• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    中国台湾龟山岛热液自然硫中微观包体的元素富集特征

    陈雪刚 邱中炎 段威 李小虎 叶瑛 陈镇东

    陈雪刚, 邱中炎, 段威, 李小虎, 叶瑛, 陈镇东, 2018. 中国台湾龟山岛热液自然硫中微观包体的元素富集特征. 地球科学, 43(5): 1549-1561. doi: 10.3799/dqkx.2018.413
    引用本文: 陈雪刚, 邱中炎, 段威, 李小虎, 叶瑛, 陈镇东, 2018. 中国台湾龟山岛热液自然硫中微观包体的元素富集特征. 地球科学, 43(5): 1549-1561. doi: 10.3799/dqkx.2018.413
    Chen Xuegang, Qiu Zhongyan, Duan Wei, Li Xiaohu, Ye Ying, Chentung Arthur, 2018. Elemental Enrichment in the Microscopic Inclusions of the Native Sulfur from Kueishantao Hydrothermal System, Taiwan, China. Earth Science, 43(5): 1549-1561. doi: 10.3799/dqkx.2018.413
    Citation: Chen Xuegang, Qiu Zhongyan, Duan Wei, Li Xiaohu, Ye Ying, Chentung Arthur, 2018. Elemental Enrichment in the Microscopic Inclusions of the Native Sulfur from Kueishantao Hydrothermal System, Taiwan, China. Earth Science, 43(5): 1549-1561. doi: 10.3799/dqkx.2018.413

    中国台湾龟山岛热液自然硫中微观包体的元素富集特征

    doi: 10.3799/dqkx.2018.413
    基金项目: 

    台湾迈向顶尖大学计划项目 03C0302

    中国大洋矿产资源研究开发协会项目 DY125-12-R-02

    中国大洋矿产资源研究开发协会项目 DY125-12-R-06

    中国大洋矿产资源研究开发协会项目 DY125-12-R-03

    中国大洋矿产资源研究开发协会项目 DY125-12-R-04

    详细信息
      作者简介:

      陈雪刚(1983-), 男, 副教授, 博士, 主要从事海底热液地球化学的研究

      通讯作者:

      段威

      叶瑛

    • 中图分类号: P736

    Elemental Enrichment in the Microscopic Inclusions of the Native Sulfur from Kueishantao Hydrothermal System, Taiwan, China

    • 摘要: 台湾东北部的龟山岛浅海热液体系产生大量的热液自然硫.为了理解微量元素在自然硫中的富集规律和机制,采用激光剥蚀等离子体质谱仪(LA-ICPMS)对龟山岛自然硫进行了元素含量分析.结果显示,硫磺基底仅含有As、Se和Te等岩浆脱气产生的挥发性亲铜元素.Fe、Mn、Co、Ni等亲铁元素主要来自于安山岩基岩,富集于富铁或含硅包体中.Al、Zn、Ba、Pb、La、Ce、Au、Ag等元素显著富集于含硅包体中,表明这些元素受硅酸盐矿物控制.富铜包体具有最高的Hg、Pb、Zn等亲铜元素的单位富集程度.首次对龟山岛热液自然硫中的微量元素分布进行了原位微区分析,有助于理解微量元素在热液活动中的来源、分布和分配等地球化学行为.

       

    • 图  1  龟山岛浅海热液体系

      Chen et al.(2016).a.龟山岛的地质背景;b.典型的龟山岛热液喷口黄泉和白泉的位置;c.龟山岛热液区的卫星图;d.无人机拍摄的龟山岛黄泉附近海域的高空航拍图

      Fig.  1.  Settings of Kueishantao shallow submarine hydrothermal system

      图  2  本文研究的龟山岛热液硫磺照片

      a.龟山岛黄泉附近采集的热液自然硫沉积物;b.自然硫沉积物的主要组成

      Fig.  2.  Pictures of the studied Kueishantao native sulfur

      图  3  台湾龟山岛热液自然硫中微观包体的光学显微镜观察

      a.球形包体;b.线状包体;c.脉状包体;d.包体c被激光剥蚀后;e.片状包体;f.包体e被激光剥蚀后.图中的黄色基底为硫磺,带十字的红色圆圈为激光剥蚀指针

      Fig.  3.  Transmitted light microscopy images of Kueishantao native sulfur

      图  4  龟山岛热液自然硫中代表性包体(007INCL,029INCL,036INCL)和硫磺基底(004SUL)的LA-ICPMS信号图

      Fig.  4.  The time-resolved LA-ICPMS profiles of typical inclusions (007INCL, 029INCL, 036INCL) and sulfur matrix (004SUL)

