• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    古代深海硅质岩-粘土岩-碳酸盐岩系列(SAC)的岩石学分类

    曾子轩 刘晓峰 楼章华 金宠 高磊

    曾子轩, 刘晓峰, 楼章华, 金宠, 高磊, 2019. 古代深海硅质岩-粘土岩-碳酸盐岩系列(SAC)的岩石学分类. 地球科学, 44(2): 475-488. doi: 10.3799/dqkx.2018.579
    引用本文: 曾子轩, 刘晓峰, 楼章华, 金宠, 高磊, 2019. 古代深海硅质岩-粘土岩-碳酸盐岩系列(SAC)的岩石学分类. 地球科学, 44(2): 475-488. doi: 10.3799/dqkx.2018.579
    Zeng Zixuan, Liu Xiaofeng, Lou Zhanghua, Jin Chong, Gao Lei, 2019. Petrological Classification of Ancient Deep-Marine Siliceous-Argillaceous-Carbonate Rock Series (SAC). Earth Science, 44(2): 475-488. doi: 10.3799/dqkx.2018.579
    Citation: Zeng Zixuan, Liu Xiaofeng, Lou Zhanghua, Jin Chong, Gao Lei, 2019. Petrological Classification of Ancient Deep-Marine Siliceous-Argillaceous-Carbonate Rock Series (SAC). Earth Science, 44(2): 475-488. doi: 10.3799/dqkx.2018.579

    古代深海硅质岩-粘土岩-碳酸盐岩系列(SAC)的岩石学分类

    doi: 10.3799/dqkx.2018.579
    基金项目: 

    国家科技重大专项 2017zx05049004

    国家自然科学基金项目 41603026

    浙江地勘局科技项目 201703

    浙江省地勘资金项目 2014006

    浙江地勘局科技项目 201490

    详细信息
      作者简介:

      曾子轩(1993-), 女, 在读硕士研究生, 主要从事海洋沉积学方面的研究工作

      通讯作者:

      刘晓峰

    • 中图分类号: P67

    Petrological Classification of Ancient Deep-Marine Siliceous-Argillaceous-Carbonate Rock Series (SAC)

    • 摘要: 古代深海硅质岩-粘土岩-碳酸盐岩系列(SAC)是沉积在远洋或深海的硅质岩、粘土岩和碳酸盐岩及其过渡岩石类型的统称.在借鉴现有相关分类的基础上,提出了基于三端元矿物组成的SAC岩石系列的三角图分类新方案.以碳酸盐矿物-粘土矿物-石英作为三端元组分,按照"纯"(>90%)、"主"(50%~90%)、"质"(50%~25%)、"含"(< 25%)的定量分类标准,并利用等边三角形中线,将SAC岩石系列划分为4大类21类.利用新的分类方案,将下扬子地区寒武统SAC岩石系列划分出硅质岩大类、碳酸盐岩大类和混合泥岩大类,描述了它们的岩石学特征.该SAC岩石系列体现了自下而上由硅质岩端元向碳酸盐岩端元混合沉积演化的趋势.对国内外典型SAC岩石系列重新分类的结果表明,新的分类方案能够清晰反映端元矿物之间混合沉积演化的趋势.SAC岩石系列的分类和命名是定量描述古代深海或远洋沉积作用的基础,也是探索其沉积环境演变的重要依据.

       

    • 图  1  下扬子地区下-中寒武统硅质矿物镜下照片

      a, b.大陈岭组(样号17-37-07),深度2 512.43 m,絮状隐晶质石英(Opa),微晶石英颗粒(mic-Qtz),海绵骨针化石(Sp);c, d.大陈岭组(样号15-35-01),深度2 425.81 m,微晶石英(mic-Qtz)集合体构成海绵骨针化石(Sp),隐晶质石英(Opa);e, f.荷塘组(样号18-33-12),深度2 842.91 m,纤维状玉髓(Cln),絮状蛋白石(Opa)全消光,微晶石英颗粒(mic-Qtz)

      Fig.  1.  Thin section photographs of the siliceous minerals of the Middle-Lower Cambrian in the Lower Yangtze region

      图  2  下扬子地区下-中寒武统SAC岩石系列分类三角图

      Fig.  2.  Ternary plot of SAC rock series of the Lower-Middle Cambrian in the Lower Yangtze region

