• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    冈底斯带甲玛矿区花岗斑岩类年代学、地球化学及岩石成因

    孟元库 马士委 许志琴 陈希节 马绪宣

    孟元库, 马士委, 许志琴, 陈希节, 马绪宣, 2018. 冈底斯带甲玛矿区花岗斑岩类年代学、地球化学及岩石成因. 地球科学, 43(4): 1142-1163. doi: 10.3799/dqkx.2018.713
    引用本文: 孟元库, 马士委, 许志琴, 陈希节, 马绪宣, 2018. 冈底斯带甲玛矿区花岗斑岩类年代学、地球化学及岩石成因. 地球科学, 43(4): 1142-1163. doi: 10.3799/dqkx.2018.713
    Meng Yuanku, Ma Shiwei, Xu Zhiqin, Chen Xijie, Ma Xuxuan, 2018. Geochronology, Geochemistry and Petrogenesis of the Granitoid Porphyries from Jiama Ore Deposit in Gangdese Belt. Earth Science, 43(4): 1142-1163. doi: 10.3799/dqkx.2018.713
    Citation: Meng Yuanku, Ma Shiwei, Xu Zhiqin, Chen Xijie, Ma Xuxuan, 2018. Geochronology, Geochemistry and Petrogenesis of the Granitoid Porphyries from Jiama Ore Deposit in Gangdese Belt. Earth Science, 43(4): 1142-1163. doi: 10.3799/dqkx.2018.713

    冈底斯带甲玛矿区花岗斑岩类年代学、地球化学及岩石成因

    doi: 10.3799/dqkx.2018.713
    基金项目: 

    国土资源部公益性行业基金项目 201511022

    中国地质调查局项目 DD20160137

    山东省自然科学基金博士基金项目 ZR2017BD033

    中国博士后基金项目 2017M612220

    详细信息
      作者简介:

      孟元库(1986-), 男, 博士, 研究方向为造山带构造

    • 中图分类号: P588.121;P588.122;P597.3

    Geochronology, Geochemistry and Petrogenesis of the Granitoid Porphyries from Jiama Ore Deposit in Gangdese Belt

    • 摘要: 藏南冈底斯带中新世斑岩成因主要存在残留洋壳的部分熔融、加厚下地壳的部分熔融、陆下岩石圈的部分熔融和俯冲流体交代基性下地壳的部分熔融四种观点.为了进一步阐明该时期的岩浆成因和大地构造背景,对冈底斯带甲玛矿区不同类型的斑岩体进行了岩石学分析和LA-ICP-MS锆石U-Pb测试,并运用X荧光光谱仪和电感耦合等离子体质谱仪分别对样品进行了全岩主、微量元素测试.测试结果显示冈底斯带甲玛矿区的斑岩类形成于16.7~14.4 Ma,总体上具有埃达克质岩石的地球化学特征.其中花岗斑岩类来自于藏南加厚的基性新生下地壳的部分熔融,而辉长闪长玢岩来源于富集的岩石圈地幔.早中新世以来(18~13 Ma)青藏高原处于构造转换阶段,含矿的埃达克质岩浆沿断裂通道上升,并且在上升过程中遭受到了中上地壳物质的混染,演化形成甲玛矿区内石英闪长玢岩、花岗闪长斑岩、二长花岗斑岩和花岗斑岩,而近乎同时期来自于岩石圈地幔的岩浆则演化形成辉长闪长玢岩;矿区内含矿热液流体在岩浆热驱动和构造应力作用下,在林布宗组砂板岩、角岩与多底沟组大理岩、灰岩的层间滑脱带或褶皱的构造虚脱空间就位,形成冈底斯带甲玛矽卡岩型铜多金属主矿体.

       

    • 图  1  青藏高原大地构造格架简图(a)和冈底斯带甲玛矿区及邻区地质构造简图(b)

      图a据Yin and Harrison, 2000; JSSZ.金沙江缝合带; BNSZ.班公湖怒江缝合带; IYZSZ.印度斯雅鲁藏布江缝合带; 1.花岗岩类; 2.叶巴组火山岩; 3.典中组; 4.基性岩; 5.设兴组; 6.第四系; 7.楚木龙组; 8.林布宗组; 9.塔克那组; 10.多底沟组; 11.却桑温泉组; 12.三叠系麦隆岗组; 13.二叠系洛巴堆组; 14.石炭系松多岩组; 15.岔萨岗岩组; 16.褶皱冲断带; 17.逆冲断层; 18.正断层

      Fig.  1.  Tectonic simplified framework of the Tibetan plateau (a) and simplified geological map of the Jiama ore deposit and adjacent regions in the Gangdese belt (b)