      图  5  龟山岛热液自然硫的微区分析结果

      包体代表硫化物包体;基质代表硫磺基质与全岩分析结果对比图

      Fig.  5.  Comparisons between the microscopic and bulk analyses results of the Kueishantao native sulfur

      图  6  龟山岛热液自然硫微观包体中元素的相关系数图

      Fig.  6.  The Pearson's coefficient pattern of the elements in the microscopic inclusions of Kueishantao native sulfur

      图  7  龟山岛热液自然硫中元素在不同种类包体和硫磺基底中的分布

      除S以外元素单位为10-6;S的单位为%

      Fig.  7.  Elemental distributions in the different inclusions and sulfur matrix of Kueishantao native sulfur

      图  8  龟山岛热液自然硫微观包体相对硫磺基底的元素富集特征

      Fig.  8.  Enrichments of elements in the microscopic inclusions compared with sulfur matrix of Kueishantao native sulfur

      图  9  龟山岛自然硫微观包体相对龟山岛安山岩基岩的元素富集指数

      Fig.  9.  Enrichment factors of elements in the microscopic inclusions compared with Kueishantao andesite

      图  10  龟山岛自然硫微观包体中微量元素的单位摩尔硫化物富集指数(CPM)

      Fig.  10.  Enrichment factor per mol sulfide of trace elements in the microscopic inclusions of the KST native sulfur

      表  1  本研究中所用外标NIST610在不同能量密度和剥蚀直径下的元素同位素信号响应值

      Table  1.   The signals of NIST610 under different energy densities and spot sizes

      能量密度 7.0 J·cm-2 3.5 J·cm-2 7.0 J·cm-2
      斑束直径 50 μm 10 μm 30 μm 50 μm
      同位素 001N610 002N610 003N610 050N610 051N610 052N610 053N610 054N610 055N610 056N610 057N610
      27Al 10 632 795 10 506 287 10 646 829 199 557 200 659 2 428 744 2 386 419 3 726 995 3 713 084 9 826 536 9 502 382
      28Si 162 307 728 155 150 416 154 058 645 2 751 663 2 718 086 34 904 917 34 989 671 53 574 904 53 346 137 142 436 893 137 321 484
      34S 4 410 712 3 948 325 3 901 281 876 66 84 585 993 148 1043 368 1 637 267 1 552 397 4 420 334 4 079 054
      55Mn 1 751 111 1 645 997 1 612 647 27 285 28 026 355 690 357 967 564 389 554 986 1 460 432 1 437 729
      57Fe 1 656 012 1 587 383 1 581 955 28 178 27 234 332 996 327 048 545 207 529 867 1 458 480 1 413 498
      59Co 1 171 282 1 135 959 1 133 812 19 756 19 321 247 491 240 552 388 900 384 056 1 009 779 979 989
      60Ni 969 011 915 883 928 465 15 861 16 708 199 408 200 377 316 046 312 797 828 768 818 615
      63Cu 885 702 867 955 853 270 14 931 15 038 183 530 190 502 292 376 292 010 767 697 740 559
      66Zn 670 471 665 524 655 005 11 408 11 214 142 657 143 449 226 623 233 240 589 640 576 817
      75As 159 010 151 982 160 404 2 849 2 796 33 810 33 090 53 751 51 850 137 615 134 431
      82Se 155 664 145 877 145 912 0 230 31 981 30 969 56 982 50 634 127 650 136 045
      107Ag 769 893 716 834 719 986 11 140 11 661 143 017 143 766 230 016 228 046 604 932 594 448
      121Sb 931 607 859 698 852 742 14 412 14 987 182 821 181 167 279 544 285 044 748 600 732 489
      125Te 492 268 469 798 455 714 7 070 9 226 101 164 94 766 154 126 155 190 409 696 394 576
      138Ba 3 279 020 3 134 210 3 108 120 48 560 48 624 663 454 654 277 1 041 296 1 034 534 2 726 525 2 682 136
      139La 2 814 125 2 715 626 2 720 385 41 467 41 989 589 531 579 519 914 440 907 436 2 399 787 2 385 088
      140Ce 3 436 999 3 207 732 3 159 180 48 852 48 825 667 000 655 531 1 058 299 1 039 935 2 765 167 2 713 024
      197Au 28 130 25 946 26 177 432 414 5 394 5 386 8 504 8 453 22 343 22 117
      202Hg 1 624 914 927 0 0 0 0 356 405 870 808
      208Pb 1 777 300 1 699 781 1 747 724 26 392 27 631 349 919 340 576 549 837 548 429 1 469 798 1 446 846
      下载: 导出CSV

