• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大洋板块运动方向反转控制活动陆缘岩石圈张裂过程数值模拟

    李付成 孙珍 张江阳

    李付成, 孙珍, 张江阳, 2018. 大洋板块运动方向反转控制活动陆缘岩石圈张裂过程数值模拟. 地球科学, 43(10): 3762-3777. doi: 10.3799/dqkx.2018.581
    引用本文: 李付成, 孙珍, 张江阳, 2018. 大洋板块运动方向反转控制活动陆缘岩石圈张裂过程数值模拟. 地球科学, 43(10): 3762-3777. doi: 10.3799/dqkx.2018.581
    Li Fucheng, Sun Zhen, Zhang Jiangyang, 2018. Numerical Studies on Continental Lithospheric Breakup in Response to the Extension Induced by Subduction Direction Inversion. Earth Science, 43(10): 3762-3777. doi: 10.3799/dqkx.2018.581
    Citation: Li Fucheng, Sun Zhen, Zhang Jiangyang, 2018. Numerical Studies on Continental Lithospheric Breakup in Response to the Extension Induced by Subduction Direction Inversion. Earth Science, 43(10): 3762-3777. doi: 10.3799/dqkx.2018.581

    大洋板块运动方向反转控制活动陆缘岩石圈张裂过程数值模拟

    doi: 10.3799/dqkx.2018.581
    基金项目: 

    国家自然科学基金委员会-广东省联合基金项目 U1301233

    中国科学院战略性先导科技专项A类 XDA13010303

    中国科学院海洋研究所海洋地质与环境重点实验室开放基金 MGE2016KG03

    广东省自然科学基金研究团队项目 2017A030312002

    国家自然科学基金项目 41606073

    详细信息
      作者简介:

      李付成(1986-), 男, 助理研究员, 博士, 主要从事海洋地质、构造与模拟方面的研究

      通讯作者:

      孙珍

    • 中图分类号: P736

    Numerical Studies on Continental Lithospheric Breakup in Response to the Extension Induced by Subduction Direction Inversion

    • 摘要: 为了更好的探究大洋板块运动方向反转与大陆岩石圈张裂之间的动力学关系,以数值模拟为手段来正演大洋板块的反向俯冲,同时考虑光滑洋壳、海山链、海底高原、薄弱带等构造单元加入先期俯冲时对大陆岩石圈张裂的影响.结果显示:大陆岩石圈在大洋板块反向俯冲的过程中会被拉伸减薄,并出现局部岩石圈的颈缩直至张裂、同时伴随有软流圈地幔的上涌和减压熔融等现象.此外,含有不同构造单元的洋壳参与先期俯冲会对陆缘造成不同程度的破坏,从而影响拖曳过程中大陆岩石圈的应变集中,并导致大陆岩石圈在不同时间、不同位置出现张裂.模拟结果可用于对比南海陆缘在新生代张裂中表现的穿时等特征,亦可为其他被动陆缘张裂的动力学研究提供借鉴.

       

    • 图  1  被动拉伸模式示意图

      图a为回撤模式, 改自Leng and Gurnis(2011);图b为侧向走滑模式改自Petrunin and Sobolev(2008)

      Fig.  1.  Sketch map of passive stretch

      图  2  华南陆缘中生代晚期至新生代构造演化

      数据来自Hall(2002)Morley(2012).白色箭头为俯冲方向,L1和L2指示构造剖面位置(无比例)

      Fig.  2.  Sketch evolution maps of South China margin from the Late Mesozoic to Cenozoic

      图  3  初始模型设置

      图a为大陆岩石圈强度线,深度范围如黑色箭头所示;图b为模拟模型的物性设置、边界条件及温度场(白色实线)分布示意图

      Fig.  3.  Initial setup of the numerical modelling

      图  4  光滑洋壳的先期俯冲和后期反方向俯冲实验结果

      箭头指示物质的流向.红色阿拉伯数字为设置的标记点,后续图件中的红色阿拉伯数字亦为标记点且与本图的位置一致

      Fig.  4.  Results for the early subduction of oceanic plate with smooth surface and later drag-induced extension

      图  5  反向俯冲过程中大陆岩石圈的应变率第二不变量(a~b)及粘度(c~d)

      红色箭头为挤压,黑色箭头为拉张应力

      Fig.  5.  Second invariant of the strain rate (a-b) and viscosity (c-d) for the models during drag-induced extension

      图  6  无山根海山链的先期俯冲和后期反向俯冲实验结果(a~d),及含山根海山链的先期俯冲和后期反向俯冲实验结果(e~h)

      Fig.  6.  Results for the early subduction of seamount chains without (a-d) and with (e-h) root and later drag-induced extension

