Characteristics and Research Significance of Polymorphic Pyrite in Logatchev Hydrothermal Area, North Atlantic
-
摘要: 北大西洋Logatchev热液区产出的黄铁矿形貌丰富、成分各异,极具特殊性和代表性.运用扫描电镜和电子探针系统观测黄铁矿矿物学特征,发现粒状黄铁矿粒径不一,具高Fe、S,低微量元素的特点;草莓状黄铁矿见有松散莓体、球形-次球形莓体和自形结构莓体,其Cu含量总体较高,不同晶体特征的莓体成分存在差异;胶状黄铁矿见有多层环带,内核到环带由纳微米晶体聚合生成,由内到外成分具有S/Fe比、Zn含量减小,As含量增大的趋势.分析认为早期粒状黄铁矿是在较高温度下的热液体系中直接形成,随热液作用衰减,生成的粒状黄铁矿多呈纳-微米晶产出;草莓状黄铁矿是由松散纳-微米晶逐步聚集形成,受溶液过饱和度影响,莓体粒度和聚集程度存在差异;胶状黄铁矿多晶聚集环带生长方向是由内向外的,聚集程度差异指示沉积环境的反复交替.研究区多形貌黄铁矿具有由分散的微晶→多晶聚合体→自形单晶的完整演化系列特征,对于解读现代海底热液活动的方式和特点,揭示纳米晶体-宏观晶体的演化过程有积极意义.
-
关键词:
- Logatchev热液区 /
- 多形貌黄铁矿 /
- 演化过程 /
- 矿物学
Abstract: The variety of morphology and compositions of pyrite in the Logatchev hydrothermal area of North Atlantic is particular and representative. In this paper, it analyzes the mineralogical characteristics of pyrite systematically by scanning electron microscopy (SEM) and electron probe microanalysis(EPMA). It is found that the size of granular pyrite is inhomogeneous with high contents of Fe and S and low contents of trace elements. There are three types of pyrite framboids in this area:loosely arranged framboids, spherical framboids and framboids with enhedral crystal structure. The content of Cu in framboids is large, and the different framboid crystals have different chemical compositions. Part of colloidal pyrite develops multilayer girdles, and it is formed by the polymerization of nano-micro pyrite crystals. From the core to the girdles, the contents of S/Fe and Zn show a decreasing trend, while the As content shows an increasing tendency. The analyses show that the earlier granular pyrite is formed directly in a hydrothermal system at higher temperatures, the formation of pyrite is mainly composed of nano and micro pyrite crystals with the attenuation of hydrothermal action. The loosely nano and micro pyrite crystals have a tendency to aggregate framboids. The size and accumulation of framboids vary with the change of the super saturation of solution. The growth of polycrystalline aggregation is from inside girdle to outside girdle, and the difference of aggregation of girdles indicates the alternation of metallogenic environment. Multi-morphologies of pyrite in the area have a complete evolution series from dispersed microcrystals to polycrystalline aggregate to euhedral crystal, which is significant to the understanding of the ways and characteristics of modern seafloor hydrothermal activity and the exploration of the evolution process of the nano crystalline crystal.-
Key words:
- Logatchev hydrothermal area /
- polymorphic pyrite /
- evolutionary process /
- mineralogy
-
图 1 北大西洋Logatchev热液区地质概况以及取样位置
Fig. 1. Geological survey and sampling position of Logatchev hydrothermal region, North Atlantic
表 1 多形貌黄铁矿EPMA分析结果(%)
Table 1. EPMA analysis results of polymorphic pyrite (%)