      表  2  龟山岛热液自然硫的元素含量

      Table  2.   Elemental contents of the native sulfur aggregates from Kueishantao

      元素 方法 单位 样1 样2 样3 样4 样5 样6 样7 检出限
      S % 99.18 99.09 98.69 99.20 99.34 99.04 98.96 1.8
      Mg 10-6 2 450 2 265 133 176 54 239 270 30
      Se 10-6 410 236 196 197 212 186 181 30
      As XRF 10-6 394 245 325 363 220 286 198 90
      Si 10-6 394 1 000 410 270 220 310 310 60
      Fe 10-6 308 1 988 2 300 891 692 888 892 45
      Al 10-6 259 567 220 190 160 270 270 45
      Co 10-6 18.3 25.3 24.3 37.4 24.8 32.3 21.5 0.2
      Ni 10-6 28.8 29.7 30.3 32.5 30.7 33.6 28.5 0.1
      Cu 10-6 33.2 42.4 51.5 46.3 54.8 55.5 43.0 0.2
      Zn 10-6 47.1 77.5 46.5 72.6 60.1 73.4 56.9 0.3
      Sb ICPMS 10-6 1.56 0.741 n.d. n.d. n.d. n.d. n.d. 0.02
      Ba 10-6 352 379 279 308 393 318 268 1
      La 10-6 16.5 22.8 23.5 20.5 18.9 17.6 15.5 0.05
      Ce 10-6 30.6 42.4 44.6 41.3 40.6 35.9 33.2 0.1
      Pb 10-6 10.0 9.68 n.d. n.d. n.d. n.d. n.d. 0.02
      注:n, d.代表没有检测到信号.
      下载: 导出CSV

      表  3  龟山岛热液硫磺中硫磺基质(SUL)和微观包体(INCL)的激光剥蚀ICP-MS结果

      Table  3.   Laser ablation ICP-MS results for sulfur matrix (SUL) and microscopic inclusions (INCL) in the native sulfur aggregates from Kueishantao