      图  7  含海底高原洋壳的先期俯冲和后期反向拖曳拉伸实验结果

      Fig.  7.  Results for the early subduction of oceanic plateau and later drag-induced extension

      图  8  含海底高原的洋壳在先期俯冲和后期反向俯冲过程中地形随时间的演化

      Fig.  8.  Topography history for the models with oceanic plateau subduction

      图  9  含薄弱带洋壳的先期俯冲和反向俯冲实验结果

      Fig.  9.  Results for the early subduction of weak zone and later drag-induced extension

      图  10  不同类型洋壳在先期俯冲和后期反向俯冲实验结果对比

      Fig.  10.  Overview for initial breakup location and timing of different models

      图  11  南海陆缘破裂不整合时间统计

      数据来自Hutchison(2004)孙珍等(2011)黄奇瑜等(2012)Barckhousen et al.(2014)

      Fig.  11.  Timing of breakup unconformity for the South China Sea margin

      表  1  模型采用的流变参数

      Table  1.   Material parameters used in the numerical experiments

      物质 ρ0 (kg/m3) sin(φ) AD (MPa-ns-1) n V (J/(MPa·mol)) E (kJ/mol) QL (kJ/kg) Hr (μW/m3) T (K) T (K) k (W/(mK))
      沉积物(湿石英) 2 700 0.03 3.2e-4 2.3 0 154 300 2 889+17 900/(P+54)+20 200/(P+54)2P<1 200 MPa;831+0.06PP>1 200 MPa 1 262+0.09P [0.64+807/(T+77)]exp(0.000 04PMPa)
      上陆壳 2 800 0.2 1
      上洋壳 3 200 0.03 0.25
      下洋壳(斜长石An75) 3 200 0.2 3.3e-4 3.2 0 238 380 0.25 973-70 400/(P+354)+77 800 000/(P+354)2P<1 600 MPa;935+0.003 5P+0.000 006 2P2P>1 600 MPa 1 423+0.105P [1.18+474/(T+77)]exp(0.000 04PMPa)
      下陆壳 2 900
      岩石圈地幔(干橄榄)软流圈地幔 3 300 0.6 2.5e+4 3.5 10 532 400 0.022 1 394+0.132 899P-0.000 005 104P2P<100 00 MPa;2 212+0.030 819(P-10 000),P>10 000 MPa 2 073+0.114P [0.73+1 293/(T+77)]exp(0.000 04PMPa)
      水化地幔(湿地幔) 3 300 0.03 2.0e+3 4.0 10 471 400 0.022 1 240+49 800/(P+323),P<2 400 MPa;1 266-0.011 8P+0.000 003 5P2P>2 400 MPa 2 073+0.114P [0.73+1 293/(T+77)]exp(0.000 04PMPa)
      参考文献 1,2 11 11 11 10,11 11 1,2 1 4,5,6,7,8 4 3,9
      注:符号所代表的的含义参见文字部分.参数值Cp=1 000 J·kg-1K-1α=3×10-5 K-1β=1×10-11 Pa-1.参考文献:1.Turcotte and Schubert, 2002;2.Bittner and Schmeling, 1995;3.Clauser and Huenges, 1995;4.Schmidt and Poli, 1998;5.Hess, 1989;6.Hirschmann, 2000;7.Johannes, 1985;8.Poli and Schmidt, 2002;9.Hofmeister, 1999;10.Turcotte and Schubert, 2002;11.Ranalli, 1995.
      下载: 导出CSV
    • Barckhausen, U., Engels, M., Franke, D., et al., 2015. Reply to Chang et al., 2014, Evolution of the South China Sea: Revised Ages for Breakup and Seafloor Spreading. Marine and Petroleum Geology, 59: 679-681.
      Bittner, D., Schmeling, H., 1995.Numerical Modelling of Melting Processes and Induced Diapirism in the Lower Crust.Geophysical Journal International, 123(1):59-70. https://doi.org/10.1111/j.1365-246x.1995.tb06661.x
      Bohm, M., Lüth, S., Echtler, H., et al., 2002.The Southern Andes between 36° and 40°S Latitude:Seismicity and Average Seismic Velocities.Tectonophysics, 356(4):275-289. https://doi.org/10.1016/s0040-1951(02)00399-2
      Briais, A., Patriat, P., Tapponnier, P., 1993.Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea:Implications for the Tertiary Tectonics of Southeast Asia.Journal of Geophysical Research:Solid Earth, 98(B4):6299-6328. https://doi.org/10.1029/92jb02280
      Burg, J.P., Gerya, T.V., 2005.The Role of Viscous Heating in Barrovian Metamorphism of Collisional Orogens:Thermomechanical Models and Application to the Lepontine Dome in the Central Alps.Journal of Metamorphic Geology, 23(2):75-95. https://doi.org/10.1111/j.1525-1314.2005.00563.x
      Clauser, C., Huenges, E., 1995.Thermal Conductivity of Rocks and Minerals.American Geophysical Union Ref Shelf, 3:105-126. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_e2ce5dab39806e7267488f0fc84ec3d7
