• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    拉萨地体北部永珠地区早白垩世岩浆岩地球化学、锆石U-Pb年代学、Hf同位素组成及其地质意义

    张诗启 戚学祥 韦诚 陈松永

    张诗启, 戚学祥, 韦诚, 陈松永, 2018. 拉萨地体北部永珠地区早白垩世岩浆岩地球化学、锆石U-Pb年代学、Hf同位素组成及其地质意义. 地球科学, 43(4): 1085-1109. doi: 10.3799/dqkx.2018.711
    引用本文: 张诗启, 戚学祥, 韦诚, 陈松永, 2018. 拉萨地体北部永珠地区早白垩世岩浆岩地球化学、锆石U-Pb年代学、Hf同位素组成及其地质意义. 地球科学, 43(4): 1085-1109. doi: 10.3799/dqkx.2018.711
    Zhang Shiqi, Qi Xuexiang, Wei Cheng, Chen Songyong, 2018. Geochemistry, Zircon U-Pb Dating and Hf Isotope Compositions of Early Cretaceous Magmatic Rocks in Yongzhu Area, Northern Lhasa Terrane, Tibet, and Its Geological Significance. Earth Science, 43(4): 1085-1109. doi: 10.3799/dqkx.2018.711
    Citation: Zhang Shiqi, Qi Xuexiang, Wei Cheng, Chen Songyong, 2018. Geochemistry, Zircon U-Pb Dating and Hf Isotope Compositions of Early Cretaceous Magmatic Rocks in Yongzhu Area, Northern Lhasa Terrane, Tibet, and Its Geological Significance. Earth Science, 43(4): 1085-1109. doi: 10.3799/dqkx.2018.711

    拉萨地体北部永珠地区早白垩世岩浆岩地球化学、锆石U-Pb年代学、Hf同位素组成及其地质意义

    doi: 10.3799/dqkx.2018.711
    基金项目: 

    国家自然科学基金项目 91755101

    国家自然科学基金项目 41272219

    科技部深部探测技术与实验研究专项 SinoProbe-05-03

    中国地质调查局项目 1212011020000150005-07

    详细信息
      作者简介:

      张诗启(1982-), 男, 博士研究生, 主要从事构造地质学、岩石学专业研究

    • 中图分类号: P588.121;P597.3

    Geochemistry, Zircon U-Pb Dating and Hf Isotope Compositions of Early Cretaceous Magmatic Rocks in Yongzhu Area, Northern Lhasa Terrane, Tibet, and Its Geological Significance

    • 摘要: 拉萨地体北部出露大面积早白垩世岩浆岩,对它们的成因和形成机制的研究,有助于揭示拉萨地块白垩纪时期的岩浆作用过程及动力学背景.通过岩石学、地球化学和同位素地质学方法对拉萨地体北带永珠地区早白垩世中-酸性岩浆岩进行了研究.结果显示黑云母二长花岗岩、流纹岩和安山岩的锆石LA-ICP-MS U-Pb年龄分别为118±1.0 Ma、121±0.8 Ma和115±0.8 Ma,代表了其侵入和喷出时代.黑云母二长花岗岩、花岗斑岩和流纹岩为高钾钙碱性过铝质-强过铝质岩浆岩(A/CNK=1.01~1.35),亏损高场强元素Nb、P、Ti和大离子亲石元素Ba、Sr,富集大离子亲石元素Rb、K和放射性元素U、Th;稀土配分图显示LREE富集,HREE近平坦,Eu明显负异常,为形成于大陆边缘的岛弧岩浆岩特征.黑云母二长花岗岩和流纹岩的锆石Hf初始比值εHft)分别为-1.21~3.01和-0.68~5.35,对应的两阶段模式年龄分别为0.99~1.26 Ga和0.84~1.22 Ga,为壳幔混源岩浆.安山岩为高钾钙碱性,亏损Nb、Ta、P、Ti、U和Sr,富集Rb、K和Th,稀土配分图显示LREE富集,HREE近平坦,Eu轻微负异常,为形成于大陆边缘弧的岩浆岩.结合前人研究成果,分析认为永珠地区早白垩世岩浆岩形成于班公湖-怒江特提斯洋壳南向俯冲作用下的大陆边缘弧环境,由俯冲的班公湖-怒江中特提斯洋板片在深部脱水熔融,进而诱发上覆地幔楔部分熔融形成基性岩浆上涌,导致下地壳物质发生部分熔融形成酸性岩浆,它们在上升过程中按不同比例混合,形成中性和酸性岩浆侵入到地下或喷出地表,形成侵入岩和火山岩.

       

    • 图  1  青藏高原大地构造简图(a)、拉萨地体白垩世岩浆岩分布图(b)和研究区区域地质简图(c)

      图a据Zhu et al., 2013;图b据Zhu et al., 2011;图c据曲永贵等,2003;1:25万多巴区幅区域地质图;陈玉禄等,2002;1:25万班戈县幅区域地质图.图a:JSSZ.金沙江缝合带;BNSZ.班公湖-怒江缝合带;SNMZ.狮泉河-纳木错混杂岩带;LMF.洛巴堆-米拉山断裂;IYZSZ.印度河-雅鲁藏布江缝合带;NL.北拉萨地体;CL.中拉萨地体;SL.南拉萨地体;LSSZ.龙木措-双湖缝合带;图c年龄数据来源:(1)曲晓明等,2012;(2)张乐,2015;(3)定立等,2012;(4)高顺宝等, 2011a, 2011b;(5)王江朋等,2012;(6)Zhu et al., 2016;(7)黄瀚霄等,2012;(8)Zhu et al., 2011;(9)本文

      Fig.  1.  Tectonic framework for the Tibetan Plateau (a), the Cretaceous igneous rocks of the Lhasa terrane (b), and the regional geological map of survey region (c)

      图  2  那俄木-雄梅地质剖面图

      Fig.  2.  The geological section map for Naemu to Xiongmei

      图  3  岩浆岩野外照片和显微照片

      a, b.黑云母二长花岗岩野外照片(a)和显微照片(正交)(b);c, d.达过流纹岩野外照片(c)和显微照片(正交)(d);e, f.达过南流纹岩野外照片(e)和显微照片(正交)(f);g.安山岩显微照片(正交);h.花岗斑岩显微照片(正交).Q.石英;Pl.斜长石;Kfs.钾长石;Bt.黑云母;Hbl.角闪石

      Fig.  3.  Field pictures and microphotographs for the mag-matic rocks

      图  4  K2O+Na2O-SiO2火山岩分类命名图(a),K2O-SiO2钙碱性判别图(b)和A/NK-A/CNK图解(c)

      图a据Rickwood(1989);图b据Peccerillo and Taylor(1976);图c据Maniar and Piccoli(1989)

      Fig.  4.  K2O+Na2O-SiO2 volcanics classification diagram (a), K2O-SiO2 calc-alkaline discriminant diagram (b) and A/NK-A/CNK diagram (c)

      图  5  岩浆岩稀土元素球粒陨石标准化配分模式(a, c)和微量元素原始地幔标准化蛛网图(b, d)

      标准化值据Sun and McDonough(1989)

      Fig.  5.  Chondrite-normalized REE patterns (a, c) and primitive mantle-normalized trace element spider diagrams (b, d) for the magmatic rocks

      图  6  黑云母二长花岗岩(a)、流纹岩(b)和安山岩(c)锆石阴极发光照片

      Fig.  6.  Cathodoluminescence images of zircons for the biotite-monzonitic granites (a), rhyolites (b) and andesite (c)

      图  7  黑云母二长花岗岩、流纹岩和安山岩锆石U-Pb年龄谐和图

      Fig.  7.  Zircon LA-ICP-MS concordia diagrams for the biotite-monzonitic granites, hyolites and andesite

      图  8  黑云母二长花岗岩和流纹岩锆石εHf(t)(a)和tDM2直方图(b)

      Fig.  8.  Histogram εHf(t) (a) of and tDM2 for the biotite-monzonitic granite and rhyolite (b)

      图  9  永珠地区岩浆岩Y-Zr (a)、Zr/Al2O3-TiO2/Al2O3 (b)、Th/Yb-Ta/Yb (c)、La/Yb-Sc/Ni (d)构造判别图解

      图a, b据Muller and Groves(1994);图c据Gorton and Schandl(2000);图d据Pearce(1982)

      Fig.  9.  Y-Zr (a), Zr/Al2O3-TiO2/Al2O3 (b), Th/Yb-Ta/Yb (c) and La/Yb-Sc/Ni (d) discrimination diagrams of tectonic setting for magmatic rocks of Yongzhu region

      图  10  永珠地区岩浆岩εHf(t)-U-Pb年龄

      北拉萨、中拉萨和南拉萨地体数据引自Zhu et al.(2011, 2016);南羌塘地体数据引自Li et al.(2013b, 2014a, 2016); Fan et al.(2015)

      Fig.  10.  Plots of εHf(t) vs. U-Pb ages diagram for the magmatic rocks of Yongzhu region

      图  11  永珠地区岩浆岩Yb/Ta-Y/Nb图解(a)和TFeO-MgO成因判别图(b)

      图a数据来源:BBC.平均大陆地壳(Rudnick and Gao, 2003);LCC.大陆下地壳(Rudnick and Gao, 2003);DMM.亏损地幔(Salters and Stracke, 2004);图b据Zorpi et al., 1991

      Fig.  11.  Yb/Ta-Y/Nb (a) and TFeO-MgO (b) discrimination diagrams of petrogenesis for magmatic rocks of Yongzhu region

      表  1  全岩主量元素(%),稀土和微量元素(10-6)化学成分分析结果

      Table  1.   The major elements (%), REE and trace elements (10-6) of total rock chemical compositions for the magmatic rocks