      样品 类型 Al Si S (%) Mn Fe Co Ni Cu Zn As Se Sb Te Ba La Ce Hg Pb Ag Au
      004SUL 基底 31 b.d.l. 99.4 9 2 103 5 b.d.l. b.d.l. b.d.l. 1 067 1 189 132 1 150 b.d.l. b.d.l. b.d.l. 90 b.d.l. 1.9 b.d.l.
      005SUL 基底 12 b.d.l. 99.6 b.d.l. 26 b.d.l. 86 b.d.l. b.d.l. 1 151 1 237 130 1 196 b.d.l. b.d.l. b.d.l. 74 n.d. 1.2 b.d.l.
      006SUL 基底 8 466 99.5 b.d.l. n.d. 7 b.d.l. b.d.l. 9 1138 1 394 219 1 286 b.d.l. 5.0 50.5 72 b.d.l. b.d.l. b.d.l.
      007INCL 含硅 2 295 8 072 18.2 1 640 778 557 102 119 33 74 783 81 908 289 182 10.5 14.6 519 64 1.4 b.d.l.
      008INCL 含硅 1 893 8 239 37.2 2 546 575 878 133 197 41 92 976 408 1 360 365 32 4.3 22.4 688 96 1.4 b.d.l.
      009INCL 富铁 396 n.d. 20.5 275 791 654 75 101 168 10 716 148 617 221 400 0.5 n.d. 345 13 b.d.l. b.d.l.
      010INCL 富铁 2 468 n.d. 32.3 7 538 660 689 167 295 728 191 902 n.d. 564 670 43 118.8 293.6 320 236 1.0 n.d.
      011INCL 富铁 1 510 n.d. 52.3 1 343 435 803 61 127 530 214 1486 330 913 924 88 5.8 21.1 662 114 1.3 n.d.
      012INCL 富铁 429 n.d. 15.8 652 834 030 1 009 4 681 437 23 324 n.d. 103 127 3 b.d.l. b.d.l. 58 70 b.d.l. n.d.
      013INCL 富铜 40 n.d. 97.5 n.d. 4 199 5 b.d.l. 17 738 241 615 782 73 535 30 n.d. b.d.l. 139 108 n.d. b.d.l.
      014INCL 富铜 104 n.d. 97.5 n.d. 5 041 n.d. 11 18 628 229 460 n.d. 39 493 16 n.d. n.d. 162 111 n.d. 1.1
      015INCL 富铁 631 n.d. 90.1 100 87 539 68 110 121 43 2 283 909 465 985 15 n.d. n.d. 361 25 b.d.l. n.d.
      016INCL 含硅 7 922 17 399 80.4 676 153 399 67 58 477 1 687 1 435 905 314 1 008 2 071 31.7 157.3 281 436 1.5 n.d.
      017INCL 含硅 1 450 17 839 61.6 1 258 351 545 194 256 462 68 1 720 777 805 874 210 4.8 11.9 437 62 b.d.l. b.d.l.
      018INCL 富铁 15 769 n.d. 90.5 321 75 590 37 32 200 11 910 871 102 748 5 n.d. n.d. 110 45 n.d. n.d.
      019INCL 富铁 190 n.d. 19.2 5 744 795 143 37 26 336 128 1 483 124 1 971 769 10 b.d.l. b.d.l. 1 352 55 4.5 n.d.
      020INCL 富铁 27 n.d. 51.3 169 484 445 295 117 450 90 404 749 88 292 23 2.6 13.1 30 57 n.d. n.d.
      021INCL 富铁 2 563 n.d. 94.7 245 44 545 46 68 115 18 1 267 925 216 644 210 5.5 3.2 110 33 n.d. b.d.l.
      022INCL 富铁 12 122 n.d. 93.7 841 25 904 49 125 427 1 633 731 1 439 126 1 170 3 754 110.8 880.4 76 498 13.0 n.d.
      023INCL 富铁 1 359 n.d. 67.9 2 657 310 704 72 77 452 95 1330 477 342 768 61 27.2 2.3 293 90 4.0 b.d.l.
      024INCL 富铜 220 n.d. 90.9 30 1 955 b.d.l. 15 86 068 124 685 659 43 546 23 b.d.l. n.d. 109 509 6.0 n.d.
      025INCL 富铜 103 n.d. 87.2 15 2 643 b.d.l. 17 122 564 154 417 892 b.d.l. 600 16 3.6 4.9 104 151 2.0 0.7
      026INCL 富铁 520 n.d. 29.9 968 693 239 121 105 1 333 39 1 627 234 1 306 452 7 b.d.l. n.d. 1001 22 n.d. b.d.l.