      图  3  下扬子地区下-中寒武统(纯)硅质岩(S)镜下照片

      a.薄片扫描,荷塘组(样号21-39-45),深度2 555.91 m,块状构造,大颗粒为硅质海绵骨针(Sp);b.单偏光,大量絮状蛋白石(Opa),微晶石英(mic-Qtz);c.正交,蛋白石(Opa)全消光,微晶石英颗粒(mic-Qtz),柱状云母(Ms);d.正交,微晶石英集合体(Qtz),放射状玉髓(Cln)环绕黄铁矿(Py)晶体;e.正交,放射虫(R)横截面,微晶石英(mic-Qtz),局部被方解石(Cal)交代;f.单偏光,由微晶石英(mic-Qtz)构成的硅质海绵骨针化石(Sp)

      Fig.  3.  Thin section photographs of silicalites of the Lower-Middle Cambrian in the Lower Yangtze region

      图  4  下扬子地区下-中寒武统含粘土硅质岩(A-S)镜下照片

      a.薄片扫描,荷塘组(样号20-36-01),深度2 606.91 m;块状构造,漂浮的颗粒为海绵骨针化石(Sp);b, c.微晶石英透镜状条带(mic-Qtz),隐晶质石英(Opa),自形黄铁矿(Py);d.单偏光,微晶石英集合体的海绵骨针(mic-Qtz),絮状蛋白石(Opa);e.正交,硅质海绵骨针(Sp)横切面,可见局部被方解石(Cal)交代;f.放射状结构的玉髓(Cln),柱状云母(Ms)

      Fig.  4.  Thin section photographs of argillaceous-silicalites of the Lower-Middle Cambrian in the Lower Yangtze region

      图  5  下扬子地区下-中寒武统粘土质硅质岩(AS)镜下照片

      a.薄片扫描,大陈岭组(样号12-26-33),深度2 393.57 m,微弱的水平层理,漂浮颗粒为海绵骨针化石(Sp); b, c.水平层理,亮色条带为微晶石英(mic-Qtz),暗色为有机质和粘土矿物(OM+Arg);d.单偏光,絮状蛋白石(Opa), 分散状自形黄铁矿(Py);e.正交,微晶石英(mic-Qtz)、隐晶质石英(Opa)、自形石英颗粒(Qtz);f.正交,硅质海绵骨针(Sp)横截面,微晶石英(mic-Qtz),局部被泥晶方解石(Cal)交代,见微量细柱状云母(Ms)

      Fig.  5.  Thin section photographs of argillaceous silicalites of the Lower-Middle Cambrian in the Lower Yangtze region

      图  6  下扬子地区下-中寒武统粘土质-硅质混合泥岩(A-SM)与碳酸盐质-硅质混合泥岩(C-SM)镜下照片

      a.薄片扫描,大陈岭组(样号13-03-23),深度2 397.49 m,清晰的水平层理,海绵骨针化石(Sp);b.单偏光,水平层理发育,亮色条带为微晶石英集合体(mic-Qtz),暗色物质为有机质和粘土矿物(OM+Arg);c.方解石集合体(Cal)与微晶石英(Qtz)集合体,斜长石具卡氏双晶(Pl);d.薄片扫描,大陈岭组(样号12-33-14),深度2 390.49 m,可见显著的水平层理,漂浮的颗粒为海绵骨针化石(Sp);e.单偏光,方解石集合体(Cal)和黄铁矿(Py),暗色条带为粘土矿物和有机质(OM+Arg);f.正交镜,方解石集合体(Cal)含有微晶石英(mic-Qtz)和放射虫化石(R)

      Fig.  6.  Thin section photographs of argillaceous-siliceous mixed mudstones and carbonate-siliceous mixed mudstones of the Lower-Middle Cambrian in the Lower Yangtze region

      图  7  下扬子地区下-中寒武统硅质碳酸盐岩(SC)镜下照片

      a.薄片扫描,杨柳岗组(样号07-32-32),深度2 218.09 m,水平层理发育;b, c.水平层理,放射虫(R),白云石纹层(Dol),分散状黄铁矿(Py)和微晶石英颗粒(mic-Qtz);d, e.硅质海绵骨针化石(Sp),内部充填黄铁矿晶体(Py);f.泥晶白云石(Dol),零星的自形-半自形石英颗粒(Qtz),自形黄铁矿发育(Py)

      Fig.  7.  Thin section photographs of siliceous carbonatites of the Lower-Middle Cambrian in the Lower Yangtze region