      岩性 黑云母二长花岗岩 花岗斑岩 达过流纹岩 达过南流纹岩 安山岩
      样号 16QX
      S-2
      16QX
      S-3
      16QX
      S-4
      16QX
      S-5
      16QX
      S-6
      16QX
      S-42
      16QX
      S-43
      16QX
      S-44
      16QX
      S-45
      16QX
      S-46
      16QX
      S-18
      16QX
      S-19
      16QX
      S-20
      16QX
      S-21
      16QX
      S-22
      16QX
      S-30
      16QX
      S-31
      16QX
      S-32
      16QX
      S-33
      16QX
      S-34
      13-D
      B-67
      13-D
      B-69
      13-D
      B-70
      13-D
      B-71
      13-D
      B-72
      SiO2 72.91 72.37 72.00 72.65 73.06 74.59 74.66 74.26 74.49 75.00 77.55 76.68 76.70 76.40 76.91 73.43 70.36 72.79 73.82 73.79 57.37 58.45 58.22 57.94 58.29
      TiO2 0.20 0.23 0.22 0.23 0.22 0.17 0.18 0.17 0.18 0.17 0.20 0.22 0.20 0.22 0.20 0.25 0.48 0.25 0.25 0.26 0.53 0.63 0.66 0.6 0.57
      Al2O3 14.25 14.39 14.47 14.13 13.70 12.51 12.84 12.57 12.63 12.56 13.05 13.47 13.38 13.54 13.16 12.67 13.93 12.47 12.64 12.71 16.34 15.88 16.69 15.50 16.43
      Fe2O3 0.73 0.92 0.80 0.90 0.79 1.19 1.37 1.14 1.44 1.19 0.05 0.02 0.02 0.02 0.02 1.48 2.25 1.18 0.75 1.14 1.58 1.33 1.46 1.58 1.59
      FeO 0.86 0.83 1.11 1.04 1.19 0.75 0.68 0.75 0.47 0.68 0.22 0.40 0.25 0.22 0.20 1.19 2.12 1.51 1.11 1.15 4.49 4.99 4.85 4.60 4.89
      MnO 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.04 0.04 0.04 0.03 0.04 0.12 0.12 0.11 0.13 0.11
      MgO 0.68 0.84 0.86 0.85 0.84 0.19 0.22 0.18 0.15 0.18 0.12 0.09 0.08 0.08 0.08 0.36 0.61 0.33 0.36 0.36 4.43 4.70 4.52 4.43 4.70
      CaO 1.90 1.87 2.07 2.05 1.92 0.90 0.63 1.07 0.78 0.72 0.31 0.23 0.28 0.21 0.17 0.81 0.50 1.54 1.17 0.98 4.85 4.31 2.70 6.17 3.01
      Na2O 3.79 3.89 3.86 3.77 3.54 2.82 2.75 3.09 3.06 2.99 2.92 3.20 3.15 3.29 3.19 3.37 3.97 3.27 3.29 3.22 3.65 2.86 2.29 3.50 3.67
      K2O 3.54 3.63 3.38 3.28 3.40 4.71 4.78 4.60 4.80 4.62 3.93 4.17 4.57 4.53 4.60 4.05 3.46 3.96 4.09 4.15 2.88 1.98 3.77 1.01 2.01
      P2O5 0.04 0.06 0.05 0.06 0.05 0.01 0.02 0.02 0.02 0.01 0.03 0.03 0.02 0.02 0.02 0.07 0.15 0.06 0.06 0.06 0.09 0.12 0.12 0.11 0.11
      H2O+ 0.62 0.90 0.58 0.76 0.74 1.24 1.12 1.16 1.10 0.98 1.18 1.08 1.04 1.08 0.94 1.40 1.78 1.46 1.42 1.24 2.96 4.50 3.66 3.36 4.06
      CO2 0.10 0.10 0.10 0.10 0.12 0.29 0.21 0.34 0.21 0.21 0.12 0.1 0.12 0.10 0.10 0.21 0.21 0.45 0.31 0.31 0.58 0.08 0.92 0.42 0.58
      LOI 0.47 0.66 0.60 0.52 0.68 1.57 1.40 1.63 1.46 1.36 1.15 1.07 1.06 1.00 0.96 1.74 1.68 2.09 1.86 1.73 2.87 3.55 3.47 3.47 3.69
      A/NK 1.41 1.39 1.44 1.45 1.44 1.28 1.32 1.25 1.23 1.24 1.44 1.38 1.32 1.31 1.29 1.27 1.35 1.29 1.28 1.30 1.79 2.32 2.12 2.26 2.00
      A/CNK 1.05 1.05 1.05 1.05 1.05 1.10 1.18 1.05 1.08 1.12 1.35 1.32 1.26 1.26 1.25 1.11 1.24 1.01 1.05 1.10 0.91 1.08 1.31 0.86 1.20
      Fe2O3T 1.68 1.83 2.02 2.04 2.10 1.99 2.10 1.94 1.93 1.92 0.29 0.46 0.29 0.26 0.24 2.75 4.53 2.80 1.95 2.37 6.38 6.64 6.62 6.46 6.77
      FeOT 1.51 1.65 1.82 1.84 1.89 1.79 1.89 1.75 1.74 1.73 0.26 0.41 0.27 0.24 0.22 2.48 4.08 2.52 1.75 2.14 5.75 5.97 5.96 5.82 6.10
      σ 1.79 1.92 1.80 1.67 1.59 1.78 1.78 1.88 1.95 1.80 1.35 1.61 1.76 1.82 1.78 1.79 2.00 1.74 1.75 1.75 2.80 1.41 2.27 1.27 1.97
      Mg# 44.4 47.5 45.6 45.0 44.1 15.7 17.0 15.3 13.2 15.5 44.7 27.7 34.7 37.5 39.5 20.3 20.8 18.6 26.4 22.8 57.2 57.5 56.7 56.7 57.0
      La 20.9 16.2 17.4 24.6 18.9 50.9 42.1 53.1 48.9 47.1 53.3 53 34.8 49.2 43.1 56.4 57.9 51.9 46.3 48.5 23.6 23.6 16.9 23.1 21.1
      Ce 40.1 31.7 33.7 48.0 36.8 102 94.7 103.0 100.0 100.0 101.0 91.0 55.6 73.3 72.5 112.0 114.0 101.0 91.6 94.8 43.7 47.7 35.9 46.5 42.7
      Pr 4.38 3.50 3.72 5.21 4.04 12.50 10.50 12.80 11.80 11.60 12.80 12.90 8.55 11.50 10.40 14.00 14.90 12.70 11.50 11.90 4.81 5.29 4.07 5.30 4.83
      Nd 15.0 12.7 13.2 18.0 14.6 48.8 41.0 50.3 46.1 44.7 49.6 49.5 32.3 44.8 39.9 56.3 61.2 50.4 45.9 47.2 18.6 20.4 15.9 20.2 18.2
      Sm 2.85 2.70 2.86 3.55 2.99 10.10 8.58 10.20 9.28 9.29 10.10 9.94 6.52 8.70 7.85 11.40 12.80 10.40 9.46 9.76 3.47 3.89 3.26 3.84 3.62
      Eu 0.50 0.52 0.52 0.53 0.48 0.98 0.89 0.99 0.95 0.90 0.99 1.01 0.79 1.02 0.86 1.55 1.87 1.47 1.32 1.35 1.24 0.97 0.76 0.86 0.77
      Gd 2.60 2.63 2.86 3.14 2.95 9.80 8.96 10.40 9.29 9.22 9.82 10.00 6.34 8.07 7.52 11.40 13.00 10.50 9.43 10.00 3.42 4.12 3.19 3.67 3.61
      Tb 0.44 0.47 0.51 0.52 0.51 1.71 1.62 1.80 1.60 1.60 1.68 1.70 1.17 1.37 1.37 1.84 2.17 1.76 1.63 1.78 0.56 0.69 0.50 0.61 0.58
      Dy 2.48 2.76 3.20 3.18 3.09 10.50 10.40 11.10 10.20 9.94 10.50 10.50 7.88 8.66 8.78 11.00 13.10 10.70 10.20 11.20 3.13 4.01 2.91 3.45 3.27
      Ho 0.47 0.53 0.63 0.60 0.59 2.06 2.07 2.17 2.00 1.97 2.07 2.03 1.68 1.73 1.78 2.15 2.55 2.08 2.00 2.21 0.62 0.82 0.57 0.69 0.69
      Er 1.39 1.63 1.94 1.84 1.84 6.16 6.43 6.64 6.22 6.01 6.30 6.17 5.53 5.32 5.56 6.45 7.79 6.27 6.13 6.64 1.80 2.31 1.72 1.92 1.95
      Tm 0.21 0.26 0.31 0.28 0.29 0.93 0.96 1.01 0.95 0.91 0.94 0.91 0.86 0.79 0.84 0.98 1.17 0.94 0.94 1.00 0.27 0.35 0.24 0.28 0.29
      Yb 1.47 1.66 2.01 1.82 1.86 5.81 6.07 6.26 6.02 5.74 5.84 5.46 5.41 4.94 5.15 6.18 7.30 6.06 5.83 6.31 1.75 2.20 1.74 1.90 1.92
      Lu 0.23 0.26 0.31 0.29 0.29 0.87 0.92 0.96 0.90 0.86 0.88 0.82 0.82 0.73 0.77 0.94 1.10 0.93 0.89 0.98 0.27 0.32 0.26 0.29 0.29
      ∑REE 93.0 77.5 83.2 111.6 89.2 263.1 235.2 270.7 254.2 249.8 265.8 254.9 168.3 220.1 206.4 292.6 310.9 267.1 243.1 253.6 107.2 116.7 87.9 112.5 103.7
      LREE/HREE 7.41 6.65 7.74 9.23 7.65 20.00 20.31 21.27 21.03 19.92 20.41 17.82 17.91 17.05 17.88 20.75 22.23 20.18 19.45 20.92 8.07 6.88 6.89 7.79 7.24
      δEu 0.55 0.58 0.55 0.47 0.49 0.30 0.31 0.29 0.31 0.29 0.30 0.31 0.37 0.37 0.34 0.41 0.44 0.43 0.42 0.41 1.09 0.74 0.71 0.69 0.64
      (La/Sm)N 7.98 6.53 6.62 7.54 6.88 5.48 5.34 5.66 5.73 5.51 5.74 5.8 5.81 6.15 5.97 5.38 4.92 5.43 5.32 5.41 7.39 6.61 5.62 6.54 6.34
      (Gd/Yb)N 1.93 1.73 1.56 1.89 1.73 1.84 1.61 1.82 1.69 1.76 1.84 2.00 1.28 1.79 1.60 2.02 1.95 1.90 1.77 1.73 2.14 2.05 2.00 2.11 2.05
      Rb 165 179 186 171 182 221 220 217 238 218 183 203 218 220 223 198 177 196 195 207 100 83 167 35 89
      Ba 378 510 401 355 390 394 389 399 424 378 569 465 579 518 522 459 388 452 422 449 640 310 819 895 224
      Th 16.0 13.7 16.3 16.1 15.9 28.3 28.3 29.6 29.1 28.9 31.1 27.2 31.8 26.6 29.1 26.1 24.6 25.5 25.1 25.4 14.0 10.6 7.7 7.5 10.2
      U 2.61 2.38 3.50 2.45 2.84 3.92 4.02 4.36 4.07 3.87 4.82 4.06 4.02 3.49 3.87 4.89 5.06 4.77 4.79 4.79 0.90 1.22 0.69 0.84 0.94
      Nb 6.33 7.27 7.52 7.38 7.33 14.10 14.70 14.80 15.00 14.30 16.60 16.30 16.70 16.10 16.20 14.90 16.70 14.50 13.90 14.50 5.47 7.42 6.34 6.80 6.30
      Ta 0.89 1.08 1.15 1.02 1.08 1.40 1.48 1.52 1.51 1.43 1.65 1.53 1.67 1.53 1.61 1.38 1.43 1.37 1.31 1.34 0.43 0.54 0.46 0.52 0.50
      Sr 104.0 111.0 110.0 108.0 101.0 30.1 25.9 31.4 30.9 25.2 21.9 20.7 28.4 26.6 23.3 38.9 54.7 49.6 37.2 37.2 105.0 108.0 150.0 62.4 148.0
      Zr 75 89 89 82 81 296 302 321 321 289 364 393 397 391 358 409 515 393 378 392 116 83 92 104 124
      Hf 3.04 3.60 3.62 3.30 3.33 9.45 9.98 10.40 10.60 9.50 11.60 11.90 12.20 11.90 11.40 11.90 13.90 11.50 11.10 11.30 3.20 2.70 2.30 2.70 3.10
      Y 13.5 15.3 18.7 17.2 17.5 54.3 53.7 61.9 53.7 52.2 54.6 54.1 45.3 44.9 46.2 57.8 69.3 55.8 53.5 61.7 16.4 20.1 15.1 15.6 16.7
      Sc 4.18 4.74 5.11 4.96 5.34 4.36 4.73 4.65 4.77 4.68 3.91 4.37 3.94 3.48 3.51 6.92 12.20 7.12 6.69 7.55 25.12 24.72 22.77 27.21 25.32
      Ni 5.28 6.52 6.66 6.31 6.23 2.18 2.16 0.93 3.56 2.44 0.65 1.36 0.96 1.03 1.75 4.34 2.21 1.71 1.24 1.43 14.60 13.40 15.10 14.9 15.00
      注:测试单位为国家地质测试中心.
      下载: 导出CSV

      表  2  黑云母二长花岗岩、流纹岩与安山岩LA-ICP-MS锆石U-Pb定年结果

      Table  2.   LA-ICP-MS zircon U-Pb dating results for the biotite-monzonitic granites, rhyolites and andesites