      027INCL 富铁 632 n.d. 17.3 644 820 812 81 58 1 184 23 1 220 b.d.l. 915 138 b.d.l. b.d.l. n.d. 712 12 1.1 b.d.l.
      028INCL 富铜 820 n.d. 82.0 21 18 057 14 91 158 756 84 496 n.d. 47 452 155 5.2 n.d. 154 129 1.6 n.d.
      029INCL 富铜 324 n.d. 85.1 16 5 369 b.d.l. n.d. 139 914 250 724 1 111 94 316 38 b.d.l. n.d. 223 281 n.d. 2.3
      030INCL 富铜 133 n.d. 82.2 105 2 945 8 9 173 482 173 432 48 58 466 29 n.d. 4.3 81 178 7.5 n.d.
      031INCL 含硅 4 585 437 95.1 253 38 151 13 47 130 77 1 468 301 404 619 121 5.2 15.8 330 39 1.6 b.d.l.
      032INCL 含硅 7 561 7 662 52.0 1142 454 979 269 318 914 88 1 228 405 425 410 304 25.2 57.4 398 100 b.d.l. n.d.
      033INCL 富铁 7 105 n.d. 94.9 414 33 867 55 38 325 63 1 725 1 262 1 217 1 053 146 9.4 53.5 253 31 n.d. 0.9
      034INCL 含硅 13 414 57 490 58.2 671 331 441 377 784 3 447 242 649 n.d. 457 1 936 1 439 122.5 12.7 544 1 977 112.9 61.5
      035INCL 含硅 2 184 57 254 73.7 460 195 693 486 228 1 039 63 521 703 178 666 118 4.5 26.2 189 58 n.d. 13.2
      036INCL 基底 80 n.d. 99.6 n.d. 97 n.d. n.d. b.d.l. n.d. 1 517 1 011 170 1 047 b.d.l. n.d. b.d.l. 111 n.d. 25.3 0.8
      037INCL 富铁 1 510 n.d. 85.1 20 137 145 b.d.l. 18 2 648 138 942 1 239 224 819 154 n.d. 241.1 156 38 67.2 n.d.
      038INCL 富铁 5 245 n.d. 95.4 193 31 485 13 14 2 398 92 1177 484 223 934 112 7.1 14.2 194 58 b.d.l. b.d.l.
      039INCL 含硅 1 824 2 347 23.5 2 093 659 334 878 799 880 127 670 b.d.l. 494 370 27 27.0 27.2 149 92 7.4 b.d.l.
      040INCL 含硅 3 589 53 765 92.2 125 7 955 18 843 2 091 300 657 250 286 828 1 075 288.4 1 659.8 n.d. 53 234.8 14.7
      041INCL 富铁 660 n.d. 95.5 127 42 084 25 6 107 b.d.l. 472 379 89 472 19 29.0 b.d.l. 164 28 17.2 2.4
      042INCL 含硅 6 612 5048 93.8 432 21 330 b.d.l. 8 591 355 891 872 114 1 178 7 602 99.3 950.4 n.d. 321 93.8 9.9
      043INCL 富铁 1 312 n.d. 97.0 18 21 865 15 31 56 23 1 237 1 056 196 1 016 88 n.d. 2.2 164 43 1.9 b.d.l.
      044INCL 富铜 589 n.d. 95.9 81 4 529 9 6 34 162 77 206 85 23 300 20 5.6 5.5 135 36 b.d.l. n.d.
      045INCL 富铜 218 n.d. 94.1 38 2 856 n.d. n.d. 54 305 99 338 150 33 392 12 n.d. n.d. 241 92 2.3 n.d.
      046INCL 含硅 643 1 147 95.7 9 28 553 9 148 9 029 124 292 492 49 491 39 16.9 374.3 121 125 17.8 1.7
      047INCL 含硅 1 496 34 583 21.3 396 745 347 131 186 2 332 74 595 179 419 274 68 b.d.l. b.d.l. 378 28 1.5 n.d.
      048INCL 富铁 286 n.d. 12.7 480 870 152 11 84 378 429 196 134 138 135 16 b.d.l. b.d.l. 158 62 1.4 b.d.l.
      049INCL 富铁 6 086 n.d. 65.5 1 172 323 895 397 101 882 166 2 606 633 462 608 275 16.6 449.5 255 116 1.7 n.d.
      注:除了S,其他元素单位为10-6.b.d.l.代表低于检定限;n.d.代表没有检测到信号.
      下载: 导出CSV