      Clift, P., Lin, J., Barckhausen, U., 2002.Evidence of Low Flexural Rigidity and Low Viscosity Lower Continental Crust during Continental Break-Up in the South China Sea.Marine and Petroleum Geology, 19(8):951-970. https://doi.org/10.1016/s0264-8172(02)00108-3
      Cullen, A., Reemst, P., Henstra, G., et al., 2010.Rifting of the South China Sea:New Perspectives.Petroleum Geoscience, 16(3):273-282. https://doi.org/10.1144/1354-079309-908
      Ding, W.W., Li, J.B., Li, M.B, 2011.Seismic Stratigraphy, Tectonic Structure and Extension Model across the Reed Bank Basin in the South Margin of South China Sea:Evidence from NH973-2 Multichannel Seismic Profile.Earth Science, 36(5):895-904(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2011.094
      Dominguez, S., Lallemand, S.E., Malavieille, J., et al., 1998.Upper Plate Deformation Associated with Seamount Subduction.Tectonophysics, 293(3-4):207-224. https://doi.org/10.1016/s0040-1951(98)00086-9
      Dong, D.D., Wu, S.G., Li, J.B., et al., 2014.Tectonic Contrast between the Conjugate Margins of the South China Sea and the Implication for the Differential Extensional Model.Science China:Earth Sciences, 44(5):1059-1070 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201406027.htm
      Duretz, T., Gerya, T.V., May, D.A., 2011.Numerical Modelling of Spontaneous Slab Breakoff and Subsequent Topographic Response.Tectonophysics, 502(1-2):244-256. https://doi.org/10.1016/j.tecto.2010.05.024
      Faccenda, M., Minelli, G., Gerya, T.V., 2009.Coupled and Decoupled Regimes of Continental Collision:Numerical Modeling.Earth and Planetary Science Letters, 278(3-4):337-349. https://doi.org/10.1016/j.epsl.2008.12.021
      Franke, D., Savva, D., Pubellier, M., et al., 2014.The Final Rifting Evolution in the South China Sea.Marine and Petroleum Geology, 58:704-720. https://doi.org/10.1016/j.marpetgeo.2013.11.020
      Gerya, T.V., Fossati, D., Cantieni, C., et al., 2009.Dynamic Effects of Aseismic Ridge Subduction:Numerical Modelling.European Journal of Mineralogy, 21(3):649-661. https://doi.org/10.1127/0935-1221/2009/0021-1931
      Gerya, T.V., Yuen, D.A., 2003.Characteristics-Based Marker-In-Cell Method with Conservative Finite-Differences Schemes for Modeling Geological Flows with Strongly Variable Transport Properties.Physics of the Earth and Planetary Interiors, 140(4):293-318. https://doi.org/10.1016/j.pepi.2003.09.006
      Hall, R., 2001.Cenozoic reconstructions of SE Asia and the SW Pacific: Changing Patterns of Land and Sea.In: Metcalfe, I., Smith, J.M.B., Morwood, M., eds., Faunal and Floral Migrations and Evolution in SE Asia-Australasia, Swets Zeitlinger, Lisse, 35-56.
      Hall, R., 2002.Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific:Computer-Based Reconstructions, Model and Animations.Journal of Asian Earth Sciences, 20(4):353-431. https://doi.org/10.1016/s1367-9120(01)00069-4
      Hall, R., van Hattum, M.W.A., Spakman, W., 2008.Impact of India-Asia Collision on SE Asia:The Record in Borneo.Tectonophysics, 451(1-4):366-389. https://doi.org/10.1016/j.tecto.2007.11.058
      Hao, T.Y., Xu, Y., Sun, F.L., et al., 2011.Integrated Geophysical Research on the Tectonic Attribute of Conjugate Continental Margins of South China Sea.Chinese Journal of Geophysics, 54(12):3098-3116(in Chinese with English abstract). doi: 10.1002/cjg2.1679/full
      Hess, P.C., 1989.Origin of Igneous Rocks.Harvard University Press, London.
      Hilde, T.W.C., Lee, C.S., 1984.Origin and Evolution of the West Philippine Basin:A New Interpretation.Tectonophysics, 102(1-4):85-104. https://doi.org/10.1016/0040-1951(84)90009-x