      测点 Pb
      (10-6)
      Th
      (10-6)
      U
      (10-6)
      Th/U 同位素 年龄(Ma)
      207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 206Pb/238U 1σ
      16QXS-2,雄梅黑云母二长花岗岩,北纬:31°24′1.2″,东经:89°00′25.8″
      1 205 1 970 1 841 1.1 0.092 7 0.004 5 0.227 3 0.010 9 0.017 8 0.000 2 114 1.4
      2 270 2 709 2 768 1.0 0.047 9 0.001 5 0.125 7 0.004 2 0.019 0 0.000 3 121 1.6
      3 99 1 089 1 254 0.9 0.050 0 0.002 4 0.126 2 0.006 2 0.018 2 0.000 2 116 1.3
      4 229 2 527 2 176 1.2 0.046 8 0.001 7 0.119 8 0.004 4 0.018 6 0.000 2 119 1.5
      5 30 262 539 0.5 0.060 0 0.003 6 0.153 1 0.009 3 0.018 7 0.000 3 119 1.9
      6 59 536 948 0.6 0.048 2 0.002 4 0.119 9 0.005 9 0.018 2 0.000 3 116 1.9
      7 62 595 870 0.7 0.048 5 0.002 6 0.123 6 0.006 3 0.018 7 0.000 3 120 1.8
      8 33 294 484 0.6 0.060 8 0.003 6 0.159 1 0.009 5 0.018 9 0.000 3 120 2.1
      9 86 602 1101 0.6 0.077 8 0.005 3 0.227 1 0.019 0 0.020 2 0.000 3 129 2.2
      10 36 328 641 0.5 0.057 0 0.004 1 0.141 3 0.009 1 0.018 2 0.000 3 116 1.9
      11 101 1 080 1 189 0.9 0.048 5 0.002 3 0.124 7 0.005 6 0.018 9 0.000 3 121 1.8
      12 196 1 873 2 289 0.8 0.053 5 0.002 1 0.144 9 0.006 5 0.019 3 0.000 3 123 1.9
      13 76 747 1 020 0.7 0.049 8 0.002 6 0.126 8 0.006 5 0.018 6 0.000 3 119 1.6
      14 190 1 953 2 415 0.8 0.049 9 0.002 3 0.126 7 0.005 8 0.018 3 0.000 2 117 1.5
      15 245 2 639 2 538 1.0 0.049 9 0.002 0 0.125 6 0.005 3 0.018 1 0.000 2 116 1.6
      16 68 998 984 1.0 0.062 3 0.003 6 0.158 8 0.008 8 0.018 6 0.000 3 119 1.8
      17 75 736 1 081 0.7 0.049 2 0.002 2 0.124 1 0.005 5 0.018 4 0.000 3 118 1.7
      18 102 972 1 238 0.8 0.048 5 0.002 4 0.123 7 0.006 2 0.018 4 0.000 3 118 1.6
      19 144 1 448 1 606 0.9 0.049 6 0.002 2 0.124 2 0.005 4 0.018 2 0.000 2 116 1.4
      20 107 1 069 1 378 0.8 0.048 4 0.002 6 0.122 8 0.006 6 0.018 6 0.000 3 119 1.7
      16QXS-30,达过南流纹岩,北纬:31°19′45.0″,东经:88°54′51.6″
      1 152 1 486 1 861 0.8 0.048 4 0.002 2 0.124 3 0.005 4 0.018 8 0.000 3 120 1.6
      2 57 517 923 0.6 0.052 0 0.002 6 0.136 9 0.007 1 0.019 0 0.000 3 122 2.0
      3 81 765 1 254 0.6 0.059 7 0.003 0 0.154 2 0.007 3 0.019 0 0.000 3 122 2.1
      4 92 888 1 262 0.7 0.054 6 0.002 5 0.135 3 0.005 5 0.018 5 0.000 3 118 1.8
      5 65 590 1 026 0.6 0.053 9 0.003 0 0.142 5 0.007 6 0.019 2 0.000 3 123 2.1
      6 109 967 1 389 0.7 0.053 3 0.002 7 0.140 1 0.006 8 0.019 3 0.000 3 123 2.0
      7 113 1 020 1 451 0.7 0.051 7 0.002 4 0.137 6 0.006 1 0.019 5 0.000 3 124 2.1
      8 139 1 343 1 876 0.7 0.052 1 0.002 2 0.134 6 0.005 5 0.018 9 0.000 3 121 1.6
      9 77 743 1 179 0.6 0.050 1 0.002 8 0.128 1 0.006 9 0.019 0 0.000 4 121 2.3
      10 143 1 384 1 693 0.8 0.054 5 0.002 5 0.143 4 0.006 3 0.019 3 0.000 3 123 1.8
      11 93 859 1 255 0.7 0.049 1 0.002 6 0.128 8 0.006 9 0.019 2 0.000 3 122 1.9
      12 1 040 1 049 1 548 0.7 0.052 6 0.002 4 0.132 4 0.006 3 0.018 2 0.000 3 116 1.8
      13 137 1 313 1 795 0.7 0.050 5 0.002 3 0.130 9 0.005 7 0.019 1 0.000 3 122 1.8
      14 72 670 1 079 0.6 0.054 2 0.002 9 0.135 0 0.006 8 0.018 5 0.000 3 118 2.0
      15 86 818 1 244 0.7 0.050 5 0.002 4 0.129 4 0.005 7 0.018 9 0.000 3 121 2.0
      16 265 2 739 2 856 1.0 0.049 5 0.002 1 0.124 6 0.005 2 0.018 6 0.000 3 119 1.8
      17 136 689 1 128 0.6 0.117 4 0.012 8 0.432 2 0.059 9 0.021 1 0.000 6 135 3.6
      18 133 1 317 1 595 0.8 0.046 1 0.002 2 0.120 9 0.005 8 0.019 1 0.000 3 122 1.8
      19 107 1 056 1 531 0.7 0.051 1 0.002 6 0.131 8 0.006 4 0.018 9 0.000 3 121 1.7
      20 148 1 525 1 733 0.9 0.052 4 0.002 2 0.136 0 0.005 6 0.019 1 0.000 3 122 1.8
      13DB-69,安山岩,北纬:31°20′26.0″,东经:88°50′21.7″
      1 117 4 214 4 408 1.0 0.047 7 0.001 3 0.116 7 0.003 0 0.017 6 0.000 1 113 0.9
      2 98 3 664 3 748 1.0 0.046 7 0.001 4 0.115 7 0.003 5 0.017 9 0.000 2 115 1.3
      3 81 2 916 3 032 1.0 0.047 2 0.001 6 0.118 2 0.004 1 0.018 0 0.000 2 115 1.1
      4 130 4 627 4 976 0.9 0.048 9 0.001 3 0.120 3 0.003 3 0.017 7 0.000 1 113 0.9
      5 195 9 321 6 009 1.6 0.047 5 0.001 1 0.118 0 0.002 8 0.018 0 0.000 1 115 0.9
      6 171 7 463 5 426 1.4 0.046 8 0.001 1 0.119 4 0.002 8 0.018 5 0.000 2 118 1.1
      7 200 9 878 6 218 1.6 0.045 0 0.001 0 0.111 4 0.002 4 0.017 9 0.000 1 114 0.9
      8 162 6 810 5 335 1.3 0.048 1 0.001 2 0.123 5 0.003 1 0.018 5 0.000 2 118 1.0
      9 85 3 053 3 083 1.0 0.048 1 0.001 5 0.121 8 0.003 9 0.018 3 0.000 2 117 1.1
      10 139 5 859 4 835 1.2 0.045 9 0.001 3 0.112 9 0.003 0 0.017 8 0.000 2 114 1.0
      11 128 5 333 4 069 1.3 0.049 4 0.001 6 0.126 2 0.003 9 0.018 4 0.000 2 118 1.2
      12 188 8 161 5 901 1.4 0.050 9 0.001 6 0.128 2 0.004 1 0.018 0 0.000 1 115 0.9
      13 228 8 556 7 734 1.1 0.048 4 0.001 1 0.121 8 0.002 8 0.018 0 0.000 2 115 1.0
      14 165 6 365 5 272 1.2 0.047 4 0.001 3 0.122 1 0.003 4 0.018 5 0.000 2 118 1.2
      15 246 9 873 8 337 1.2 0.051 4 0.001 4 0.127 3 0.003 5 0.017 8 0.000 2 113 1.0
      16 184 7 479 6 178 1.2 0.047 2 0.001 2 0.116 9 0.002 9 0.017 8 0.000 2 114 1.0
      17 147 5 978 4 806 1.2 0.046 7 0.001 4 0.117 4 0.003 4 0.018 1 0.000 2 116 1.1
      18 127 4 749 4 619 1.0 0.049 6 0.001 6 0.122 5 0.003 9 0.017 8 0.000 2 114 1.1
      19 249 11 144 7 966 1.4 0.050 9 0.001 0 0.127 9 0.002 6 0.018 0 0.000 1 115 0.9
      20 276 12 332 8 893 1.4 0.048 7 0.001 2 0.122 1 0.003 0 0.018 0 0.000 2 115 1.1
      注:测试单位为中国地质大学(武汉)地质过程与矿产资源国家重点实验室.
      下载: 导出CSV

      表  3  黑云母二长花岗岩与流纹岩LA-ICP-MS锆石Hf同位素

      Table  3.   LA-ICP-MS zircon Hf isotopic compositions for the biotite-monzonitic granites and rhyolites