      图  8  下扬子地区中-下寒武统含硅碳酸盐岩(S-C)镜下照片

      a.薄片扫描,大陈岭组(样号17-37-26),深度2 517.19 m,水平层理和缝合线(Sty);b, c.基质为泥晶方解石(Cal),含少量微晶石英(mic-Qtz)和黄铁矿晶体(Py);d, e, f.缝合线,栉状结构,石英颗粒(Qtz), 垂直缝合线,内侧为粘土和有机质(Om+Arg)

      Fig.  8.  Thin section photographs of siliceous-carbonatites of the Lower-Middle Cambrian in the Lower Yangtze region

      图  9  典型的SAC岩石系列三角投图比较

      JY-B井五峰-龙马溪组页岩X衍射数据吴蓝宇(2016);Barnett页岩X衍射数据引自Miliken(2012);Pearsall页岩X衍射数据引自Hackley(2012)

      Fig.  9.  The comparison of the ternary diagrams of typical SAC rock series

    • Chalmers, G.R., Bustin, R.M., Power, I.M., 2012.Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses:Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units.AAPG Bulletin, 96(6):1099-1119.doi: 10.1306/10171111052
      Chermak, J.A., Madeline, E.S., 2014.Mineralogy and Trace Element Geochemistry of Gas Shales in the United States:Environmental Implications.International Journal of Coal Geology, 126:32-44.doi: 10.1016/j.coal.2013.12.005
      Fan, J.L., 2017.Lithofacies and Depositional Setting of the Lower Cambrian Organic-Rich Shale of the Lower Yangtze Region, China.Geological Science and Technology Information, 36(5):156-163(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201705021.htm
      Gasparik, M., Bertier, P., Gensterblum, Y., et al., 2014.Geological Controls on the Methane Storage Capacity in Organic-Rich Shales.International Journal of Coal Geology, 123:34-51.doi: 10.1016/j.coal.2013.06.010
      Götze, J., Möckel, R., 2012.Quartz:Deposits, Mineralogy and Analysis.Springer Geology, 10:978-1007. http://d.old.wanfangdata.com.cn/Periodical/bqeykdxxb201504032
      Gross, D., Sachsenhofer, R.F., Bechtel, A., et al., 2015.Organic Geochemistry of Mississippian Shales (Bowland Shale Formation) in Central Britain:Implications for Depositional Environment, Source Rock and Gas Shale Potential.Marine and Petroleum Geology, 59:1-21.doi: 10.1016/j.marpetgeo.2014.07.022
      Guo, X.S., 2017.Sequence Stratigraphy and Evolution Model of the Wufeng-Longmaxi Shale in the Upper Yangtze Area.Earth Science, 42(7):1069-1082(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201707004
      Guo, X.S., Hu, D.F., Wen, Y.D., et al., 2014.Major Factors Controlling the Accumulation and High Productivity in Marine Shale Gas in the Lower Paleozoic of Sichuan Basin and Its Periphery:A Case Study of the Wufeng-Longmaxi Formation of Jiaoshiba Area.Geology in China, 41(3):893-901(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201403016.htm
      Hackley, P.C., 2012.Geological and Geochemical Characterization of the Lower Cretaceous Pearsall Formation, Maverick Basin, South Texas:A Future Shale Gas Resource?.AAPG Bulletin, 96(8):1449-1482.doi: 10.1306/11221111071
      Helena, G.D., Camronl, M, Richard, L., et al., 2013a.Evaluating the Impact of Mineralogy on Reservoir Quality and Completion Quality of Organic Shale Plays.Proceedings-SPE Annual Technical Conference and Exhibition, (3):2465-2481.
      Helena, G.D., Camron, M., Richard, L., et al., 2013b.Score:A Mineralogy Based Classification Scheme for Organic Mudstones.Proceeding-SPE Annual Technical Conference and Exhibition, (3):2465-2481. http://d.old.wanfangdata.com.cn/Periodical/zgwzbjjyx201712008
      Hennissen, J.A.I., Hough, E., Vane, C.H., et al., 2017.The Prospectivity of a Potential Shale Gas Play:An Example from the Southern Pennine Basin (Central England, UK).Marine and Petroleum Geology, 86:1047-1066.doi: 10.1016/j.marpetgeo.2017.06.033