      Hirschmann, M.M., 2000.Mantle Solidus:Experimental Constraints and the Effects of Peridotite Composition.Geochemistry, Geophysics, Geosystems, 1(10):1042-1026. https://doi.org/10.1029/2000gc000070
      Hofmeister, A.M., 1999.Mantle Values of Thermal Conductivity and the Geotherm from Phonon Lifetimes.Science, 283(5408):1699-1706. https://doi.org/10.1126/science.283.5408.1699
      Holloway, N., 1981.The North Palawan Block, Philippines:Its Relation to the Asian Mainland and Its Role in the Evolution of the South China Sea.Geological Society of Malaysia Bulletin, 14:19-58. https://ci.nii.ac.jp/naid/80001344480
      Holloway, N., 1982.North Palawan Block, Philippines-Its Relation to Asian Mainland and Role in Evolution of South China Sea.AAPG Bulletin, 66(9):1355-1383. https://doi.org/10.1306/03b5a7a5-16d1-11d7-8645000102c1865d
      Huang, Q.Y., Yan, Y., Zhao, Q.H., et al., 2012.Cenozoic Stratigraphy of Taiwan:Window into Rifting, Stratigraphy and Paleoceanography of South China Sea.Chinese Science Bulletin, 57(20):1842-1862(in Chinese with English abstract). doi: 10.1007/s11434-012-5349-y
      Hutchison, C.S., 1996.The 'Rajang Accretionary Prism' and 'Lupar Line' Problem of Borneo.Geological Society, London, Special Publications, 106(1):247-261. https://doi.org/10.1144/gsl.sp.1996.106.01.16
      Hutchison, C.S., 2004.Marginal Basin Evolution:The Southern South China Sea.Marine and Petroleum Geology, 21(9):1129-1148. https://doi.org/10.1016/j.marpetgeo.2004.07.002
      Jahn, B.M., Auvray, B., Cornichet, J., et al., 1987.3.5 Ga Old Amphibolites from Eastern Hebei Province, China:Field Occurrence Petrography, Sm-Nd Isochron Age and REE Geochemistry.Precambrian Research, 34(3-4):311-346. https://doi.org/10.1016/0301-9268(87)90006-4
      Jahn, B.M., Chen, P.Y., Yen, T.P., 1976.Rb-Sr Ages of Granitic Rocks in Southeastern China and Their Tectonic Significance.Geological Society of America Bulletin, 87(5):763-776.https://doi.org/10.1130/0016-7606(1976)87<763:raogri>2.0.co;2 doi: 10.1130/0016-7606(1976)87<763:raogri>2.0.co;2
      Johannes, W., 1985.The Significance of Experimental Studies for the Formation of Migmatites.In: Ashworth, J., ed., Migmatites.Blackie, Glasgow, 36-85.
      Krawcyzk, C., Team, T.S., 2003.Amphibious Seismic Survey Images Plate Interface at 1960 Chile Earthquake.Eos, Transactions American Geophysical Union, 84(32):301-305. https://doi.org/10.1029/2003eo320001
      Kusky, T.M., Windley, B.F., Wang, L., et al., 2014.Flat Slab Subduction, Trench Suction, and Craton Destruction:Comparison of the North China, Wyoming, and Brazilian Cratons.Tectonophysics, 630:208-221. https://doi.org/10.13039/501100001809
      Kusznir, N.J., Karner, G.D., 2007.Continental Lithospheric Thinning and Breakup in Response to Upwelling Divergent Mantle Flow:Application to the Woodlark, Newfoundland and Iberia Margins.Geological Society, London, Special Publications, 282(1):389-419. https://doi.org/10.1144/sp282.16
      Lallemand, S., Heuret, A., Boutelier, D., 2005.On the Relationships between Slab Dip Back-Arc Stress, Upper Plate Absolute Motion, and Crustal Nature in Subduction Zones.Geochemistry, Geophysics, Geosystems, 6(9):259-259. https://doi.org/10.1029/2005gc000917
      Lapierre, H., Jahn, B.M., Charvet, J., et al., 1997.Mesozoic Felsic Arc Magmatism and Continental Olivine Tholeiites in Zhejiang Province and Their Relationship with the Tectonic Activity in Southeastern China.Tectonophysics, 274(4):321-338. https://doi.org/10.1016/s0040-1951(97)00009-7