      测点 t
      (Ma)
      176Yb/
      177Hf
      2σ 176Lu/
      177Hf
      2σ 176Hf/
      177Hf
      2σ (176Hf/
      177Hf)i
      εHf(t) 2σ tDM
      (Ma)
      tDM2
      (Ma)
      16QXS-2,雄梅黑云母二长花岗岩,北纬:31°24′1.2″,东经:89°00′25.8″
      1 114 0.036 461 0.001 010 0.001 169 0.000 028 0.282 707 0.000 020 0.282 70 0.10 0.7 776 1 168
      2 121 0.037 299 0.000 345 0.001 210 0.000 013 0.282 691 0.000 018 0.282 69 -0.29 0.6 799 1 198
      3 116 0.038 094 0.000 479 0.001 156 0.000 012 0.282 727 0.000 022 0.282 72 0.86 0.8 747 1 121
      4 119 0.079 642 0.001 108 0.002 385 0.000 021 0.282 769 0.000 024 0.282 76 2.33 0.9 710 1 029
      5 119 0.015 774 0.000 126 0.000 546 0.000 005 0.282 714 0.000 019 0.282 71 0.50 0.7 754 1 146
      6 116 0.036 725 0.000 375 0.001 169 0.000 009 0.282 703 0.000 019 0.282 70 0.02 0.7 781 1 174
      7 120 0.046 230 0.000 383 0.001 442 0.000 015 0.282 687 0.000 019 0.282 68 -0.48 0.7 810 1 209
      8 120 0.016 645 0.000 310 0.000 519 0.000 009 0.282 728 0.000 016 0.282 73 1.04 0.6 733 1 112
      9 129 0.046 223 0.001 448 0.001 408 0.000 038 0.282 705 0.000 019 0.282 70 0.34 0.7 783 1 164
      10 116 0.043 546 0.000 774 0.001 351 0.000 025 0.282 738 0.000 020 0.282 74 1.25 0.7 735 1 096
      11 121 0.023 725 0.000 530 0.000 737 0.000 015 0.282 694 0.000 016 0.282 69 -0.17 0.6 785 1 190
      12 123 0.066 133 0.000 291 0.001 905 0.000 010 0.282 785 0.000 026 0.282 78 3.01 0.9 678 989
      13 119 0.042 184 0.001 249 0.001 268 0.000 038 0.282 719 0.000 018 0.282 72 0.63 0.6 761 1 138
      14 117 0.054 206 0.000 586 0.001 622 0.000 017 0.282 688 0.000 025 0.282 68 -0.54 0.9 813 1 210
      15 116 0.070 765 0.000 333 0.002 069 0.000 009 0.282 681 0.000 027 0.282 68 -0.82 1.0 832 1 228
      16 119 0.047 068 0.001 254 0.001 399 0.000 033 0.282 667 0.000 020 0.282 66 -1.21 0.7 837 1 255
      17 118 0.047 984 0.000 494 0.001 476 0.000 017 0.282 681 0.000 021 0.282 68 -0.73 0.7 819 1 224
      18 118 0.047 668 0.000 291 0.001 399 0.000 006 0.282 685 0.000 024 0.282 68 -0.61 0.9 812 1 215
      19 116 0.060 173 0.001 098 0.001 705 0.000 032 0.282 751 0.000 021 0.282 75 1.66 0.7 724 1 069
      20 119 0.056 144 0.001 278 0.001 585 0.000 023 0.282 703 0.000 021 0.282 70 0.05 0.8 790 1 175
      16QXS-30,达过南流纹岩,北纬:31°19′45.0″,东经:88°54′51.6″
      1 120 0.069 559 0.000 732 0.002 117 0.000 026 0.282 762 0.000 021 0.282 76 2.12 0.7 715 1 043
      2 122 0.057 569 0.000 179 0.001 579 0.000 009 0.282 791 0.000 025 0.282 79 3.22 0.9 664 974
      3 122 0.059 568 0.000 439 0.001 568 0.000 007 0.282 821 0.000 024 0.282 82 4.29 0.9 620 906
      4 118 0.061 923 0.000 911 0.001 568 0.000 016 0.282 768 0.000 021 0.282 76 2.33 0.7 696 1 028
      5 123 0.056 145 0.000 321 0.001 429 0.000 007 0.282 850 0.000 025 0.282 85 5.35 0.9 576 839
      6 123 0.059 090 0.000 402 0.001 586 0.000 007 0.282 714 0.000 020 0.282 71 0.50 0.7 775 1 149
      7 124 0.052 012 0.000 087 0.001 415 0.000 004 0.282 749 0.000 023 0.282 75 1.78 0.8 721 1 068
      8 121 0.082 878 0.000 401 0.002 100 0.000 010 0.282 784 0.000 024 0.282 78 2.92 0.8 683 992
      9 121 0.050 961 0.000 794 0.001 480 0.000 006 0.282 728 0.000 019 0.282 72 0.97 0.7 753 1 117
      10 123 0.094 749 0.000 387 0.002 533 0.000 011 0.282 740 0.000 022 0.282 73 1.37 0.8 756 1 093
      11 122 0.058 793 0.000 441 0.001 709 0.000 011 0.282 757 0.000 023 0.282 75 2.01 0.8 715 1 051
      12 116 0.062 897 0.000 313 0.001 701 0.000 011 0.282 685 0.000 019 0.282 68 -0.68 0.7 819 1 219
      13 122 0.091 275 0.000 070 0.002 402 0.000 003 0.282 752 0.000 024 0.282 75 1.77 0.9 736 1 067
      14 118 0.045 915 0.000 581 0.001 266 0.000 008 0.282 766 0.000 022 0.282 76 2.27 0.8 694 1 032
      15 121 0.043 807 0.000 290 0.001 184 0.000 003 0.282 712 0.000 019 0.282 71 0.43 0.7 769 1 152
      16 119 0.082 996 0.000 211 0.002 304 0.000 005 0.282 760 0.000 023 0.282 75 1.99 0.8 723 1 050
      17 135 0.053 274 0.000 356 0.001 722 0.000 009 0.282 798 0.000 028 0.282 79 3.73 1.0 656 952
      18 122 0.075 221 0.000 372 0.002 024 0.000 006 0.282 794 0.000 019 0.282 79 3.30 0.7 667 969
      19 121 0.103 238 0.000 792 0.002 678 0.000 014 0.282 727 0.000 020 0.282 72 0.85 0.7 779 1 125
      20 122 0.060 721 0.000 705 0.001 610 0.000 006 0.282 701 0.000 020 0.282 70 0.04 0.7 793 1 177
      注:测试单位为中国地质科学院地质研究所大陆构造与动力学重点实验室.
      下载: 导出CSV
    • Aitchison, J.C., Ali, J.R., Davis, A.M., 2007.When and Where did India and Asia Collide?Journal of Geophysical Research, 112(B5):51-70."brollinson201510.1029/2006JB004706 doi: 10.1029/2006JB004706
      Alberto, E., Douce, P., 1995.Experimental Generation of Hybrid Silicic Melts by Reaction of High-Al Basalt with Metamorphic Rocks.Journal of Geophysical Research:Solid Earth, 100(B8):15623-15639."brollinson201510.1029/94jb03376 doi: 10.1029/94jb03376
      Andersen, T., Griffin, W.L., Sylvester, A.G., 2007.Sveconorwegian Crustal Underplating in Southwestern Fennoscandia:LAM-ICPMS U-Pb and Lu-Hf Isotope Evidence from Granites and Gneisses in Telemark, Southern Norway.Lithos, 93(3-4):273-287."brollinson201510.1016/j.lithos.2006.03.068 doi: 10.1016/j.lithos.2006.03.068
      Atherton, M.P., Petford, N., 1993.Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust.Nature, 362(6416):144-146."brollinson201510.1038/362144a0 doi: 10.1038/362144a0
      Bacon, C.R., Druitt, T.H., 1988.Compositional Evolution of the Zoned Calcalkaline Magma Chamber of Mount Mazama, Crater Lake, Orogen.Contributions to Mineralogy and Petrology, 98(2):224-256."brollinson201510.1007/bf00402114 doi: 10.1007/bf00402114
      Bao, P.S., Xiao, X.C., Su, L., et al., 2007.Geochemical Characteristics and Isotopic Dating for the Dongcuo Ophiolite, Tibet Plateau.Science China Earth Sciences, 50(5):660-671. doi: 10.1007/s11430-007-0045-5
      Barbarin, B., 1999.A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments.Lithos, 46(3):605-626."brollinson201510.1016/s0024-4937(98)00085-1 doi: 10.1016/s0024-4937(98)00085-1
      Baxter, A.T., Aitchison, J.C., Zyabrev, S.V., 2009.Radiolarian Age Constraints on Mesotethyan Ocean Evolution, and Their Implications for Development of the Bangong-Nujiang Suture, Tibet.Journal of the Geological Society, 166(4):689-694."brollinson201510.1144/0016-76492008-128 doi: 10.1144/0016-76492008-128
      Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., 2006.Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling:Examples from Eastern Australian Granitoids.Journal of Petrology, 47(2):329-353."brollinson201510.1093/petrology/egi077 doi: 10.1093/petrology/egi077
      Bonin, B., 2004.Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources?A Review.Lithos, 78(1-2):1-24."brollinson201510.1016/j.lithos.2004.04.042 doi: 10.1016/j.lithos.2004.04.042
      Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008.The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets.Earth and Planetary Science Letters, 273(1-2):48-57."brollinson201510.1016/j.epsl.2008.06.010 doi: 10.1016/j.epsl.2008.06.010
      Chen, G.R., Liu, H.F., Jiang, G.W., et al., 2004.Discovery of the Shamuluo Formation in the Central Segment of the Bangong Co-Nujiang River Suture Zone, Tibet.Geological Bulletin of China, 23(2):193-194 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200402015.htm
      Chen, W.W., Yang, T.S., Zhang, S.H., et al., 2012.Paleomagnetic Results from the Early Cretaceous Zenong Group Volcanic Rocks, Cuoqin, Tibet, and Their Paleogeographic Implications.Gondwana Research, 22(2):461-469."brollinson201510.1016/j.gr.2011.07.019 doi: 10.1016/j.gr.2011.07.019
      Chen, W.W., Zhang, S.H., Ding, J.K., et al., 2017.Combined Paleomagnetic and Geochronological Study on Cretaceous Strata of the Qiangtang Terrane, Central Tibet.Gondwana Research, 41:373-389."brollinson201510.1016/j.gr.2015.07.004 doi: 10.1016/j.gr.2015.07.004
      Chen, Y., Zhu, D.C., Zhao, Z.D., et al., 2010.Geochronology, Geochemistry and Petrogenesis of the Bamco Andesites from the Northern Gangdese, Tibet.Acta Petrologica Sinica, 26(7):2193-2206 (in Chinese with English abstract). http://npd.nsfc.gov.cn/projectDetail.action?pid=40830317
      Chen, Y., Zhu, D.C., Zhao, Z.D., et al., 2014.Slab Break off Triggered ca.113 Ma Magmatism around Xainza Area of the Lhasa Terrane, Tibet.Gondwana Research, 26(2):449-463."brollinson201510.1016/j.gr.2013.06.005 doi: 10.1016/j.gr.2013.06.005
      Chen, Y.L., Zhang, K.Z., Yang, Z.M., et al., 2006.Discovery of a Complete Ophiolite Section in the Jueweng Area, Nagqu County, in the Central Segment of the Bangong Co-Nujiang Junction Zone, Qinghai-Tibet Plateau.Geological Bulletin of China, 25(6):694-699 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200606007.htm
      Chiu, H.Y., Chung, S.L., Wu, F.Y., et al., 2009.Zircon U-Pb and Hf Isotopic Constraints from Eastern Transhimalayan Batholiths on the Precollisional Magmatic and Tectonic Evolution in Southern Tibet.Tectonophysics, 477(1-2):3-19."brollinson201510.1016/j.tecto.2009.02.034 doi: 10.1016/j.tecto.2009.02.034
      Chu, M.F., Chung, S.L., O'Reilly, S.Y., et al., 2011.India's Hidden Inputs to Tibetan Orogeny Revealed by Hf Isotopes of Transhimalayan Zircons and Host Rocks.Earth and Planetary Science Letters, 307(3-4):479-486."brollinson201510.1016/j.epsl.2011.05.020 doi: 10.1016/j.epsl.2011.05.020
      Chu, M.F., Chung, S.L., Song, B., et al., 2006.Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet.Geology, 34(9):745-748.."brollinson201510.1130/g22725.1 doi: 10.1130/g22725.1
      Copeland, P., Harrison, T.M., Pan, Y., et al., 1995.Thermal Evolution of the Gangdese Batholith, Southern Tibet:A History of Episodic Unroofing.Tectonics, 14(2):223-236."brollinson201510.1029/94tc01676 doi: 10.1029/94tc01676
      Corfu, F., Hanchar, J.M., Hoskin, P.W.O., et al., 2003.Atlas of Zircon Textures.Reviews in Mineralogy and Geochemistry, 53(1):469-500."brollinson201510.2113/0530469 doi: 10.2113/0530469
      Coulon, C., Maluski, H., Bollinger, C., et al., 1986.Mesozoic and Cenozoic Volcanic Rocks from Central and Southern Tibet:39Ar-40Ar Dating, Petrological Characteristics and Geodynamical Significance.Earth and Planetary Science Letters, 79(3-4):281-302."brollinson201510.1016/0012-821x(86)90186-x doi: 10.1016/0012-821x(86)90186-x
      Crosson, R.S., Owens, T.J., 1987.Slab Geometry of the Cascadia Subduction Zone beneath Washington from Earthquake Hypocenters and Teleseismic Converted Waves (USA).Geophysical Research Letters, 14(8):824-827.https://doi: 10.1029/GL014i008p00824