      表  4  龟山岛热液自然硫微观包体中元素的主成分分析

      Table  4.   Principle component analysis of the elements in the microscopic inclusions of Kueishantao native sulfur

      元素 1 2 3 4
      Al -0.175 0.511 0.456 0.121
      S -0.607 0.069 0.660 -0.323
      Mn 0.867 0.064 -0.044 0.008
      Fe 0.619 -0.088 -0.616 0.347
      Co -0.052 -0.078 -0.017 0.838
      Ni 0.058 0.057 -0.176 0.843
      Cu -0.271 -0.007 -0.344 -0.542
      Zn -0.022 0.965 0.078 -0.063
      As 0.425 -0.133 0.709 0.151
      Se -0.305 0.320 0.761 0.131
      Sb 0.927 -0.147 0.076 0.042
      Te 0.055 0.316 0.866 -0.177
      Ba -0.063 0.952 0.168 0.033
      Hg 0.949 -0.127 -0.064 0.021
      Pb -0.067 0.962 0.078 -0.065
      特征值 5.086 3.043 2.135 1.789
      方差的% 33.907 20.287 14.235 11.926
      注:提取方法:主成分.旋转法:具有Kaiser标准化的正交旋转法.
      下载: 导出CSV
    • Chen, C.T.A., Wang, B.J., Huang, J.F., et al., 2005a.Investigation into Extremely Acidic Hydrothermal Fluids Off Kueishan Tao, Taiwan, China.Acta Oceanologica Sinica, 24(1):125-133.
      Chen, C.T.A., Zeng, Z.G., Kuo, F.W., et al., 2005b.Tide-Influenced Acidic Hydrothermal System Offshore Ne Taiwan.Chemical Geology, 224(1-3):69-81. doi: 10.1016/j.chemgeo.2005.07.022
      Chen, X.G., Lyu, S.S., Garbe-Schönberg, D., et al., 2018.Heavy Metals from Kueishantao Shallow-Sea Hydrothermal Vents, Offshore Northeast Taiwan.Journal of Marine Systems, 180:211-219. https://doi.org/10.1016/j.jmarsys.2016.11.018
      Chen, X.G., Zhang, H.Y., Li, X., et al., 2016.The Chemical and Isotopic Compositions of Gas Discharge from Shallow-Water Hydrothermal Vents at Kueishantao, Offshore Northeast Taiwan.Geochemical Journal, 50(4):341-355. doi: 10.2343/geochemj.2.0425
      Chen, Y.G., Wu, W.S., Chen, C.H., et al., 2001.A Date for Volcanic Eruption Inferred from a Siltstone Xenolith.Quaternary Science Reviews, 20(5):869-873. https://www.researchgate.net/publication/222837948_A_date_for_volcanic_eruption_inferred_from_a_siltstone_xenolith
      Craddock, P.R., Bach, W., 2010.Insights to Magmatic-Hydrothermal Processes in the Manus Back-Arc Basin as Recorded by Anhydrite.Geochimica et Cosmochimica Acta, 74(19):5514-5536. doi: 10.1016/j.gca.2010.07.004
      de Ronde, C., Massoth, G.J., Butterfield, D.A., et al., 2011.Submarine Hydrothermal Activity and Gold-Rich Mineralization at Brothers Volcano, Kermadec Arc, New Zealand.Mineralium Deposita, 46(5-6):541-584. doi: 10.1007/s00126-011-0345-8
      Garbe-Schönberg, C.D., 1993.Simultaneous Determination of Thirty-Seven Trace Elements in Twenty-Eight International Rock Standards by ICP-MS.Geostandards and Geoanalytical Research, 17(1):81-97. doi: 10.1111/ggr.1993.17.issue-1
      Garbe-Schönberg, C.D., Müller, S., 2014.Nano-Particulate Pressed Powder Tablets for LA-ICP-MS.Journal of Analytical Atomic Spectrometry, 29:990-1000. doi: 10.1039/C4JA00007B
      Gena, K.R., Chiba, H., Mizuta, T., et al., 2006.Hydrogen, Oxygen and Sulfur Isotope Studies of Seafloor Hydrothermal System at the Desmos Caldera, Manus Back-Arc Basin, Papua New Guinea:An Analogue of Terrestrial Acid Hot Crater-Lake.Resource Geology, 56(2):183-190. doi: 10.1111/rge.2006.56.issue-2
      German, C.R., Petersen, S., Hannington, M.D., 2016.Hydrothermal Exploration of Mid-Ocean Ridges:Where Might the Largest Sulfide Deposits Be Forming? Chemical Geology, 420:114-126. doi: 10.1016/j.chemgeo.2015.11.006
      Graf, J.L., 1977.Rare Earth Elements as Hydrothermal Tracers during the Formation of Massive Sulfide Deposits in Volcanic Rocks.Economic Geology, 72(4):527-548. doi: 10.2113/gsecongeo.72.4.527
      Guo, F. W., 2001. Priminary Investigation of the Hydrothermal Activities off Kueishantao Island, National Sun Yat-Sen University, Kaohsiung (in Chinese with English abstract).
      Hattori, K.H., Arai, S., Clarke, D.B., 2002.Selenium, Tellurium, Arsenic and Antimony Contents of Primary Mantle Sulfides.Canadian Mineralogist, 40(2):637-650. doi: 10.2113/gscanmin.40.2.637
      Helmy, H.M., Ballhaus, C., Wohlgemuth-Ueberwasser, C., et al., 2010.Partitioning of Se, As, Sb, Te and Bi between Monosulfide Solid Solution and Sulfide Melt-Application to Magmatic Sulfide Deposits.Geochimica et Cosmochimica Acta, 74(21):6174-6179. doi: 10.1016/j.gca.2010.08.009