      Hou, H.H., Shao, L.Y., Li, Y.H., et al., 2017.Geochemistry, Reservoir Characterization and Hydrocarbon Generation Potential of Lacustrine Shales:A Case of YQ-1 Well in the Yuqia Coalfield, Northern Qaidam Basin, NW China.Marine and Petroleum Geology, 88:458-471.doi: 10.1016/j.marpetgeo.2017.08.030
      Hu, J., Chen, Z., Xue, Y.S., et al., 2002.Sponge Spicules in Early Cambrian Hetang Formation, Xiuning, Southern Anhui.Acta Micropalaeontologica Sinica, 19(1):53-62(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtgswxb200201004
      Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007.Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment.AAPG Bulletin, 91(4):475-499.doi: 10.1306/12190606068
      Jiang, S., Tang, X.L., Osborne, S., et al., 2017.Enrichment Factors and Current Misunderstanding of Shale Oil and Gas:Case Study of Shale in U.S., Argentina and China.Earth Science, 42(7):1083-1091(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707004.htm
      Jiang, Z.X., 2003.Sedimentology.Petroleum Industry Press, Beijing (in Chinese).
      Loucks, R.G., Ruppel, S.C., 2007.Mississippian Barnett Shale:Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas.AAPG Bulletin, 91(4):579-601.doi: 10.1306/11020606059
      Macquaker, J.H.S., Adams, A.E., 2003.Maximizing Information from Fine-Grained Sedimentary Rocks:An Inclusive Nomenclature for Mudstones.Journal of Sedimentary Research, 73(5):735-744.doi: 10.1306/012203730735
      Miliken, K.L, Stirrat, R.J.D., Papazis, P.K., et al., 2012.Carbonate Lithologies of the Mississipian Barnett Shale, Fort Worth Basin, Texas.Shale Reservoirs-Giant Resources for the 21st Century.AAPG Memoir, 97:290-321.
      Ross, D.J.K., Bustin, R.M., 2008.Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin:Application of an Integrated Formation Evaluation.AAPG Bulletin, 92(1):87-125.doi: 10.1306/09040707048
      Shipboard Scientific Party, 1984.Introduction and Explanatory Notes.In: Hay, W.W., Sibuet, J.C., eds.Initial Reports Deep Sea Drilling Project, 75(1): 3-25.
      Stow, D.A.V., 2005.Sedimentary Rocks in the Field:A Color Guide.Elsevier Academic Press, Burlington.
      Tian, H., Pan, L., Xiao, X.M., et al., 2013.A Preliminary Study on the Pore Characterization of Lower Silurian Black Shales in the Chuandong Thrust Fold Belt, Southwestern China Using Low Pressure N2 Adsorption and FE-SEM Methods.Marine and Petroleum Geology, 48:8-19.doi: 10.1016/j.marpetgeo.2013.07.008
      Wang, G.C., Carr, T.R., 2012a.Marcellus Shale Lithofacies Prediction by Multiclass Neural Network Classification in the Appalachian Basin.Mathematical Geosciences, 44(8):975-1004.doi: 10.1007/s11004-012-9421-6
      Wang, G.C., Carr, T.R., 2012b.Methodology of Organic-Rich Shale Lithofacies Identification and Prediction:A Case Study from Marcellus Shale in the Appalachian Basin.Computers & Geosciences, 49:151-163.doi: 10.1016/j.cageo.2012.07.011
      Wang, G.C., Carr, T.R., 2013.Organic-Rich Marcellus Shale Lithofacies Modeling and Distribution Pattern Analysis in the Appalachian Basin.AAPG Bulletin, 97(12):2173-2205.doi: 10.1306/05141312135
      Wang, G.C., Carr, T.R., Ju, Y.W., et al., 2014.Identifying Organic-Rich Marcellus Shale Lithofacies by Support Vector Machine Classifier in the Appalachian Basin.Computers & Geosciences, 64:52-60.doi: 10.1016/j.cageo.2013.12.002
