙结构特征.地球科学, 42(7):1147-1156. http://www.earth-science.net/WebPage/Article.aspx?id=3603
      杨挺青, 罗文波, 徐平, 等, 2004.粘弹性理论与应用.北京:科学出版社, 1-414.
    • 加载中
    图(3) / 表(2)
    计量
    • 文章访问数:  4470
    • HTML全文浏览量:  2102
    • PDF下载量:  20
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-10-15
    • 刊出日期:  2018-05-15

    目录

      /

      返回文章
      返回