      Herzig, P.M., Hannington, M.D., 1995.Polymetallic Massive Sulfides at the Modern Seafloor a Review.Ore Geology Reviews, 10(2):95-115. doi: 10.1016/0169-1368(95)00009-7
      Huang, W., Tao, C.H., Li, J., et al., 2016.Osmium Isotopic Compositions and Osmium Distribution in the Mid-Ocean Ridge Hydrothermal System.Earth Science, 41(3):441-451 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/osmium-isotope-distribution-within-the-palaeozoic-alexandrinka-fsBulQwwSS
      Jiang, W., Zhong, Y., Shen, L., et al., 2014.Stress-Driven Discovery of Natural Products from Extreme Marine Environment-Kueishantao Hydrothermal Vent, a Case Study of Metal Switch Valve.Current Organic Chemistry, 18(7):925-934. doi: 10.2174/138527281807140515155705
      Kargel, J.S., Delmelle, P., Nash, D.B., 1999.Volcanogenic Sulfur on Earth and Io:Composition and Spectroscopy.Icarus, 142(1):249-280. doi: 10.1006/icar.1999.6183
      Kato, Y., Fujinaga, K., Nakamura, K., et al., 2011.Deep-Sea Mud in the Pacific Ocean as a Potential Resource for Rare-Earth Elements.Nature Geoscience, 4(8):535-539. doi: 10.1038/ngeo1185
      Kim, J., Lee, K.Y., Kim, J.H., 2011.Metal-Bearing Molten Sulfur Collected from a Submarine Volcano:Implications for Vapor Transport of Metals in Seafloor Hydrothermal Systems.Geology, 39(4):351-354. doi: 10.1130/G31665.1
      König, S., Luguet, A., Lorand, J.P., et al., 2012.Selenium and Tellurium Systematics of the Earth's Mantle from High Precision Analyses of Ultra-Depleted Orogenic Peridotites.Geochimica et Cosmochimica Acta, 86:354-366. doi: 10.1016/j.gca.2012.03.014
      Li, J., Sun, Z.L., Huang, W., et al., 2014.Mordern Seafloor Hydrothermal Processes and Mineralization.Earth Science, 39(3):312-324 (in Chinese with English abstract). https://www.researchgate.net/publication/287279663_Modern_seafloor_hydrothermal_processes_and_mineralization
      Li, X.H., Chu, F.Y., Lei, J.J., et al., 2014.Discussion on Sources of Metallogenic Materials of Hydrothermal Sulfide from Southwest Indian Ridge:Isotope Evidences.Journal of Earth Sciences and Environment, 36(1):193-200 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201401018
      Li, Y., Audétat, A., 2012.Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between Sulfide Phases and Hydrous Basanite Melt at Upper Mantle Conditions.Earth and Planetary Science Letters, 355:327-340. https://www.deepdyve.com/lp/elsevier/partitioning-of-v-mn-co-ni-cu-zn-as-mo-ag-sn-sb-w-au-pb-and-bi-between-Rzy6nFy6jO
      Liu, C.H., Wang, X.M., Zeng, Z.G., et al., 2009.Lead Isotopic Compositions of Native Sulfur Chimneys from Nearby Kueishantao Island in Northeast Taiwan and Its Geological Implications.Oceanologia et Limnologia Sinica, 40(4):393-399 (in Chinese with English abstract). http://www.oalib.com/paper/1593171
      Liu, C.H., Zeng, Z.G., Yin, X.B., et al., 2006.Basic Characters of Native Sulfur Chimneys Near the Sea off Kueishantao from the Northeastern Taiwan.Journal of Oceanography in Taiwan Strait, 25(3):309-317 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_twhx200603001
      Maier, W., 1999.The Fractionation of Ni, Cu and the Noble Metals in Silicate and Sulfide Liquids.Geological Association of Canada Short Course Notes, 13:69-106. http://www.researchgate.net/publication/254300308_THE_FRACTIONATION_OF_NI_CU_AND_THE_NOBLE_METALS_IN_SILICATE_AND_SULFIDE_LIQUIDS
      McDonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253. doi: 10.1016/0009-2541(94)00140-4
      Park, J.W., Campbell, I.H., Kim, J., 2016.Abundances of Platinum Group Elements in Native Sulfur Condensates from the Niuatahi-Motutahi Submarine Volcano, Tonga Rear Arc:Implications for Pge Mineralization in Porphyry Deposits.Geochimica et Cosmochimica Acta, 174:236-246. doi: 10.1016/j.gca.2015.11.026
      Peng, S.H., Hung, J.J., Hwang, J.S., 2011.Bioaccumulation of Trace Metals in the Submarine Hydrothermal Vent Crab Xenograpsus Testudinatus off Kueishan Island, Taiwan.Marine Pollution Bulletin, 63(5-12):396-401. doi: 10.1016/j.marpolbul.2011.05.013
      Petersen, S., Monecke, T., Westhues, A., et al., 2014.Drilling Shallow-Water Massive Sulfides at the Palinuro Volcanic Complex, Aeolian Island Arc, Italy.Economic Geology, 109(8):2129-2158. doi: 10.2113/econgeo.109.8.2129