      DeCelles, P.G., Kapp, P., Ding, L., et al., 2007.Late Cretaceous to Middle Tertiary Basin Evolution in the Central Tibetan Plateau:Changing Environments in Response to Tectonic Partitioning, Aridification, and Regional Elevation Gain.Geological Society of America Bulletin, 119(5-6):654-680."brollinson201510.1130/b26074.1 doi: 10.1130/b26074.1
      Defant, M.J., Drummond, M.S., 1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294):662-665."brollinson201510.1038/347662a0 doi: 10.1038/347662a0
      Deng, J.F., Xiao, Q.H., Su, S.G., et al., 2007.Igneous Petrotectonic Assemblages and Tectonic Settings:A Discussion.Geological Journal of China Universities, 13(3):392-402 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200703004.htm
      Ding, L., Kapp, P., Yin, A., et al., 2003.Early Tertiary Volcanism in the Qiangtang Terrane of Central Tibet:Evidence for a Transition from Oceanic to Continental Subduction.Journal of Petrology, 44:1833-1865. doi: 10.1093/petrology/egg061
      Ding, L., Zhao, Y.Y., Yang, Y.Q., et al., 2012.LA-ICP-MS Zircon U-Pb Dating and Geochemical Characteristics of Ore-Bearing Granite in Skarn-Type Iron Polymetallic Deposits of Duoba Area, Baingoin County, Tibet, and Their Significance.Acta Petrologica et Mineralogica, 31(4):479-496 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201204003.htm
      Ding, S., Tang, J.X., Zheng, W.B., et al., 2017.Geochronology and Geochemistry of Naruo Porphyry Cu(Au) Deposit in Duolong Ore-Concentrated Area, Tibet, and Their Geological Significance.Earth Science, 42(1):1-23 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201701001.htm
      Dong, X., Zhang, Z.M., Santosh, M., 2010.Zircon U-Pb Chronology of the Nyingtri Group, Southern Lhasa Terrane, Tibetan Plateau:Implications for Grenvillian and Pan-African Provenance and Mesozoic-Cenozoic Metamorphism.The Journal of Geology, 118(6):677-690."brollinson201510.1086/656355 doi: 10.1086/656355
      Fan, J.J., Li, C., Xie C.M., et al., 2014.Petrology, Geochemistry, and Geochronology of the Zhonggang Ocean Island, Northern Tibet:Implications for the Evolution of the Banggongco-Nujiang Oceanic Arm of the Neo-Tethys.International Geology Review, 56(12):1504-1520."brollinson201510.1080/00206814.2014.947639 doi: 10.1080/00206814.2014.947639
      Fan, J.J., Li, C., Xie, C.M., et al., 2015.Petrology and U-Pb Zircon Geochronology of Bimodal Volcanic Rocks from the Maierze Group, Northern Tibet:Constraints on the Timing of Closure of the Banggong-Nujiang Ocean.Lithos, 227:148-160."brollinson201510.1016/j.lithos.2015.03.021 doi: 10.1016/j.lithos.2015.03.021
      Fan, S.Q., Shi, R.D., Ding, L., et al., 2010.Geochemical Characteristics and Zircon U-Pb Age of the Plagiogranite in Gaize Ophiolite of Central Tibet and Their Tectonic Significance.Acta Petrologica et Mineralogica, 29(5):467-478 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW201005001.htm
      Fitton, J.G., James, D., Kempton, P.D., et al., 1988.The Role of Lithospheric Mantle in the Generation of Late Cenozoic Basic Magmas in the Western United States.Journal of Petrology, Special Volume, (1):331-349."brollinson201510.1093/petrology/special_volume.1.331 doi: 10.1093/petrology/special_volume.1.331
      Gao, S.B., Zheng, Y.Y., Wang, J.S., et al., 2011a.The Geochronology and Geochemistry of Intrusive Rocks in Bange Area:Constraints on the Evolution Time of the Bangong Lake-Nujiang Ocean Basin.Acta Petrologica Sinica, 27(7):1973-1982 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20110706
      Gao, S.B., Zheng, Y.Y., Xie, M.C., et al., 2011b.Geodynamic Setting and Mineralizitional Implication of the Xueru Intrusion in Ban'ge, Tibet.Earth Science, 36(4):729-739 (in Chinese with English abstract).
      Gao, Y.F., Hou, Z.Q., Wei, R.H., 2003.Neogene Porphyries from Gangdese:Petrological, Geochemical Characteristics and Geodynamic Significances.Acta Petrologica Sinica, 19(3):418-428 (in Chinese with English abstract). http://www.oalib.com/paper/1471890
      Geng, Q.R., Mao, X.C., Zhang, Z., et al., 2015.New Understanding in the Middle and West Part of Banggong Lake-Nujiang River Metallogenic Belt and Its Implication for Prospecting.Geological Survey of China, 2(2):1-11 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0024493715001139
      Geng, Q.R., Pan, G.T., Wang, L.Q., et al., 2011.Tethyan Evolution and Metallogenic Geological Background of the Bangong Co-Nujiang Belt and the Qiangtang Massif in Tibet.Geological Bulletin of China, 30(8):1261-1274 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201108013.htm
      Gorton, M.P., Schandl, E.S., 2000.From Continents to Island Arcs:A Geochemical Index of Tectonic Setting for Arc-Related and Within-Plate Felsic to Intermediate Volcanic Rocks.The Canadian Mineralogist, 38(5):1065-1073."brollinson201510.2113/gscanmin.38.5.1065 doi: 10.2113/gscanmin.38.5.1065
      Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICP MS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147."brollinson201510.1016/s0016-7037(99)00343-9 doi: 10.1016/s0016-7037(99)00343-9
      Guan, J.L., Geng, Q.R., Wang, G.Z., et al., 2014.Geochemical, Zircon U-Pb Dating and Hf Isotope Compositions Studies of the Granite in Ritu County-Lameila Pass Area, North Gangdese, Tibet.Acta Petrologica Sinica, 30(6):1666-1684 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201406010.htm
      Guffanti, M., Clynne, M.A., Muffler, L.J.P., 1996.Thermal and Mass Implications of Magmatic Evolution in the Lassen Volcanic Region, California, and Minimum Constraints on Basalt Influx to the Lower Crust.Journal of Geophysical Research:Solid Earth, 101(B2):3003-3013."brollinson201510.1029/95jb03463 doi: 10.1029/95jb03463
      Gutscher, M.A., Maury, R., Eissen, J.P., et al., 2000.Can Slab Melting be Caused by Flat Subduction?Geology, 28(6):535-538."brollinson201510.1130/0091-7613(2000)028<0535:csmbcb>2.3.co;2 doi: 10.1130/0091-7613(2000)028<0535:csmbcb>2.3.co;2
      Hall, A., 1989.Igneous Petrogenesis:A Global Tectonic Approach.Mineralogical Magazine, 53(372):514-515."brollinson201510.1180/minmag.1989.053.372.15 doi: 10.1180/minmag.1989.053.372.15
      Hanyu, T., Tatsumi, Y., Nakai, S., et al., 2006.Contribution of Slab Melting and Slab Dehydration to Magmatism in the NE Japan Arc for the Last 25 Myr:Constraints from Geochemistry.Geochemistry, Geophysics, Geosystems, 7(8):1-29."brollinson201510.1029/2005gc001220 doi: 10.1029/2005gc001220
      Hao, L.L., Wang, Q., Wyman, D.A., et al., 2016.Underplating of Basaltic Magmas and Crustal Growth in a Continental Arc:Evidence from Late Mesozoic Intermediate-Felsic Intrusive Rocks in Southern Qiangtang, Central Tibet.Lithos, 245:223-242."brollinson201510.1016/j.lithos.2015.09.015 doi: 10.1016/j.lithos.2015.09.015
      Harris, N., Massey, J., 1994.Decompression and Anatexis of Himalayan Metapelites.Tectonics, 13(6):1537-1546."brollinson201510.1029/94tc01611 doi: 10.1029/94tc01611
      Hildreth, W., Moorbath, S., 1988.Crustal Contributions to Arc Magmatism in the Andes of Central Chile.Contributions to Mineralogy and Petrology, 98(4):455-489."brollinson201510.1007/bf00372365 doi: 10.1007/bf00372365
      Hoskin, P.W.O., Schaltegger, U., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62."brollinson201510.2113/0530027 doi: 10.2113/0530027
      Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200710026.htm
      Hu, J., Wan, Y.W., Tao, Z., et al., 2014.New Geochemistry and Geochronology Evidences Related to Southward Subduction of Tethys Ocean Basin in West Segment of Bangonghu-Nujiang Suture Belt.Journal of Chengdu University of Technology (Science & Technology Edition), 41(4):505-515 (in Chinese with English abstract). https://www.researchgate.net/publication/286294318_New_geochemistry_and_geochronology_evidences_related_to_southward_subduction_of_Tethys_ocean_basin_in_west_segment_of_Bangonghu-Nujiang_suture_belt
      Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012.Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS.Journal of Analytical Atomic Spectrometry, 27(9):1391-1399."brollinson201510.1039/c2ja30078h doi: 10.1039/c2ja30078h
      Huang, H.X., Li, G.M., Dong, S.L., et al., 2012.SHRIMP Zircon U-Pb Aage and Geochemical Characteristics of Qinglung Granodiorite in Baingoin Area, Tibet.Geological Bulletin of China, 31(6):852-859 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201206004.htm
      Huang, Y., Zhu, D.C., Zhao, Z.D., et al., 2012.Petrogenesis and Implication of the Andesites at~113 Ma in the Nagqu Region in the Northern Lhasa Subterrane.Acta Petrologica Sinica, 28(5):1603-1614 (in Chinese with English abstract). https://www.researchgate.net/publication/296762510_Petrogenesis_and_implication_of_the_andesites_at_similar_to_113Ma_in_the_Nagqu_region_in_the_northern_Lhasa_subterrane
      Ingle, S., Weis, D., Frey, F.A., 2002.Indian Continental Crust Recovered from Elan Bank, Kerguelen Plateau (ODP Leg 183, Site 1137).Journal of Petrology, 43(7):1241-1257."brollinson201510.1093/petrology/43.7.1241 doi: 10.1093/petrology/43.7.1241
      Ji W.Q., Wu, F.Y., Chung, S.L., et al., 2009.Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet.Chemical Geology, 262(3-4):229-245."brollinson201510.1016/j.chemgeo.2009.01.020 doi: 10.1016/j.chemgeo.2009.01.020
      Kang, L., Xiao, P.X., Gao, X.F., et al., 2012.The Age and Origin of the Konjirap Pluton in Northwestern Tibetan Plateau and Its Tectonic Significances.Acta Geologica Sinica, 86(7):1063-1076 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201207003.htm
      Kang, Z.Q., Xu, J.F., Wang, B.D., et al., 2009.Geochemistry of Cretaceous Volcanic Rocks of Duoni Formation in Northern Lhasa Block:Discussion of Tectonic Setting.Earth Science, 34(1):89-104 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200901010.htm
      Kapp, P., DeCelles, P.G., Gehrels, G.E., et al., 2007.Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet.Geological Society of America Bulletin, 119(7-8):917-933."brollinson201510.1130/b26033.1 doi: 10.1130/b26033.1
      Kapp, P., Murphy, M.A., Yin, A., et al., 2003.Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet.Tectonics, 22(4):3-1-3-24."brollinson201510.1029/2001tc001332 doi: 10.1029/2001tc001332
      Kinny, P.D., Maas, R., 2003.Lu-Hf and Sm-Nd Isotope Systems in Zircon.Reviews in Mineralogy and Geochemistry, 53(1):327-341."brollinson201510.2133/0530327 doi: 10.2133/0530327