      Lei, J.S., Zhao, D.P., Steinberger, B., et al., 2009.New Seismic Constraints on the Upper Mantle Structure of the Hainan Plume.Physics of the Earth and Planetary Interiors, 173(1-2):33-50. https://doi.org/10.1016/j.pepi.2008.10.013
      Leng, W., Gurnis, M., 2011.Dynamics of Subduction Initiation with Different Evolutionary Pathways.Geochemistry, Geophysics, Geosystems, 12(12):12-18. https://doi.org/10.1029/2011gc003877
      Li, F.C., 2015.Reconstruction of the Mesozoic Subduction System and Numerical Study on the Formation of Marginal Sea Basin in the Subductive Margin(Dissertation).Graduate University of the Chinese Academy of Sciences, Guangzhou, 25-26 (in Chinese with English abstract).
      Li, F.C., Sun, Z., Hu, D.K., et al., 2013.Crustal Structure and Deformation Associated with Seamount Subduction at the North Manila Trench Represented by Analog and Gravity Modeling.Marine Geophysical Research, 34(3-4):393-406. https://doi.org/10.1007/s11001-013-9193-5
      Li, F.C., Sun, Z., Yang, H.F., 2018. Possible Spatial Distribution of the Mesozoic Volcanic arc in the Present-Day South China Sea Continental Margin and Its Tectonic Implications. Journal of Geophysical Research:Solid Earth. https://doi.org/10.1029/2017JB014861
      Li, J.B., 2012.Evolution of Chinas Marginal Seas and Its Effect of Natural Resources.Beijing:Ocean Press, 2-8 (in Chinese).
      Li, S, Z., Suo, Y.H., Liu, X., et al., 2012.Basic Structural Pattern and Tectonic Models of the South China Sea:Problems, Advances and Controversies.Marine Geology and Quaternary Geology, 32(6):35-53(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201206009.htm
      Li, S.T., Lin, C.S., Zhang, Q.M., et al., 1999.Episodic Rifting of Continental Marginal Basins and Tectonic Events since 10Ma in the South China Sea.Chinese Science Bulletin, 44(1):10-23. https://doi.org/10.1007/bf03182877
      Li, Z.X., Li, X.H., 2007.Formation of the 1300-Km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China:A Flat-Slab Subduction Model.Geology, 35(2):179-182. https://doi.org/10.1130/g23193a.1
      Liu, S.Q., Zhang, C.M., Sun, Z., et al., 2016.Characteristics and Significances of the Geological Boundary SB21 in the Zhujiang Formation of the Liwan Sag, Pearl River Mouth Basin.Earth Science, 41(3):475-486 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.039
      Luan, X.W., Zhang, L, 2009.Tectonic Evolution Models of South China Sea:Passive Spreading under Complex Actions.Marine Geology and Quaternary Geology, 29(6):59-74 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2010MGQG...29...59L
      Mann, P., Hempton, M.R., Bradley, D.C., et al., 1983.Development of Pull-Apart Basins.The Journal of Geology, 91(5):529-554. https://doi.org/10.1086/628803
      Mann, P., Taira, A., 2004.Global Tectonic Significance of the Solomon Islands and Ontong Java Plateau Convergent Zone.Tectonophysics, 389(3-4):137-190. https://doi.org/10.1016/j.tecto.2003.10.024
      Maruyama, S., Isozaki, Y., Kimura, G., et al., 1997.Paleogeographic Maps of the Japanese Islands:Plate Tectonic Synthesis from 750 Ma to the Present.The Island Arc, 6(1):121-142. https://doi.org/10.1111/j.1440-1738.1997.tb00043.x
      Meng, L., Zhang, J., 2014.The Magmatic Activity Mechanism of the Fossil Spreading Center in the Southwest Sub-Basin, South China Sea.Science China:Earth Sciences, 44(2):239-249 (in Chinese with English abstract). doi: 10.1007/s11430-013-4788-x
      Miura, S., Suyehiro, K., Shinohara, M., et al., 2004.Seismological Structure and Implications of Collision between the Ontong Java Plateau and Solomon Island Arc from Ocean Bottom Seismometer-Airgun Data.Tectonophysics, 389(3-4):191-220. https://doi.org/10.1016/j.tecto.2003.09.029