      Wang, P.F., Jiang, Z.X., Yin, L.S., et al., 2017.Lithofacies Classification and Its Effect on Pore Structure of the Cambrian Marine Shale in the Upper Yangtze Platform, South China:Evidence from FE-SEM and Gas Adsorption Analysis.Journal of Petroleum Science and Engineering, 156:307-321.doi: 10.1016/j.petrol.2017.06.011
      Wang, Y., Wang, L.H., Wang, J.Q., et al., 2018.Characterization of Organic Matter Pores in Typical Marine and Terrestrial Shales, China.Journal of Natural Gas Science and Engineering, 49:56-65.doi: 10.1016/j.jngse.2017.11.002
      Wei, Z.F., Wang, Y.L., Wang, G., et al., 2018.Pore Characterization of Organic-Rich Late Permian Da-Long Formation Shale in the Sichuan Basin, Southwestern China.Fuel, 211:507-516.doi: 10.1016/j.fuel.2017.09.068
      Wu, L.Y., Hu, D.F., Lu, Y.C., et al., 2016.Advantageous Shale Lithofacies of Wufeng Formation-Longmaxi Formation in Fuling Gas Field of Sichuan Basin, SW China.Petroleum Exploration and Development, 43(2):189-197(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201602004
      Xiao, S.H., Hu, J., Yuan, X.L., et al., 2005.Articulated Sponges from the Lower Cambrian Hetang Formation in Southern Anhui, South China:Their Age and Implications for the Early Evolution of Sponges.Palaeogeography, Palaeoclimatology, Palaeoecology, 220(1/2):89-117.doi: 10.1016/j.palaeo.2002.02.001
      Yang, F., Ning, Z.F., Wang, Q., et al., 2016.Pore Structure of Cambrian Shales from the Sichuan Basin in China and Implications to Gas Storage.Marine and Petroleum Geology, 70:14-26.doi: 10.1016/j.marpetgeo.2015.11.001
      Yu, S.Y., He, J.Y, 1989.Sedimentary Petrology.China University of Geosciences Press, Wuhan (in Chinese).
      Zhang, L., Danelian, T., Feng, Q.L., et al., 2013.On the Lower Cambrian Biotic and Geochemical Record of the Hetang Formation (Yangtze Platform, South China):Evidence for Biogenic Silica and Possible Presence of Radiolaria.Journal of Micropalaeontology, 32(2):207-217.doi: 10.1144/jmpaleo2013-003
      Zhou, C.M., Jiang, S.Y., 2009.Palaeoceanographic Redox Environments for the Lower Cambrian Hetang Formation in South China:Evidence from Pyrite Framboids, Redox Sensitive Trace Elements, and Sponge Biota Occurrence.Palaeogeography, Palaeoclimatology, Palaeoecology, 271(3-4):279-286.doi: 10.1016/j.palaeo.2008.10.024
      Zhu, X.M., 2008.Sedimentology (Fourth Edition).Petroleum Industry Press, Beijing (in Chinese).
      樊佳莉, 2017.下扬子地区下寒武统富有机质页岩的岩相与沉积环境.地质科技情报, 36(5):156-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017110900024723
      郭旭升, 2017.上扬子地区五峰组-龙马溪组页岩层序地层及演化模式.地球科学, 42(7):1069-1082. http://www.earth-science.net/WebPage/Article.aspx?id=3610
      郭旭升, 胡东风, 文冶东, 等, 2014.四川盆地及周缘下古生界海相页岩气富集高产主控因素:以焦石坝地区五峰组-龙马溪组为例.中国地质, 41(3):893-901. doi: 10.3969/j.issn.1000-3657.2014.03.016
      胡杰, 陈哲, 薛耀松, 等, 2002.皖南早寒武世荷塘组海绵骨针化石.微体古生物学报, 19(1):53-62. doi: 10.3969/j.issn.1000-0674.2002.01.004
      蒋恕, 唐相路, Steve, O., 等, 2017.页岩油气富集的主控因素及误辩:以美国、阿根廷和中国典型页岩为例.地球科学, 42(7):1083-1091. http://www.earth-science.net/WebPage/Article.aspx?id=3609
      姜在兴, 2003.沉积学.北京:石油工业出版社.
      吴蓝宇, 胡东风, 陆永潮, 等, 2016.四川盆地涪陵气田五峰组-龙马溪组优势岩相.石油勘探与开发, 43(2):189-197. http://d.wanfangdata.com.cn/Periodical/syktykf201602004
      余素玉, 何镜宇, 1989.沉积岩石学.武汉:中国地质大学出版社.
      朱筱敏, 2008.沉积岩石学(第四版).北京:石油工业出版社.
    • 加载中
    图(9)
    计量
    • 文章访问数:  6879
    • HTML全文浏览量:  2269
    • PDF下载量:  82
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-12-01
    • 刊出日期:  2019-02-15

    目录

      /

      返回文章
      返回