      Le Fort, P., Cuney, M., Deniel, C., et al., 1987.Crustal Generation of the Himalayan Leucogranites.Tectonophysics, 134(1-3):39-57."brollinson201510.1016/0040-1951(87)90248-4 doi: 10.1016/0040-1951(87)90248-4
      Leat, P.T., Thompson, R.N., Morrison, M.A., et al., 1988.Compositionally-Diverse Miocene-Recent Rift-Related Magmatism in Northwest Colorado:Partial Melting, and Mixing of Mafic Magmas from 3 Different Asthenospheric and Lithospheric Mantle Sources.Journal of Petrology, Special Volume, (1):351-377."brollinson201510.1093/petrology/special_volume.1.351 doi: 10.1093/petrology/special_volume.1.351
      Leier, A.L., DeCelles, P.G., Kapp, P., et al., 2007.Lower Cretaceous Strata in the Lhasa Terrane, Tibet, with Implications for Understanding the Early Tectonic History of the Tibetan Plateau.Journal of Sedimentary Research, 77(10):809-825."brollinson201510.2110/jsr.2007.078 doi: 10.2110/jsr.2007.078
      Li, C., Zhai, G.Y., Wang, L.Q., et al., 2009.An Important Window for Understanding the Qinghai-Tibet Plateau-A Review on Research Progress in Recent Years of Qiangtang Area, Tibet, China.Geological Bulletin of China, 28(9):1169-1177 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200909002.htm
      Li, G.M., Qin, K.Z., Li, J.X., et al., 2017.Cretaceous Magmatism and Metallogeny in the Bangong-Nujiang Metallogenic Belt, Central Tibet:Evidence from Petrogeochemistry, Zircon U-Pb Ages, and Hf-O Isotopic Compositions.Gondwana Research, 41:110-127."brollinson201510.1016/j.gr.2015.09.006 doi: 10.1016/j.gr.2015.09.006
      Li, J.F., Xia, B., Xia, L.Z., et al., 2013a.Geochronology of the Dong Tso Ophiolite and the Tectonic Environment.Acta Geologica Sinica (English Edition), 87(6):1604-1616."brollinson201510.1111/1755-6724.12162 doi: 10.1111/1755-6724.12162
      Li, J.X., Qin, K.Z., Li, G.M., et al., 2013b.Petrogenesis of Ore-Bearing Porphyries from the Duolong Porphyry Cu-Au Deposit, Central Tibet:Evidence from U-Pb Geochronology, Petrochemistry and Sr-Nd-Hf-O Isotope Characteristics.Lithos, 160-161:216-227."brollinson201510.1016/j.lithos.2012.12.015 doi: 10.1016/j.lithos.2012.12.015
      Li, J.X., Qin, K.Z., Li, G.M., et al., 2014a.Geochronology, Geochemistry, and Zircon Hf Isotopic Compositions of Mesozoic Intermediate-Felsic Intrusions in Central Tibet:Petrogenetic and Tectonic Implications.Lithos, 198-199:77-91."brollinson201510.1016/j.lithos.2014.03.025 doi: 10.1016/j.lithos.2014.03.025
      Li, J.X., Qin, K.Z., Li, G.M., et al., 2016.Petrogenesis of Cretaceous Igneous Rocks from the Duolong Porphyry Cu-Au Deposit, Central Tibet:Evidence from Zircon U-Pb Geochronology, Petrochemistry and Sr-Nd-Pb-Hf Isotope Characteristics.Geological Journal, 51(2):285-307."brollinson201510.1002/gj.2631 doi: 10.1002/gj.2631
      Li, S.M., Zhu, D.C., Wang, Q., et al., 2014b.Northward Subduction of Bangong-Nujiang Tethys:Insight from Late Jurassic Intrusive Rocks from Bangong Tso in Western Tibet.Lithos, 205:284-297."brollinson201510.1016/j.lithos.2014.07.010 doi: 10.1016/j.lithos.2014.07.010
      Li, X.B., Wang, B.D., Liu, H., et al., 2015.The Late Jurassic High-Mg Andesites in the Daru Tso Area, Tibet:Evidence for the Subduction of the Bangong Co-Nujiang River Oceanic Lithosphere.Geological Bulletion of China, 34(2-3):251-261 (in Chinese with English abstract).
      Li, Z.Y., Ding, L., Song, P.P., et al., 2017.Paleomagnetic Constraints on the Paleolatitude of the Lhasa Block during the Early Cretaceous:Implications for the Onset of India-Asia Collision and Latitudinal Shortening Estimates across Tibet and Stable Asia.Gondwana Research, 41:352-372."brollinson201510.1016/j.gr.2015.05.013 doi: 10.1016/j.gr.2015.05.013
      Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546."brollinson201510.1007/s11434-010-3052-4 doi: 10.1007/s11434-010-3052-4
      Ludwig, K.R., 2003.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel.Geochronology Center.Special Pubilication, Berkeley, 4:1-43. https://searchworks.stanford.edu/view/6739593
      Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643."brollinson201510.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      McCarron, J.J., Smellie, J.L., 1998.Tectonic Implications of Fore-Arc Magmatism and Generation of High-Magnesian Andesites:Alexander Island, Antarctica.Journal of the Geological Society, 155(2):269-280."brollinson201510.1144/gsjgs.155.2.0269 doi: 10.1144/gsjgs.155.2.0269
      McCulloch, M.T., Gamble, J.A., 1991.Geochemical and Geodynamical Constraints on Subduction Zone Magmatism.Earth and Planetary Science Letters, 102(3-4):358-374."brollinson201510.1016/0012-821x(91)90029-h doi: 10.1016/0012-821x(91)90029-h
      Metcalfe, I., 2013.Gondwana Dispersion and Asian Accretion:Tectonic and Palaeogeographic Evolution of Eastern Tethys.Journal of Asian Earth Sciences, 66:1-33."brollinson201510.1016/j.jseaes.2012.12.020 doi: 10.1016/j.jseaes.2012.12.020
      Metcalfe, I., 1998. Palaeozoic and Mesozoic Geological Evolution of the SE Asian Region: Multidisciplinary Constraints and Implications for Biogeography. In: Hall, R., Holloway, J. D., eds., Biogeography and Geological Evolution of SE Asia. Backhuys Publishers, Amsterdam, 25-41.
      Miller, C.F., 1985.Are Strongly Peraluminous Magmas Derived from Pelitic Sedimentary Sources?The Journal of Geology, 93(6):673-689."brollinson201510.1086/628995 doi: 10.1086/628995
      Miller, C., Schuster, R., Kiötzli, U., et al., 1999.Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis.Journal of Petrology, 40(9):1399-1424."brollinson201510.1093/petroj/40.9.1399 doi: 10.1093/petroj/40.9.1399
      Mingram, B., Trumbull, R.B., Littman, S., et al., 2000.A Petrogenetic Study of Anorogenic Felsic Magmatism in the Cretaceous Paresis Ring Complex, Namibia:Evidence for Mixing of Crust and Mantle-Derived Components.Lithos, 54(1-2):1-22."brollinson201510.1016/s0024-4937(00)00033-5 doi: 10.1016/s0024-4937(00)00033-5
      Miyashiro, A., 1974.Volcanic Rock Series in Island Arcs and Active Continental Margins.American Journal of Science, 274(4):321-355."brollinson201510.2475/ajs.274.4.321 doi: 10.2475/ajs.274.4.321
      Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005.Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution.Geological Journal of China Universities, 11(3):281-290 (in Chinese with English abstract). http://or.nsfc.gov.cn/bitstream/00001903-5/269773/1/1000014453093.doc
      Mo, X.X., Hou, Z.Q., Niu, Y.L., et al., 2007.Mantle Contributions to Crustal Thickening during Continental Collision:Evidence from Cenozoic Igneous Rocks in Southern Tibet.Lithos, 96(1-2):225-242."brollinson201510.1016/j.lithos.2006.10.005 doi: 10.1016/j.lithos.2006.10.005
      Mo, X.X., Niu, Y.L., Dong, G.C., et al., 2008.Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleocene Linzizong Volcanic Succession in Southern Tibet.Chemical Geology, 250:49-67. doi: 10.1016/j.chemgeo.2008.02.003
      Mo, X.X., Pan, G.T., 2006.From the Tethys to the Formation of the Qinghai-Tibet Plateau:Constrained by Tecto-Magmatic Events.Earth Science Frontiers, 13(6):43-51 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200606007.htm
      Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2003.Response of Volcanism to the India-Asia Collision.Earth Science Frontiers, 10(3):135-148 (in Chinese with English abstract). https://www.researchgate.net/publication/302561161_Response_of_volcanism_to_the_India-Asia_collisionJ
      Muller, D., Groves, D.I., 1994.Potasic Igneous Rocks and Associated Gold-Copper Mineralization.Lithos, 56(2):265-266. https://www.researchgate.net/publication/303190389_Potasic_igneus_rocks_and_associated_gold-copper_mineralization
      Murphy, M.A., Yin, A., Harrison, T.M., et al., 1997.Did the Indo-Asian Collision alone Create the Tibetan Plateau?Geology, 25(8):719."brollinson201510.1130/0091-7613(1997)025<0719:dtiaca>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0719:dtiaca>2.3.co;2
      Najman, Y., Appel, E., Boudagher-Fadel, M., et al., 2010.Timing of India-Asia Collision:Geological, Biostratigraphic, and Palaeomagnetic Constraints.Journal of Geophysical Research, 115(B12):1-70."brollinson201510.1029/2010jb007673 doi: 10.1029/2010jb007673
      Niu, Y.L., O'Hara, M.J., Pearce, J.A., 2003.Initiation of Subduction Zones as a Consequence of Lateral Compositional Buoyancy Contrast within the Lithosphere:A Petrological Perspective.Journal of Petrology, 44(5):851-866."brollinson201510.1093/petrology/44.5.851 doi: 10.1093/petrology/44.5.851
      Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution.Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). http://www.oalib.com/paper/1472080
      Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences, 53:3-14."brollinson201510.1016/j.jseaes.2011.12.018 doi: 10.1016/j.jseaes.2011.12.018
      Pan, G.T., Zhu, D.C., Wang, L.Q., et al., 2004.Bangong Lake-Nu River Suture Zone-The Northern Boundary of Gondwanaland:Evidence from Geology and Geophysics.Earth Science Frontiers, 11(4):372-382 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dxqy200404004
      Patino, D.A.E., Johnston, A.D., 1991.Phase Equilibria and Melt Productivity in the Pelitic System:Implications for the Origin of Peraluminous Granitoids and Aluminous Granulites.Contributions to Mineralogy and Petrology, 107(2):202-218."brollinson201510.1007/bf00310707 doi: 10.1007/bf00310707
      Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. Andesites: Orogenic Andesites and Related Rocks. John Wiley and Sons, New York, 525-548.
      Pearce, J.A., 1996.Sources and Setting of Granitic Rocks.Episodes, 19(4):120-125. http://www.mendeley.com/catalog/sources-settings-granitic-rocks/
      Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983."brollinson201510.1093/petrology/25.4.956 doi: 10.1093/petrology/25.4.956
      Pearce, J.A., Mei, H.J., 1988.Volcanic Rocks of the 1985 Tibet Geotraverse:Lhasa to Golmud.Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 327(1594):169-201."brollinson201510.1098/rsta.1988.0125 doi: 10.1098/rsta.1988.0125
      Peccerillo, A., 2003.Plio-Quaternary Magmatism in Italy.Episodes, 26:222-226. http://www.cqvip.com/Main/Detail.aspx?id=8523275
      Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81."brollinson201510.1007/bf00384745 doi: 10.1007/bf00384745
      Qu, X.M., Xin, H.B., Du, D.D., et al., 2012.Ages of Post-Collisional A-Type Granite and Constraints on the Closure of the Oceanic Basin in the Middle Segment of the Bangonghu-Nujiang Suture, the Tibetan Plateau.Geochimica, 41(1):1-14 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX201201002.htm