      Mohr, P., 1992.Nature of the Crust beneath Magmatically Active Continental Rifts.Tectonophysics, 213(1-2):269-284. https://doi.org/10.1016/0040-1951(92)90263-6
      Morley, C.K., 2012.Late Cretaceous-Early Palaeogene Tectonic Development of SE Asia.Earth-Science Reviews, 115(1-2):37-75. https://doi.org/10.1016/j.earscirev.2012.08.002
      Nagel, T.J., Buck, W.R., 2004.Symmetric Alternative to Asymmetric Rifting Models.Geology, 32(11):937-940. https://doi.org/10.1130/g20785.1
      Nakakuki, T., Mura, E., 2013.Dynamics of Slab Rollback and Induced Back-Arc Basin Formation.Earth and Planetary Science Letters, 361:287-297. https://doi.org/10.1016/j.epsl.2012.10.031
      Nikolaeva, K., Gerya, T.V., Marques, F.O., 2010.Subduction Initiation at Passive Margins:Numerical Modeling.Journal of Geophysical Research, 115(B3):803-804. https://doi.org/10.1029/2009jb006549
      Petrunin, A.G., Sobolev, S.V., 2008.Three-Dimensional Numerical Models of the Evolution of Pull-Apart Basins.Physics of the Earth and Planetary Interiors, 171(1-4):387-399. https://doi.org/10.1016/j.pepi.2008.08.017
      Phinney, E.J., Mann, P., Coffin, M.F., et al., 2004.Sequence Stratigraphy, Structural Style, and Age of Deformation of the Malaita Accretionary Prism (Solomon Arc-Ontong Java Plateau Convergent Zone).Tectonophysics, 389(3-4):221-246. https://doi.org/10.1016/j.tecto.2003.10.025
      Poli, S., Schmidt, M.W., 2002.Petrology of Subducted Slabs.Annual Review of Earth and Planetary Sciences, 30(1):207-235. https://doi.org/10.1146/annurev.earth.30.091201.140550
      Qiu, N., Wang, Z.F., Xie, H., et al., 2013.Geophysical Investigations of Crust-Scale Structural Model of the Qiongdongnan Basin, Northern South China Sea.Marine Geophysical Research, 34(3-4):259-279. https://doi.org/10.1007/s11001-013-9182-8
      Rahe, B., Ferrill, D.A., Morris, A.P., 1998.Physical Analog Modeling of Pull-Apart Basin Evolution.Tectonophysics, 285(1-2):21-40. https://doi.org/10.1016/s0040-1951(97)00193-5
      Ranalli, G., 1995.Rheology of the Earth, 2nd Edition.Chapman & Hall, London.
      Rangin, C., Spakman, W., Pubellier, M., et al., 1999.Tomographic and Geological Constraints on Subduction along the Eastern Sundaland Continental Margin (South-East Asia).Bulletin de la Societe Geologique de France, 170:775-788. http://bsgf.geoscienceworld.org/content/170/6/775
      Ren, J.Y., Lei, C., 2011.Tectonic Stratigraphic Framework of the Yinggehai-Qiongdongnan Basins and Its Implication for Tectonics Province Division in South China Sea.Chinese Journal of Geophysics, 54(12):3303-3314 (in Chinese with English abstract). http://europepmc.org/abstract/MED/13666374
      Replumaz, A., Tapponnier, P., 2003.Reconstruction of the Deformed Collision Zone between India and Asia by Backward Motion of Lithospheric Blocks.Journal of Geophysical Research:Solid Earth, 108(B6):22-25. https://doi.org/10.1029/2001jb000661
      Schlüter, H.U., Hinz, K., Block, M., 1996.Tectono-Stratigraphic Terranes and Detachment Faulting of the South China Sea and Sulu Sea.Marine Geology, 130(1-2):39-78. https://doi.org/10.1016/0025-3227(95)00137-9
      Schmidt, M.W., Poli, S., 1998.Experimentally Based Water Budgets for Dehydrating Slabs and Consequences for Arc Magma Generation.Earth and Planetary Science Letters, 163(1-4):361-379. https://doi.org/10.1016/s0012-821x(98)00142-3
      Sewell, R.J., Campbell, S.D.G., 1997.Geochemistry of Coeval Mesozoic Plutonic and Volcanic Suites in Hong Kong.Journal of the Geological Society, 154(6):1053-1066. https://doi.org/10.1144/gsjgs.154.6.1053