黄铁矿特征 As S Pb Fe Cu Zn Co Ag Au Ni Si O Total S/Fe Co/Ni 自形-半自形黄铁矿 0.05 53.48 0.00 46.15 0.04 0.00 0.05 0.00 0.02 0.00 99.79 2.03 0.03 52.84 0.00 46.24 0.07 0.01 0.10 0.01 0.30 0.01 99.59 2.00 10.00 0.11 53.23 0.11 45.86 0.08 0.07 0.06 0.03 0.00 0.00 99.54 2.03 0.00 53.46 0.02 46.30 0.08 0.01 0.08 0.00 0.04 0.00 99.98 2.02 0.02 53.46 0.09 46.00 0.00 0.01 0.05 0.00 0.03 0.00 99.66 2.03 0.07 53.00 0.00 46.34 0.00 0.00 0.07 0.00 0.00 0.02 99.50 2.00 3.50 0.06 53.30 0.04 46.36 0.04 0.00 0.08 0.01 0.00 0.00 99.89 2.01 松散的莓体 0.00 45.45 0.05 39.47 0.13 0.01 0.06 0.00 5.40 6.23 96.80 2.02 0.00 45.13 0.00 40.01 0.04 0.00 0.08 0.00 6.34 12.15 103.75 1.97 球形莓体 0.11 51.32 0.03 44.62 0.16 0.02 0.11 0.01 0.47 1.13 97.96 2.01 11.00 0.00 52.62 0.00 44.02 0.16 0.05 0.09 0.00 0.89 1.26 99.09 2.09 自形结构莓体 0.00 52.47 0.00 46.13 0.06 0.05 0.10 0.00 0.25 0.78 99.84 1.99 0.05 52.65 0.00 46.26 0.00 0.04 0.07 0.00 0.11 0.32 99.50 1.99 紧密排列莓体 0.10 52.91 0.02 45.99 0.22 0.03 0.06 0.01 0.00 0.01 99.36 2.01 6.00 0.05 53.69 0.04 46.39 0.12 0.07 0.08 0.00 0.00 0.02 100.46 2.03 4.00 0.06 53.76 0.00 46.16 0.12 0.01 0.07 0.00 0.00 0.00 100.18 2.04 0.04 53.21 0.03 46.34 0.47 0.03 0.07 0.00 0.01 0.04 100.25 2.01 1.75 0.10 52.75 0.02 45.91 0.09 0.03 0.09 0.00 0.01 0.00 98.99 2.01 0.08 53.51 0.02 46.04 0.26 0.01 0.01 0.02 0.03 0.00 99.99 2.03 0.03 53.47 0.00 46.66 0.07 0.07 0.03 0.02 0.02 0.00 100.35 2.01 0.04 53.14 0.00 46.56 0.26 0.02 0.05 0.00 0.03 0.00 100.10 2.00 胶状黄铁矿 0.60 53.52 45.09 0.02 0.02 0.01 0.22 0.02 99.50 2.08 1.00 0.63 53.61 44.90 0.01 0.05 0.00 0.07 0.01 99.29 2.09 5.00 0.63 53.49 45.67 0.02 0.04 0.01 0.07 0.03 99.95 2.05 1.33 0.64 53.61 45.52 0.00 0.03 0.00 0.00 0.00 99.80 2.06 0.60 53.53 45.69 0.00 0.02 0.03 0.12 0.01 100.00 2.05 2.00 0.66 51.46 43.92 0.00 0.01 0.01 0.13 0.02 96.20 2.05 0.50 注:胶状黄铁矿环带EPMA分析结果顺序为由内到外. -
Abraitis, P.K., Pattrick, R.A.D., Vaughan, D.J., 2004.Variations in the Compositional, Textural and Electrical Properties of Natural Pyrite:A Review.International Journal of Mineral Processing, 74(1):41-59. https://www.deepdyve.com/lp/elsevier/variations-in-the-compositional-textural-and-electrical-properties-of-RawgMkDenM Barrie, C.D., Boyce, A.J., Boyle, A.P., et al., 2009.Growth Controls in Colloform Pyrite.American Mineralogist, 94(4):415-429. doi: 10.2138/am.2009.3053 Bi, S.J., Li, Z.K., Tang, K.F., et al., 2016.LA-ICP-MS In Situ Trace Element Analysis of Pyrite from Dongtongyu Gold Deposit and Its Metallogenic Significance, Xiaoqinling Gold District.Earth Science, 41(7):1121-1140 (in Chinese with English abstract). https://www.researchgate.net/publication/306173269_LA-ICP-MS_in_situ_trace_element_analysis_of_pyrite_from_Dongtongyu_gold_deposit_and_its_metallogenic_significance_Xiaoqinling_gold_district Dick, H.J.B., Lin, J., Schouten, H., 2003.An Ultraslow-Spreading Class of Ocean Ridge.Nature, 426(6965):405-412. doi: 10.1038/nature02128 Feng, Y., Ma, T.Y., Liu, L., et al., 2009.Insights into Shape Control and Growth Mechanism of Inorganic Nanocrystals.Science in China (Series B), 39(9):864-886 (in Chinese with English abstract). https://www.researchgate.net/publication/262685195_Insights_into_shape_control_and_growth_mechanism_of_inorganic_nanocrystals Franchini, M., McFarlane, C., Maydagán, L., et al., 2015.Trace Metals in Pyrite and Marcasite from the Agua Rica Porphyry-High Sulfidation Epithermal Deposit, Catamarca, Argentina:Textural Features and Metal Zoning at the Porphyry to Epithermal Transition.Ore Geology Reviews, 66:366-387. doi: 10.1016/j.oregeorev.2014.10.022 Gablina, I.F., Semkova, T.A., Stepanova, T.V., et