      Rapp, R.P., 1997.Heterogenous Source Regions for Archean Granitoids:Experimental and Geochemical Evidence.Oxford Monographs on Geology and Geophysics, 35:267-279. doi: 10.1007/s11707-016-0623-y
      Rickwood, P.C., 1989.Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements.Lithos, 22(4):247-263."brollinson201510.1016/0024-4937(89)90028-5 doi: 10.1016/0024-4937(89)90028-5
      Roberts, M.P., Clemens, J.D., 1993.Origin of High-Potassium, Talc-Alkaline, Ⅰ-Type Granitoids.Geology, 21(9):825."brollinson201510.1130/0091-7613(1993)021<0825:oohpta>2.3.co;2 doi: 10.1130/0091-7613(1993)021<0825:oohpta>2.3.co;2
      Rudnick, R.L., Gao, S., 2003.Composition of the Continental Crust.Treatise on Geochemistry, 3:1-64."brollinson201510.1016/b0-08-043751-6/03016-4 doi: 10.1016/b0-08-043751-6/03016-4
      Salters, V.J.M., Stracke, A., 2004.Composition of the Depleted Mantle.Geochemistry, Geophysics, Geosystems, 5(5):1-27."brollinson201510.1029/2003gc000597 doi: 10.1029/2003gc000597
      Scherer, E., Munker, C., Mezger, K., 2001.Calibration of the Lutetium-Hafnium Clock.Science, 293(5530):683-687."brollinson201510.1126/science.1061372 doi: 10.1126/science.1061372
      Searle, M.P., Windley, B.F., Coward, M.P., et al., 1987.The Closing of Tethys and the Tectonics of the Himalaya.Geological Society of America Bulletin, 98(6):678-701."brollinson201510.1130/0016-7606(1987)98<678:tcotat>2.0.co;2 doi: 10.1130/0016-7606(1987)98<678:tcotat>2.0.co;2
      Sengör, A.M.C., Altıner, D., Cin, A., et al., 1988.Origin and Assembly of the Tethyside Orogenic Collage at the Expense of Gondwana Land.Geological Society, London, Special Publications, 37(1):119-181."brollinson201510.1144/gsl.sp.1988.037.01.09 doi: 10.1144/gsl.sp.1988.037.01.09
      Shi, R.D., 2007.The Age for SSZ Ophiolite:A Restriction about Bangong Lake-Nujiang Developing.Chinese Science Bulletin, 52(2):223-227 (in Chinese).
      Shinjo, R., Kato, Y., 2000.Geochemical Constraints on the Origin of Bimodal Magmatism at the Okinawa Trough, an Incipient Back-Arc Basin.Lithos, 54(3-4):117-137."brollinson201510.1016/s0024-4937(00)00034-7 doi: 10.1016/s0024-4937(00)00034-7
      Sisson, T.W., 1994.Hornblende-Melt Trace-Element Partitioning Measured by Ion Microprobe.Chemical Geology, 117(1-4):331-344."brollinson201510.1016/0009-2541(94)90135-x doi: 10.1016/0009-2541(94)90135-x
      Sui, Q.L., Wang, Q., Zhu, D.C., et al., 2013.Compositional Diversity of ca.110 Ma Magmatism in the Northern Lhasa Terrane, Tibet:Implications for the Magmatic Origin and Crustal Growth in a Continent-Continent Collision Zone.Lithos, 168-169:144-159."brollinson201510.1016/j.lithos.2013.01.012 doi: 10.1016/j.lithos.2013.01.012
      Sun, S.J., Zhang, L.P., Ding, X., et al., 2015.Zircon U-Pb Ages, Hf Isotopes and Geochemical Characteristics of Volcanic Rocks in Nagqu Area, Tibet and Their Petrogenesis.Acta Petrologica Sinica, 31(7):2063-2077 (in Chinese with English abstract). http://or.nsfc.gov.cn/bitstream/00001903-5/270560/1/1000012763440.pdf
      Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345."brollinson201510.1144/gsl.sp.1989.042.01.19 doi: 10.1144/gsl.sp.1989.042.01.19
      Sun, W.D., Bennett, V.C., Kamenetsky, V.S., 2004.The Mechanism of Re Enrichment in Arc Magmas:Evidence from Lau Basin Basaltic Glasses and Primitive Melt Inclusions.Earth and Planetary Science Letters, 222(1):101-114."brollinson201510.1016/j.epsl.2004.02.011 doi: 10.1016/j.epsl.2004.02.011
      Taylor, S.R., McLennan, S.M., 1995.The Geochemical Evolution of the Continental Crust.Reviews of Geophysics, 33(2):241-265."brollinson201510.1029/95rg00262 doi: 10.1029/95rg00262
      Tepper, J.H., Nelson, B.K., Bergantz, G.W., et al., 1993.Petrology of the Chilliwack Batholith, North Cascades, Washington:Generation of Calc-Alkaline Granitoids by Melting of Mafic Lower Crust with Variable Water Fugacity.Contributions to Mineralogy and Petrology, 113(3):333-351."brollinson201510.1007/bf00286926 doi: 10.1007/bf00286926
      Turner, S., Arnaud, N., Liu, J., et al., 1996.Post-Collision, Shoshonitic Volcanism on the Tibetan Plateau:Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts.Journal of Petrology, 37(1):45-71."brollinson201510.1093/petrology/37.1.45 doi: 10.1093/petrology/37.1.45
      Wang, B.D., Wang, L.Q., Chung, S.L., et al., 2016.Evolution of the Bangong-Nujiang Tethyan Ocean:Insights from the Geochronology and Geochemistry of Mafic Rocks within Ophiolites.Lithos, 245:18-33."brollinson201510.1016/j.lithos.2015.07.016 doi: 10.1016/j.lithos.2015.07.016
      Wang, J.P., Liu, Y.M., Li, Q.S., et al., 2002.Stratigraphic Division and Geological Significance of the Jurassic Cover Sediments in the Eastern Sector of the Bangong Lake-Dêngqên Ophiolite Belt in Tibet.Geological Bulletin of China, 21(7):405-410 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200207007.htm
      Wang, J.P., Zhao, Y.Y., Cui, Y.B., et al., 2012.LA-ICP-MS Ziron U-Pb Dating of Important Skarn Type Iron (Cppper) Polymetallic Deposits in Baingoin County of Tibet and Geochemical Characteristics of Granites.Geological Bulletin of China, 31(9):1435-1450 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201209008.htm
      Wang, Q., Zhu, D.C., Zhao, Z.D., et al., 2014.Origin of the ca.90 Ma Magnesia-Rich Volcanic Rocks in SE Nyima, Central Tibet:Products of Lithospheric Delamination beneath the Lhasa-Qiangtang Collision Zone.Lithos, 198-199:24-37."brollinson201510.1016/j.lithos.2014.03.019 doi: 10.1016/j.lithos.2014.03.019
      Wang, Y., Zhang, Q., Qian, Q., 2000.Adakite:Geochemical Characteristics and Tectonic Significances.Scientia Geologica Sinica, 35(2):251-256 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200002017.htm
      White, W.M., Patchett, J., 1984.Hf-Nd-Sr Isotopes and Incompatible Element Abundances in Island Arcs:Implications for Magma Origins and Crust-Mantle Evolution.Earth and Planetary Science Letters, 67(2):167-185."brollinson201510.1016/0012-821x(84)90112-2 doi: 10.1016/0012-821x(84)90112-2
      Wilson, M., 1993.Magmatism and the Geodynamics of Basin Formation.Sedimentary Geology, 86(1-2):5-29."brollinson201510.1016/0037-0738(93)90131-n doi: 10.1016/0037-0738(93)90131-n
      Wu, F.Y.Jahn, B.M., Wilde, S.A., et al., 2003a.Highly Fractionated Ⅰ-Type Granites in NE China (Ⅰ):Geochronology and Petrogenesis.Lithos, 66(3-4):241-273."brollinson201510.1016/s0024-4937(02)00222-0 doi: 10.1016/s0024-4937(02)00222-0
      Wu, F.Y., Jahn, B.M., Wilde, S.A., et al., 2003b.Highly Fractionated Ⅰ-Type Granites in NE China (Ⅱ):Isotopic Geochemistry and Implications for Crustal Growth in the Phanerozoic.Lithos, 67(3-4):191-204."brollinson201510.1016/s0024-4937(03)00015-x doi: 10.1016/s0024-4937(03)00015-x
      Wu, H., Li C., Hu, P.Y., et al., 2013.The Discovery of Qushenla Vocanic Rocks in Tasepule Area of Nyima County, Tibet, and Its Geological Significance.Geological Bulletin of China, 32(7):1014-1026 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201307006.htm
      Wu, Y., Ma, X.X., Zhang, Z.P., et al., 2016.Geochemical Features of the Nyainqentanglha Group in the Western Lhasa Terrane, Western Tibet and Their Tectonic Significance.Acta Geologica Sinica, 90(11):3081-3098 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZXE201611008.htm
      Wu, Y.B., Zheng, Y.F., 2004.The Research of Zircon and Its Restriction on the Age of U-Pb Dating.Chinese Science Bulletin, 49(16):1589-1604 (in Chinese).
      Xu, J.F., Wang, Q., Yu, X.Y., 2000.Geochemistry of High-Mg Andesites and Adakitic Andesite from the Sanchazi Block of the Mian-Lue Ophiolitic Melange in the Qinling Mountains, Central China:Evidence of Partial Melting of the Subducted Paleo-Tethyan Crust.Geochemical Journal, 34(5):359-377."brollinson201510.2343/geochemj.34.359 doi: 10.2343/geochemj.34.359
      Xu, R.H., Schärer, U., Allègre, C.J., 1985.Magmatism and Metamorphism in the Lhasa Block (Tibet):A Geochronological Study.The Journal of Geology, 93(1):41-57."brollinson201510.1086/628918 doi: 10.1086/628918
      Xu, W., Li, C., Xu, M.J., et al., 2015.Petrology, Geochemistry, and Geochronology of Boninitic Dikes from the Kangqiong Ophiolite:Implications for the Early Cretaceous Evolution of Bangong-Nujiang Neo-Tethys Ocean in Tibet.International Geology Review, 57(16):2028-2043."brollinson201510.1080/00206814.2015.1050464 doi: 10.1080/00206814.2015.1050464
      Xu, Z.Q., 2007.The Orogeny Plateau—The Terranes Assembly, Collision Orogenesis and Uplift Mechanism for the Tibet.Geological Publishing House, Beijing (in Chinese).
      Xu, Z.Q., 2007.The Orogeny Plateau-The Terranes Assembly, Collision Orogenesis and Uplift Mechanism for the Tibet.Geological Publishing House, Beijing (in Chinese).
      Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2011.On the Tectonics of the India-Asia Collision.Acta Geologica Sinica, 85(1):1-33 (in Chinese with English abstract). doi: 10.1111/acgs.2011.85.issue-1
      Yang, J.S., Xu, Z.Q., Li, Z.L., et al., 2009.Discovery of an Eclogite Belt in the Lhasa Block, Tibet:A New Border for Paleo-Tethys?Journal of Asian Earth Sciences, 34(1):76-89."brollinson201510.1016/j.jseaes.2008.04.001 doi: 10.1016/j.jseaes.2008.04.001
      Yang, T.N., Zhang, H.R., Liu, Y.X., et al., 2011.Permo-Triassic Arc Magmatism in Central Tibet:Evidence from Zircon U-Pb Geochronology, Hf Isotopes, Rare Earth Elements, and Bulk Geochemistry.Chemical Geology, 284(3-4):270-282."brollinson201510.1016/j.chemgeo.2011.03.006 doi: 10.1016/j.chemgeo.2011.03.006
      Yin, A., 2010.Cenozoic Tectonic Evolution of Asia:A Preliminary Synthesis.Tectonophysics, 488(1-4):293-325."brollinson201510.1016/j.tecto.2009.06.002 doi: 10.1016/j.tecto.2009.06.002
      Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280."brollinson201510.1146/annurev.earth.28.1.211 doi: 10.1146/annurev.earth.28.1.211
      Yu, G. M., Wang, C. S., 1990. Sedimentary Geology of Tibet. Geological Publishing House, Beijing (in Chinese with English abstract).
      Zhai, Q.G., Jahn, B.M., Zhang, R.Y., et al., 2011.Triassic Subduction of the Paleo-Tethys in Northern Tibet, China:Evidence from the Geochemical and Isotopic Characteristics of Eclogites and Blueschists of the Qiangtang Block.Journal of Asian Earth Sciences, 42(6):1356-1370."brollinson201510.1016/j.jseaes.2011.07.023 doi: 10.1016/j.jseaes.2011.07.023