      Song, H.B., Hao, T.Y., Jiang, W.W., 1998.Discussion on Type and Formation Mechanism of the Northern Margin of the South China Sea.Cundan Collected Papers in Honour of the 50 Years' Work of Academician Liu Guangding, Beijing:Science Press, 1-10 (in Chinese with English abstract).
      Stern, R.J., 2004.Subduction Initiation:Spontaneous and Induced.Earth and Planetary Science Letters, 226(3-4):275-292. https://doi.org/10.1016/j.epsl.2004.08.007
      Stern, R.J., Bloomer, S.H., 1992.Subduction Zone Infancy:Examples from the Eocene Izu-Bonin-Mariana and Jurassic California Arcs.Geological Society of America Bulletin, 104(12):1621-1636.https://doi.org/10.1130/0016-7606(1992)104<1621:szieft>2.3.co;2 doi: 10.1130/0016-7606(1992)104<1621:szieft>2.3.co;2
      Sun, W.D., Ling, M.X., Wang, F.Y., et al., 2008.Pacific Plate Subduction and Mesozoic Geological Event in Eastern China.Bulletin of Mineralogy, Petrology and Geochemistry, 27(3):218-225 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200803002
      Sun, Z., Zhao, Z.X., Li, J.B., et al., 2011.Tectonic Analysis of the Breakup and Collision Unconformities in the Nansha.Chinese Journal of Geophysics, 54(12):3196-3209(in Chinese with English abstract). doi: 10.1002/cjg2.1685/full
      Sun, Z., Zhong, Z.H., Zhou, D., et al., 2006.Research on the Dynamics of the South China Sea Opening:Evidence from Analogue Modeling.Science in China(Series D), 36(9):797-810. https://doi.org/10.1007/s11430-006-1053-6
      Sun, Z., Zhong, Z.H., Keep, M., et al., 2009.3D Analogue Modeling of the South China Sea:A Discussion on Breakup Pattern.Journal of Asian Earth Sciences, 34(4):544-556. https://doi.org/10.1016/j.jseaes.2008.09.002
      Taylor, B., Hayes, D.E., 1980.The Tectonic Evolution of the South China Basin.Geophysical Monograph Series, 23:89-104. http://d.old.wanfangdata.com.cn/Periodical/hyxb201805007
      Taylor, B., Hayes, D.E., 1983.Origin and History of the South China Sea Basin.The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands:Part 2, 23-56. doi: 10.1029/GM027p0023/pdf
      Turcotte, D.L., Schubert, G., 1982.Geodynamics:Application of Continuum Physics to Geological Problems.John Wiley, New York.
      Turcotte, D.L., Schubert, G., 2002.Geodynamics-2nd Edition.John Wiley, New York.
      Wada, I., Wang, K.L., 2009.Common Depth of Slab-Mantle Decoupling:Reconciling Diversity and Uniformity of Subduction Zones.Geochemistry, Geophysics, Geosystems, 10(10):155-166. https://doi.org/10.1029/2009gc002570
      Weaver, S.D., Storey, B.C., Pankhurst, R.J., et al., 1994.Antarctica-New Zealand Rifting and Marie Byrd Land Lithospheric Magmatism Linked to Ridge Subduction and Mantle Plume Activity.Geology, 22(9):811-814.https://doi.org/10.1130/0091-7613(1994)022<0811:anzram>2.3.co;2 doi: 10.1130/0091-7613(1994)022<0811:anzram>2.3.co;2
      Xu, H.H., Ma, H., Song, H.B., et al., 2011.Numerical Simulation of Eastern South China Sea Basin Expansion.Chinese Journal of Geophysics, 54(12):3070-3078 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201112008
      Yan, Q.S., Shi, X.F., 2007.Hainan Mantle Plume and the Formation and Evolution of the South China Sea.Geological Journal of China Universities, 13(2):311-322 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200702014
      Ye, Q., Shi, H.S., Mei, L.F., et al., 2017.Post-Rift Faulting Migration, Transition and Dynamics in Zhu Ⅰ Depression, Pearl River Mouth Basin.Earth Science, 42(1):105-118 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.008