al., 2006.Diagenetic Alterations of Copper Sulfides in Modern Ore-Bearing Sediments of the Logatchev-1 Hydrothermal Field (Mid-Atlantic Ridge 14°45'N).Lithology and Mineral Resources, 41(1):27-44. doi: 10.1134/S0024490206010032 Gao, S., Huang, F., Gu, X.P., et al., 2017.Research on the Growth Orientation of Pyrite Grains in the Colloform Textures in Baiyunpu Pb-Zn Polymetallic Deposit, Hunan, China.Mineralogy & Petrology, 111(1):69-79. doi: 10.1007%2Fs00710-016-0465-z Gao, S., Huang, F., Wang, Y.H., et al., 2016.A Review of Research Progress in the Genesis of Colloform Pyrite and Its Environmental Indications.Acta Geologica Sinica (English Edition), 90(4):1353-1369. doi: 10.1111/acgs.2016.90.issue-4 Huang, F., Gao, W.Y., Gao, S., et al., 2017.Morphology Evolution of Nano-Micron Pyrite:A Review.Journal of Nanoscience & Nanotechnology, 17(9):5980-5995. http://www.ingentaconnect.com/contentone/asp/jnn/2017/00000017/00000009/art00004 Huang, F., Kou, D.M., Song, D., et al., 2011.Microscopic Observation of the Pyrite Whisker Patterns in Gengzhuang, Shanxi Province, and Its Typomorphic Significance.Acta Geologica Sinica, 85(9):1486-1492 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dizhixb201109008 Huang, F., Wang, R.C., Zhang, W.L., et al., 2009.Morphologic Characteristics and Growth Interface Stability of Nano-Micron FeS2 Whiskers.Chinese Science Bulletin, 54(23):4479-4486. https://www.researchgate.net/profile/Fei_Huang3 Jiang, S.Y., Yang, T., Li, L., et al., 2006.Lead and Sulfur Compositions of Sulfides from the TAG Hydrothermal Isotopic Field, Mid-Atlantic Ridge.Acta Petrologica Sinica, 22(10):2597-2602 (in Chinese with English abstract). https://www.researchgate.net/publication/285942914_Lead_and_sulfur_isotopic_compositions_of_sulfides_from_the_TAG_hydrothermal_field_Mid-Atlantic_Ridge Kim, J., Lee, I., Halbach, P., et al., 2006.Formation of Hydrothermal Vents in the North Fiji Basin:Sulfur and Lead Isotope Constraints.Chemical Geology, 233(3):257-275. https://www.researchgate.net/publication/223835641_Formation_of_hydrothermal_vents_in_the_North_Fiji_Basin_Sulfur_and_lead_isotope_constraints Kuhn, T., Alexander, B., Augustin, N., et al., 2004.The Logatchev Hydrothermal Field-Revisited:Preliminary Results of the R/V Meteor Cruise Hydromar I (M60/3).Interridge News, 13:1-4. https://www.deepdyve.com/lp/elsevier/mineralogical-and-chemical-mass-changes-in-mafic-and-ultramafic-rocks-BV0a0doRLs Macdonald, K.C., 2001.Mid-Ocean Ridge Tectonics, Volcanism and Geomorphology.Encyclopedia of Ocean Sciences, 6:1798-1813. http://www.geol.ucsb.edu/faculty/macdonald/papers/Macdonald%20Mid-Ocean%20Ridge%20Tectonics.pdf Marble, J.C., Carroll, K.C., Janousek, H., et al., 2010.In Situ Oxidation and Associated Mass-Flux-Reduction/Mass-Removal Behavior for Systems with Organic Liquid Located in Lower-Permeability Sediments.Journal of Contaminant Hydrology, 117(1):82-93. http://adsabs.harvard.edu/abs/2010JCHyd.117...82M Marbler, H., Koschinsky, A., Pape, T., et al., 2010.Geochemical and Physical Structure of the Hydrothermal Plume at the Ultramafic-Hosted Logatchev Hydrothermal Field at 14°45'N on the Mid-Atlantic Ridge.Marine Geology, 