      Zhang, K.J., Xia, B.D., Wang, G.M., et al., 2004.Early Cretaceous Stratigraphy, Depositional Environments, Sandstone Provenance, and Tectonic Setting of Central Tibet, Western China.Geological Society of America Bulletin, 116(9):1202-1222."brollinson201510.1130/b25388.1 doi: 10.1130/b25388.1
      Zhang, K.J., Zhang, Y.X., Tang, X.C., et al., 2012.Late Mesozoic Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian Collision.Earth-Science Reviews, 114(3-4):236-249."brollinson201510.1016/j.earscirev.2012.06.001 doi: 10.1016/j.earscirev.2012.06.001
      Zhang, L., 2015. Geochronology and Geochemistry of the Yongzhu Granitoids in Middle-North Gangdese, Tibet(Dissertation). Jilin University, Changchun, 1-84 (in Chinese with English abstract).
      Zhang, L.L., Zhu, D.C., Zhao, Z.D., et al., 2010.Pertogenesis of Magmatism in the Baerda Region of Northern Gangdese, Tibet:Constraints from Geochemistry, Geochromology and Sr-Nd-Hf Isotopes.Acta Petrologica Sinica, 26(6):1871-1888 (in Chinese with English abstract). http://www.oalib.com/paper/1473760
      Zhang, Q., Wang, Y., Liu, W., et al., 2002.Adakite:Its Characteristics and Implications.Geologica Bulletin of China, 21(7):431-435 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200207013.htm
      Zhang, Z., Song, J.L., Tang, J.X., et al., 2017.Petrogenesis, Diagenesis and Mineralization Ages of Galale Cu-Au Deposit, Tibet:Zircon U-Pb Age, Hf Isotopic Composition and Molybdenite Re-Os Dating.Earth Science, 42(6):862-880 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201706002.htm
      Zheng, Y.Y., Ci, Q., Wu, S., et al., 2017.The Discovery and Significance of Rongga Porphyry Mo Deposit in the Bangong-Nujiang Metallogenic Belt, Tibet.Earth Science, 42(9):1441-1453 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201709001.htm
      Zhu, D.C., Li, S.M., Cawood, P.A., et al., 2016.Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction.Lithos, 245:7-17."brollinson201510.1016/j.lithos.2015.06.023 doi: 10.1016/j.lithos.2015.06.023
      Zhu, D.C., Mo, X.X., Niu, Y.L., et al., 2009.Geochemical Investigation of Early Cretaceous Igneous Rocks along an East-West Traverse throughout the Central Lhasa Terrane, Tibet.Chemical Geology, 268(3-4):298-312."brollinson201510.1016/j.chemgeo.2009.09.008 doi: 10.1016/j.chemgeo.2009.09.008
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters, 301(1-2):241-255."brollinson201510.1016/j.epsl.2010.11.005 doi: 10.1016/j.epsl.2010.11.005
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau.Gondwana Research, 23(4):1429-1454."brollinson201510.1016/j.gr.2012.02.002 doi: 10.1016/j.gr.2012.02.002
      Zhu, D.C., Pan, G.T., Wang, L.Q., et al., 2008.Tempo-Spatial Variations of Mesozoic Magmatic Rocks in the Gangdise Belt, Tibet, China, with a Discussion of Geodynamic Setting-Related Issues.Geological Bulletin of China, 27(9):1535-1550 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200809015.htm
      Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006a.Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese:New Insights from Volcanic Rocks.Acta Petrologica Sinica, 22(3):534-546 (in Chinese with English abstract). http://www.oalib.com/paper/1472180
      Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006b.Identification for the Mesozoic OIB-Type Basalts in Central Qiangtang-Tibetan Plateau:Geochronology, Geochemistry and Their Tectonic Setting.Acta Geologica Sinica, 80(9):1312-1328 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200609008.htm
      Zhu, Z.Y., Wang, T.W., Li, C., 2004.Metamorphic Characteristics of Nyainqentanglha Group in Jielangya Area of Bange, Tibet.Global Geology, 23(2):128-133 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SJDZ200402004.htm
      Zorpi, M.J., Coulon, C., Orsini, J.B., 1991.Hybridization between Felsic and Mafic Magmas in Calc-Alkaline Granitoids-A Case Study in Northern Sardinia, Italy.Chemical Geology, 92(1-3):45-86."brollinson201510.1016/0009-2541(91)90049-w doi: 10.1016/0009-2541(91)90049-w
      陈国荣, 刘鸿飞, 蒋光武, 等, 2004.西藏班公湖-怒江结合带中段沙木罗组的发现.地质通报, 23(2):193-194. http://www.cqvip.com/Main/Detail.aspx?id=9216005
      陈玉禄, 张宽忠, 杨志民, 等, 2006.青藏高原班公湖-怒江结合带中段那曲县觉翁地区发现完整的蛇绿岩剖面.地质通报, 25(6):694-699. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200606007
      陈越, 朱弟成, 赵志丹, 等, 2010.西藏北冈底斯巴木错安山岩的年代学、地球化学及岩石成因.岩石学报, 26(7):2193-2206. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20100720
      邓晋福, 肖庆辉, 苏尚国, 等.2007.火成岩组合与构造环境:讨论.高校地质学报, 13(3):392-402. http://www.cqvip.com/QK/98600X/1999002/3525934.html
      定立, 赵元艺, 杨永强, 等, 2012.西藏班戈县多巴区矽卡岩型铁多金属矿床含矿花岗岩LA-ICP-MS锆石U-Pb定年、地球化学及意义.岩石矿物学杂志, 31(4):479-496. http://www.cqvip.com/QK/94932X/201204/42855757.html
      丁帅, 唐菊兴, 郑文宝, 等, 2017.西藏拿若斑岩型铜(金)矿含矿岩体年代学、地球化学及地质意义.地球科学, 42(1):1-23. http://www.earth-science.net/WebPage/Article.aspx?id=3409
      樊帅权, 史仁灯, 丁林, 等, 2010.西藏改则蛇绿岩中斜长花岗岩地球化学特征、锆石U-Pb年龄及构造意义.岩石矿物学杂志, 29(5):467-478. http://www.cqvip.com/Main/Detail.aspx?id=35267307
      高顺宝, 郑有业, 王进寿, 等, 2011a.西藏班戈地区侵入岩年代学和地球化学:对班公湖-怒江洋盆演化时限的制约.岩石学报, 27(7):1973-1982. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201107006
      高顺宝, 郑有业, 谢名臣, 等, 2011b.西藏班戈地区雪如岩体的形成环境及成矿意义.地球科学, 36(4):729-739. http://www.earth-science.net/WebPage/Article.aspx?id=2140
      高永丰, 侯增谦, 魏瑞华, 2003.冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义.岩石学报, 19(3):418-428. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200303005
      耿全如, 毛晓长, 张璋, 等, 2015.班公湖-怒江成矿带中、西段岩浆弧新认识及其对找矿的启示.中国地质调查, 2(2):1-11. https://www.wenkuxiazai.com/doc/7689fa1150e2524de4187e67.html
      耿全如, 潘桂棠, 王立全, 等, 2011.班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景.地质通报, 30(8):1261-1274. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201108013
      关俊雷, 耿全如, 王国芝, 等, 2014.北冈底斯带日土县-拉梅拉山口花岗岩体的岩石地球化学特征、锆石U-Pb测年及Hf同位素组成.岩石学报, 30(06):1666-1684. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406010.htm
      侯可军, 李延河, 邹天人, 等, 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
      胡隽, 万永文, 陶专, 等, 2014.班公湖-怒江缝合带西段特提斯洋盆南向俯冲的地球化学和年代学证据.成都理工大学学报(自然科学版), 41(4):505-515. http://d.wanfangdata.com.cn/Periodical_cdlgxyxb201404014.aspx
      黄瀚霄, 李光明, 董随亮, 等, 2012.西藏班戈地区青龙花岗闪长岩SHRIMP锆石U-Pb年龄及其地球化学特征.地质通报, 31(6):852-859. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201206004
      黄玉, 朱弟成, 赵志丹, 等, 2012.西藏北部拉萨地块那曲地区约113Ma安山岩岩石成因与意义.岩石学报, 28(5):1603-1614. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20120522
      康磊, 校培喜, 高晓峰, 等, 2012.青藏高原西北缘红其拉甫岩体的岩石成因、时代及其构造意义.地质学报, 86(7):1063-1076. http://www.cqvip.com/qk/95080x/201207/42540803.html
      康志强, 许继峰, 王保弟, 等, 2009.拉萨地块北部白垩纪多尼组火山岩的地球化学:形成的构造环境.地球科学, 34(1):89-104. http://www.earth-science.net/WebPage/Article.aspx?id=2140
      李才, 翟刚毅, 王立全, 等, 2009.认识青藏高原的重要窗口——羌塘地区近年来研究进展评述(代序).地质通报, 28(9):1169-1177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200909001
      李小波, 王保弟, 刘函, 等, 2015.西藏达如错地区晚侏罗世高镁安山岩-班公湖-怒江洋壳俯冲消减的证据.地质通报, 34(2-3):251-261.
      莫宣学, 董国臣, 赵志丹, 等, 2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 11(3):281 -290. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201502003
      莫宣学, 潘桂棠, 2006.从特提斯到青藏高原形成:构造-岩浆事件的约束.地学前缘, 13(6):43-51. doi: 10.3321/j.issn:1005-2321.2006.06.007
      莫宣学, 赵志丹, 邓晋富, 等, 2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘, 10(3):135-148. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303019.htm
      潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001
      潘桂棠, 朱弟成, 王立全, 等, 2004.班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据.地学前缘, 11(4):372-382. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200404004
      曲晓明, 辛洪波, 杜德道, 等, 2012.西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束.地球化学, 41(1):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201201001
      史仁灯, 2007.班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约.科学通报, 52(2):223-227. http://www.oalib.com/paper/4274997
      孙赛军, 张丽鹏, 丁兴, 等, 2015.西藏那曲中酸性火山岩的锆石U-Pb年龄、Hf同位素和地球化学特征及岩石成因.岩石学报, 31(7):2063-2077. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20150720
      王建平, 刘彦明, 李秋生, 等, 2002.西藏班公湖-丁青蛇绿岩带东段侏罗纪盖层沉积的地层划分.地质通报, 21(7):405-410. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200207007
      王江朋, 赵元艺, 崔玉斌, 等, 2012.西藏班戈地区重要矽卡岩型铁(铜)多金属矿床LA-ICP-MS锆石U-Pb测年与花岗岩地球化学特征.地质通报, 31(9):1435-1450. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201209008
      王焰, 张旗, 钱青, 2000.埃达克岩(adakite)的地球化学特征及其构造意义.地质科学, 35(2):251-256. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200002017.htm
      吴浩, 李才, 胡培远, 等, 2013.西藏尼玛县塔色普勒地区去申拉组火山岩的发现及其地质意义.地质通报, 32(7):1014-1026. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zqyd201307006&dbname=CJFD&dbcode=CJFQ
      吴勇, 马绪宣, 张志平, 等, 2016, 青藏高原拉萨地块西部念青唐古拉岩群的地球化学特征及构造意义.地质学报, 90(11):3081-3098. doi: 10.3969/j.issn.0001-5717.2016.11.008
      吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      许志琴, 2007.造山的高原——青藏高原的地体拼合、碰撞造山及隆升机制.北京:地质出版社.
      许志琴, 杨经绥, 李海兵, 等, 2011.印度-亚洲碰撞大地构造.地质学报, 85(1):1-33. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DIDD201108001005.htm
      余光明, 王成善, 1990.西藏特提斯沉积地质.北京:地质出版社.
      张乐, 2015. 西藏冈底斯中北部永珠地区花岗岩类年代学与地球化学(硕士学位论文). 长春: 吉林大学, 1-84. http://cdmd.cnki.com.cn/Article/CDMD-10183-1015600821.htm
      张亮亮, 朱弟成, 赵志丹, 等, 2010.西藏北冈底斯巴达尔地区岩浆作用的成因:地球化学、年代学及Sr-Nd-Hf同位素约束.岩石学报, 26(6):1871-1888.
      张旗, 王焰, 刘伟, 等, 2002.埃达克岩的特征及其意义.地质通报, 21(7):431-435. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200102008
      张志, 宋俊龙, 唐菊兴, 等, 2017.西藏嘎啦勒铜金矿床的成岩成矿时代与岩石成因:锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年.地球科学, 42(6):862-880. http://www.earth-science.net/WebPage/Article.aspx?id=3584
      郑有业, 次琼, 吴松, 等, 2017.西藏班公湖-怒江成矿带荣嘎斑岩型钼矿床的发现及意义.地球科学, 42(9):1441-1453. http://www.earth-science.net/WebPage/Article.aspx?id=3652
      朱弟成, 潘桂棠, 莫宣学, 等, 2006a.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束.岩石学报, 22(3):534-546. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603002.htm
      朱弟成, 潘桂棠, 莫宣学, 等, 2006b.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境.地质学报, 80(9):1312-1328. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200609008
      朱弟成, 潘桂棠, 王立全, 等, 2008.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论.地质通报, 27(9):1535-1550. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zqyd200809015&dbname=CJFD&dbcode=CJFQ
      朱志勇, 王天武, 李才, 2004.西藏班戈节浪垭地区念青唐古拉群变质作用特征.世界地质, 23(2):128-133. http://d.wanfangdata.com.cn/Periodical/sjdz200402005
    • 加载中
    图(11) / 表(3)
    计量
    • 文章访问数:  5333
    • HTML全文浏览量:  1756
    • PDF下载量:  49
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-12-18
    • 刊出日期:  2018-04-15

    目录

      /

      返回文章
      返回