      Zhang, J.Y., 2014.Analysis of Mesozoic Tectonic Deformation in the Chaoshan Depression of Pearl River Mouth Basin (Dissertation).Graduate University of the Chinese Academy of Sciences, Guangzhou, 15-16 (in Chinese with English abstract).
      Zhou, D., Wu, S.M., Chen, H.Z., 2005.Some Remarks on the Tectonic Evolution of Nansha and Its Adjacent Regions in Southern South China Sea.Geotectonica et Metallogenia, 29(3):339-345 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200503008
      Zhou, D., Ru, K., Chen, H.Z., 1995.Kinematics of Cenozoic Extension on the South China Sea Continental Margin and Its Implications for the Tectonic Evolution of the Region.Tectonophysics, 251(1-4):161-177. https://doi.org/10.1016/0040-1951(95)00018-6
      Zhou, X.M., Li, W.X., 2000.Origin of Late Mesozoic Igneous Rocks in Southeastern China:Implications for Lithosphere Subduction and Underplating of Mafic Magmas.Tectonophysics, 326(3-4):269-287. https://doi.org/10.1016/s0040-1951(00)00120-7
      Ziegler, P.A., Cloetingh, S., 2004.Dynamic Processes Controlling Evolution of Rifted Basins.Earth-Science Reviews, 64(1-2):1-50. https://doi.org/10.1016/s0012-8252(03)00041-2
      丁巍伟, 李家彪, 黎明碧, 2011.南海南部陆缘礼乐盆地新生代的构造-沉积特征及伸展机制:来自NH973-2多道地震测线的证据.地球科学, 36(5):895-904. https://doi.org/10.3799/dqkx.2011.094
      董冬冬, 吴时国, 李家彪, 等., 2014.南海共轭大陆边缘的构造对比及差异伸展模式.中国科学:地球科学, 44(5):1059-1070. http://d.old.wanfangdata.com.cn/Conference/9218919
      郝天珧, 徐亚, 孙福利, 等, 2011.南海共轭大陆边缘构造属性的综合地球物理研究.地球物理学报, 54(12):3098-3116. doi: 10.3969/j.issn.0001-5733.2011.12.011
      黄奇瑜, 闫义, 赵泉鸿, 等, 2012.台湾新生代层序:反映南海张裂, 层序和古海洋变化机制.科学通报, 57(20):1842-1862. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=KXTB201220005&dbname=CJFD&dbcode=CJFQ
      李付成, 2015.南海中生代俯冲构造恢复及俯冲背景下边缘海盆形成的数值模拟博士学位论文.广州:中国科学院研究生院(南海海洋研究所), 25-26.
      李家彪, 2012.中国边缘海形成演化与资源效应.北京:海洋出版社.
      李三忠, 索艳慧, 刘鑫, 等, 2012.南海的基本构造特征与成因模型:问题与进展及论争.海洋地质与第四纪地质, 32(6):35-53. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=HYDZ201206009&dbname=CJFD&dbcode=CJFQ
      刘思青, 张翠梅, 孙珍, 等, 2016.珠江口盆地荔湾凹陷珠江组关键地质界面sb21的识别及地质意义.地球科学, 41(3), 475-486. https://doi.org/10.3799/dqkx.2016.039
      栾锡武, 张亮, 2009.南海构造演化模式:综合作用下的被动扩张.海洋地质与第四纪地质, 29(6):59-74. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201112003
      孟林, 张健, 2014.南海西南海盆残余洋脊岩浆活动机制的热模拟研究.中国科学:地球科学, 44(2):239-249. http://d.old.wanfangdata.com.cn/Conference/7863418
      任建业, 雷超, 2011.莺歌海-琼东南盆地构造-地层格架及南海动力变形分区.地球物理学报, 54(12):3303-3314. doi: 10.3969/j.issn.0001-5733.2011.12.028
      宋海滨, 郝天珧, 江为为, 1998.南海北部张裂边缘的类型及其形成机制探讨.寸丹集——庆贺刘光鼎院士工作50周年学术论文集.北京:科学出版社, 1-10.
      孙卫东, 凌明星, 汪方跃, 等, 2008.太平洋板块俯冲与中国东部中生代地质事件.矿物岩石地球化学通报, 27(3):218-225. doi: 10.3969/j.issn.1007-2802.2008.03.002
      孙珍, 赵中贤, 李家彪, 等, 2011.南沙地块内破裂不整合与碰撞不整合的构造分析.地球物理学报, 54(12):3196-3209. doi: 10.3969/j.issn.0001-5733.2011.12.019
      孙珍, 钟志洪, 周蒂, 等, 2006.南海的发育机制研究:相似模拟证据.中国科学(D辑), 36(9):797-810. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200609002
      许鹤华, 马辉, 宋海斌, 等, 2011.南海东部海盆扩张过程的数值模拟.地球物理学报, 54(12):3070-3078. doi: 10.3969/j.issn.0001-5733.2011.12.008
      鄢全树, 石学法, 2007.海南地幔柱与南海形成演化.高校地质学报, 13(2):311-322. doi: 10.3969/j.issn.1006-7493.2007.02.014
      叶青, 施和生, 梅廉夫, 等, 2017.珠江口盆地珠一坳陷裂后期断裂作用:迁移、转换及其动力学.地球科学, 42(1):105-118. https://doi.org/10.3799/dqkx.2017.008
      张江阳, 2014.珠江口盆地潮汕坳陷构中生代构造变形分析(硕士学位论文).广州:中国科学院研究生院(南海海洋研究所), 15-16.
      周蒂, 吴世敏, 陈汉宗, 2005.南沙海区及邻区构造演化动力学的若干问题.大地构造与成矿学, 29(3):339-345. doi: 10.3969/j.issn.1001-1552.2005.03.008
    • 加载中
    图(11) / 表(1)
    计量
    • 文章访问数:  6263
    • HTML全文浏览量:  1806
    • PDF下载量:  50
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-02-02
    • 刊出日期:  2018-10-20

    目录

      /

      返回文章
      返回