271(3):187-197. https://www.deepdyve.com/lp/elsevier/geochemical-and-physical-structure-of-the-hydrothermal-plume-at-the-UaxVH67nrB Maslennikov, V.V., Maslennikova, S.P., Large, R.R., et al., 2017.Chimneys in Paleozoic Massive Sulfide Mounds of the Urals VMS Deposits:Mineral and Trace Element Comparison with Modern Black, Grey, White and Clear Smokers.Ore Geology Reviews, 85:64-106. doi: 10.1016/j.oregeorev.2016.09.012 Merinero, R., Lunar, R., Martínez-Frías, J., et al., 2008.Iron Oxyhydroxide and Sulphide Mineralization in Hydrocarbon Seep-Related Carbonate Submarine Chimneys, Gulf of Cadiz (SW Iberian Peninsula).Marine and Petroleum Geology, 25(8):706-713. doi: 10.1016/j.marpetgeo.2008.03.005 Mozgova, N.N., Trubkin, N.V., Borodaev, Y.S., et al., 2008.Mineralogy of Massive Sulfides from the Ashadze Hydrothermal Field, 13°N, Mid-Atlantic Ridge.The Canadian Mineralogist, 46(3):545-567. doi: 10.3749/canmin.46.3.545 Ohfuji, H., Rickard, D., 2005.Experimental Syntheses of Framboids-A Review.Earth-Science Reviews, 71(3):147-170. https://www.deepdyve.com/lp/elsevier/experimental-syntheses-of-framboids-a-review-J2xPPl4QRS Rickard, D., Luther, G.W., 1997.Kinetics of Pyrite Formation by the H2S Oxidation of Iron (Ⅱ) Monosulfide in Aqueous Solutions between 25 and 125℃:The Mechanism.Geochimica et Cosmochimica Acta, 61(1):135-147. doi: 10.1016/S0016-7037(96)00322-5 Sawlowicz, Z., 1993.Pyrite Framboids and Their Development:A New Conceptual Mechanism.Geologische Rundschau, 82(1):148-156. doi: 10.1007/BF00563277 Schmidt, K., Koschinsky, A., Garbe-Schönberg, D., et al., 2007.Geochemistry of Hydrothermal Fluids from the Ultramafic-Hosted Logatchev Hydrothermal Field, 15°N on the Mid-Atlantic Ridge:Temporal and Spatial Investigation.Chemical Geology, 242(1-2):1-21. doi: 10.1016/j.chemgeo.2007.01.023 Shi, X.F., Ye, J., Yang, Y.M., et al., 2013.Hydrothermal Mineralization and Metallogenic Setting of the Mid-Atlantic Ridge.Acta Mineralogica Sinica, (Suppl.2):664 (in Chinese). doi: 10.1134/S1075701507060037 Taylor, K.G., Macquaker, J.H.S., 2000.Early Diagenetic Pyrite Morphology in a Mudstone-Dominated Succession:The Lower Jurassic Cleveland Ironstone Formation, Eastern England.Sedimentary Geology, 131(1):77-86. https://www.deepdyve.com/lp/elsevier/early-diagenetic-pyrite-morphology-in-a-mudstone-dominated-succession-2KbPYj7LXf Tivey, M.K., 1995.The Influence of Hydrothermal Fluid Composition and Advection Rates on Black Smoker Chimney Mineralogy:Insights from Modeling Transport and Reaction.Geochimica et Cosmochimica Acta, 59(10):1933-1949. doi: 10.1016/0016-7037(95)00118-2 Tivey, M.K., Humphris, S.E., Thompson, G., et al., 1995.Deducing Patterns of Fluid Flow and Mixing within the TAG Active Hydrothermal Mound Using Mineralogical and Geochemical Data.Journal of Geophysical Research Atmospheres, 100(B7):12527-12555. doi: 10.1029/95JB00610 Wang, J., Liu, Z., Liu, J., et al., 2017.Trace Element Compositions of Pyrite from the Shuangwang Gold Breccias, Western Qinling Orogen, China:Implications for Deep Ore Prediction.Journal of Earth Science, 28(4):1-9. doi: 10.1007%2Fs12583-017-0751-7 Wang, P., Huang, Y., Wang, C., et al., 2013.Pyrite Morphology in the First Member of the Late Cretaceous Qingshankou