      Qiu, Z.Y., Han, X.Q., Wang, Y.J., et al., 2015.The Characters of Sediment from Northwest Indian Ocean Carlsberg Ridge and Its Prospecting Application.Acta Mineralogica Sinica, 35(Suppl.):776 (in Chinese). https://www.researchgate.net/profile/Chunhui_Tao
      Rose-Weston, L., Brenan, J.M., Fei, Y., et al., 2009.Effect of Pressure, Temperature, and Oxygen Fugacity on the Metal-Silicate Partitioning of Te, Se, and S:Implications for Earth Differentiation.Geochimica et Cosmochimica Acta, 73(15):4598-4615. doi: 10.1016/j.gca.2009.04.028
      Sobolev, A.V., Asafov, E.V., Gurenko, A.A., et al., 2016.Komatiites Reveal a Hydrous Archaean Deep-Mantle Reservoir.Nature, 531:628-632. doi: 10.1038/nature17152
      Tao, C.H., Li, H.M., Jin, X.B., et al., 2014.Seafloor Hydrothermal Activity and Polymetallic Sulfide Exploration on the Southwest Indian Ridge.Chinese Science Bulletin, 59(19):1812-1822 (in Chinese with English abstract). doi: 10.1007/s11434-014-0182-0
      Wang, Y., Han, X., Petersen, S., et al., 2017.Mineralogy and Trace Element Geochemistry of Sulfide Minerals from the Wocan Hydrothermal Field on the Slow-Spreading Carlsberg Ridge, Indian Ocean.Ore Geology Reviews, 84:1-19. doi: 10.1016/j.oregeorev.2016.12.020
      Wardell, L., Kyle, P., Counce, D., 2008.Volcanic Emissions of Metals and Halogens from White Island (New Zealand) and Erebus Volcano (Antarctica) Determined with Chemical Traps.Journal of Volcanology and Geothermal Research, 177(3):734-742. doi: 10.1016/j.jvolgeores.2007.07.007
      Wilkinson, J.J., Stoffell, B., Wilkinson, C.C., et al., 2009.Anomalously Metal-Rich Fluids Form Hydrothermal Ore Deposits.Science, 323(5915):764-767. doi: 10.1126/science.1164436
      Wohlgemuth-Ueberwasser, C.C., Viljoen, F., Petersen, S., et al., 2015.Distribution and Solubility Limits of Trace Elements in Hydrothermal Black Smoker Sulfides:An in-Situ LA-ICP-MS Study.Geochimica et Cosmochimica Acta, 159:16-41. doi: 10.1016/j.gca.2015.03.020
      Xi, Z.Z., Li, R.X., Song, G., et al., 2016.Electrical Structure of Sea-Floor Hydrothermal Sulfide Deposits.Earth Science, 41(8):1395-1401 (in Chinese with English abstract). https://www.researchgate.net/publication/307875779_Electrical_structure_of_sea-floor_hydrothermal_sulfide_deposits
      Zeng, Z.G., 2011.Seafloor Hydrothermal Geology.Science Press, Beijing.
      Zeng, Z.G., Chen, C.T.A., Yin, X.B., et al., 2011.Origin of Native Sulfur Ball from the Kueishantao Hydrothermal Field Offshore Northeast Taiwan:Evidence from Trace and Rare Earth Element Composition.Journal of Asian Earth Sciences, 40(2):661-671. doi: 10.1016/j.jseaes.2010.10.019
      Zeng, Z.G., Liu, C.H., Chen, C.T.A., et al., 2007.Origin of a Native Sulfur Chimney in the Kueishantao Hydrothermal Field, Offshore Northeast Taiwan.Science China Earth Sciences, 50(11):1746-1753. doi: 10.1007/s11430-007-0092-y
      Zheng, L., Minami, T., Takano, S., et al., 2017.Distribution and Stoichiometry of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in Seawater around the Juan De Fuca Ridge.Journal of Oceanography, 73(5):1-17. doi: 10.1007/s10872-017-0424-2
      郭富雯, 2001. 龟山岛海底热液活动初步调查. 高雄: 台湾中山大学.
      黄威, 陶春辉, 李军, 等, 2016.洋中脊热液系统中的锇及其同位素.地球科学, 41(3):441-451. http://www.earth-science.net/WebPage/Article.aspx?id=3262
      李军, 孙治雷, 黄威, 等, 2014.现代海底热液过程及成矿.地球科学, 39(3):312-324. http://www.earth-science.net/WebPage/Article.aspx?id=2841
      李小虎, 初凤友, 雷吉江, 等, 2014.西南印度洋中脊热液硫化物成矿物质来源探讨:同位素证据.地球科学与环境学报, 36(1):193-200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201401018
      刘长华, 汪小妹, 曾志刚, 等, 2009.台湾东北部龟山岛附近海域自然硫烟囱体的铅同位素组成及地质意义.海洋与湖沼, 40(4):393-399. doi: 10.11693/hyhz200904002002
      刘长华, 曾志刚, 殷学博, 等, 2006.台湾岛东北部龟山岛附近海域自然硫烟囱体的基本特征研究.台湾海峡, 25(3):309-317. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=twhx200603001
      邱中炎, 韩喜球, 王叶剑, 等, 2015.西北印度洋卡尔斯伯格脊沉积物特征及其找矿启示.矿物学报, 35(增刊):776. http://www.cnki.com.cn/Journal/A-A5-CCDZ-2015-S1.htm
      陶春辉, 李怀明, 金肖兵, 等, 2014.西南印度洋脊的海底热液活动和硫化物勘探.科学通报, 59(19):1812-1822. http://www.docin.com/p-1479330221.html
      席振铢, 李瑞雪, 宋刚, 等, 2016.深海热液金属硫化物矿电性结构.地球科学, 41(8):1395-1401. http://www.earth-science.net/WebPage/Article.aspx?id=3346
      曾志刚, 2011.海底热液地质学.北京:科学出版社.
    • 加载中
    图(10) / 表(4)
    计量
    • 文章访问数:  6197
    • HTML全文浏览量:  2036
    • PDF下载量:  17
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-08-16
    • 刊出日期:  2018-05-15

    目录

      /

      返回文章
      返回