Formation, Songliao Basin, Northeast China.Palaeogeography, Palaeoclimatology, Palaeoecology, 385(5):125-136. http://linkinghub.elsevier.com/retrieve/pii/S0031018212005408 Wang, Y.J., Han, X.Q., Jin, X.L., et al., 2011.Typomorphic Characteristics of Pyrite and Its Metallogenic Environment of Edmond Hydrothermal Field, Central Indian Ridge.Acta Mineralogica Sinica, 31(2):173-179 (in Chinese with English abstract). https://www.researchgate.net/publication/309900966_Typomorphic_characteristics_of_pyrite_and_its_metallogenic_environment_of_edmond_hydrothermal_field_central_Indian_ridge Wei, H., Algeo, T.J., Yu, H., et al., 2015.Episodic Euxinia in the Changhsingian (Late Permian) of South China:Evidence from Framboidal Pyrite and Geochemical Data.Sedimentary Geology, 319:78-97. doi: 10.1016/j.sedgeo.2014.11.008 Wei, H., Wei, X., Qiu, Z., et al., 2016.Redox Conditions across the G-L Boundary in South China:Evidence from Pyrite Morphology and Sulfur Isotopic Compositions.Chemical Geology, 440:1-14. doi: 10.1016/j.chemgeo.2016.07.009 Yang, W.F., Yang, Q.H., Pan, A.Y., 2011.Characteristics of Organic Composition and Source of Organic Matter in Surface Sediments near the Logatchev Hydrothermal Field.Journal of Marine Sciences, 29(1):9-16 (in Chinese with English abstract). https://www.researchgate.net/publication/229415733_Characteristics_and_source_of_inorganic_and_organic_compounds_in_the_sediments_from_two_hydrothermal_fields_of_the_Central_Indian_and_Mid-Atlantic_Ridges Yang, X.Y., Gong, Y.M., 2011.Pyrite Framboid:Indicator of Environments and Life.Earth Science, 36(4):643-658 (in Chinese with English abstract). https://www.researchgate.net/publication/286315083_Pyrite_framboid_Indicator_of_environments_and_life Zeng, Z.G., Qin, Y.S., Zhao, Y.Y., et al., 2000.Sulfur Isotopic Composition of Seafloor Surface Hydrothermal Sediments in the TAG Hydrothermal Field of Mid-Atlantic Ridge and Its Geological Implications.Oceanologia et Limnologia Sinica, 31(5):518-529 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-hyfz200005009.htm 毕诗健, 李占轲, 唐克非, 等, 2016.小秦岭东桐峪金矿床黄铁矿LA-ICP-MS微量元素特征及其成矿意义.地球科学, 41(7):1121-1140. http://www.earth-science.net/WebPage/Article.aspx?id=3323 冯怡, 马天翼, 刘蕾, 等, 2009.无机纳米晶的形貌调控及生长机理研究.中国科学(B辑), 39(9):864-886. http://www.cqvip.com/QK/88064X/200909/31665842.html 黄菲, 寇大明, 宋丹, 等, 2011.山西耿庄黄铁矿晶须形貌的显微观测及其标型意义.地质学报, 85(9):1486-1492. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201109009.htm 蒋少涌, 杨涛, 李亮, 2006.大西洋洋中脊TAG热液区硫化物铅和硫同位素研究.岩石学报, 22(10):2597-2602. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200610021 石学法, 叶俊, 杨耀民, 等, 2013.大西洋中脊热液成矿作用与成矿背景.矿物学报, (增刊2):664. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2013S2375.htm 王叶剑, 韩喜球, 金翔龙, 等, 2011.中印度洋脊Edmond热液区黄铁矿的标型特征及其对海底成矿作用环境的指示.矿物学报, 31(2):173-179. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kwxb201102003 杨伟芳, 杨群慧, 潘安阳, 2011.Logatchev热液场附近表层沉积物中有机质的组成特征、来源及其影响因素.海洋学研究, 29(1):9-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhhy201101002 杨雪英, 龚一鸣, 2011.莓状黄铁矿:环境与生命的示踪计.地球科学, 36(4):643-658. http://www.earth-science.net/WebPage/Article.aspx?id=2133 曾志刚, 秦蕴珊, 赵一阳, 等, 2000.大西洋中脊TAG热液活动区海底热液沉积物的硫同位素组成及其地质意义.海洋与湖沼, 31(5):518-529. doi: 10.11693/hyhz200005010010 -