      图  2  冈底斯带甲玛铜多金属矿集区地质简图

      唐菊兴等,2011; 钟康惠等,2012.1.第四系; 2.下白垩统楚木龙组; 3.下白垩统林布宗组; 4.上侏罗统多底沟组; 5.上侏罗统却桑温泉组; 6.下-中侏罗统叶巴组; 7.花岗斑岩; 8.岩脉; 9.矽卡岩型1号主矿体; 10.矽卡岩矿体(SK-skarn); 11.地质界线; 12.正断层; 13.逆断层; 14.倒转向斜; 15.倒转背斜; 16.硅帽; 17.甲玛滑脱带

      Fig.  2.  Simplified geological map of the Jiama copper polymetallic deposit and adjacent regions, southern Tibet

      图  3  冈底斯带甲玛铜多金属矿床矿化斑岩代表性锆石阴极发光CL图像

      Fig.  3.  CL images of representative zircons of mineralized porphyries from the Jiama copper polymetallic deposit in the Gangdese belt

      图  4  冈底斯带甲玛铜多金属矿床矿化斑岩年龄谐和图

      Fig.  4.  Concordia diagrams for zircons of mineralized porphyries from the Jiama copper polymetallic deposit in the Gangdese belt

      图  5  冈底斯带甲玛铜多金属矿床矿化斑岩主量元素判别图

      图a据Maniar and Piccoli(1989); 图b据Middlemost(1994); 图c据Peccerillo and Taylor(1976); 图d据Irvine and Baragar(1971).1.橄榄辉长岩; 2.亚碱性辉长岩; 3.辉长闪长岩; 4.闪长岩; 5.花岗岩闪长岩; 6.花岗岩; 7.石英岩; 8.碱性辉长岩; 9.二长辉长岩; 10.二长闪长岩; 11.二长岩; 12.石英二长岩; 13.正长岩; 14.似长石辉长岩; 15.似长石二长闪长岩; 16.似长石二长正长岩; 17.似长石正长岩

      Fig.  5.  Discriminative diagrams of major elements of mineralized porphyries from the Jiama copper polymetallic deposit in the Gangdese belt

      图  6  冈底斯带甲玛铜多金属矿床矿化斑岩SiO2和主要氧化物的Harker图解

      Fig.  6.  Harker diagrams of the SiO2 and oxides of mineralized porphyries from the Jiama copper polymetallic deposit in the Gangdese belt

      图  7  冈底斯带甲玛铜多金属矿床矿化斑岩原始地幔标准化微量元素蛛网图和稀土元素球粒陨石标准化曲线图

      图a~d据标准化据Sun and McDonough(1989); 图e~h据标准化据Boynton(1984)

      Fig.  7.  Primitive mantle-normalized trace element spider diagrams and chondrite-normalized rare earth element distribution patterns of mineralized porphyries from the Jiama copper polymetallic deposit in the Gangdese belt

      图  8  冈底斯带甲玛铜多金属矿床矿化斑岩SiO2 vs.微量元素Harker图解

      Fig.  8.  Harker diagrams of SiO2 vs. trace elements of mineralized porphyries from the Jiama copper polymetallic deposit in the Gangese belt

      图  9  冈底斯带甲玛铜多金属矿床矿化斑岩年龄统计

      Fig.  9.  Statistical graph of geochronological ages of mineralized porphyries from the Jiama copper polymetallic deposit in the Gangdese belt

      图  10  冈底斯带甲玛矿区花岗斑岩的地球化学亲缘性判别图解

      底图据Richards and Kerrich(2007); 红色虚线修自秦克章等(2014); 浅灰色区域代表埃达克岩的成分区域

      Fig.  10.  Geochemical discrimination diagrams for porphyry rocks from Jiama ore deposits in the Gangdese belt

      图  11  冈底斯带甲玛铜多金属矿床矿化斑岩SiO2 vs.微量元素判别图解

      Wang et al.(2006); 秦克章等(2014)

      Fig.  11.  Discrimination diagrams of the SiO2 vs. trace elements of mineralized porphyry from the Jiama copper polymetallic deposit in the Gangdese belt

      图  12  冈底斯带甲玛铜多金属矿床矿化斑岩岩浆源区判别图解

      图a据Patino Douce(1999); 图b据朱弟成等(2008)

      Fig.  12.  The magma source discriminative diagrams of mineralized porphyries from the Jiama copper polymetallic deposit in the Gangdese belt

      图  13  冈底斯带甲玛铜多金属矿床矿化斑岩部分熔融判别图解

      Schiano et al.(2010)

      Fig.  13.  Partial melting discriminative diagrams of mineralized porphyry from Jiama copper polymetallic deposit in the Gangdese belt

      图  14  冈底斯带甲玛铜多金属矿床岩浆-成矿模式

      Chung et al.(2005); 秦克章等(2014); Hou et al.(2015)修改

      Fig.  14.  Magma-metallogenic model of the Jiama copper polymetallic deposit in the Gangdese belt

    • Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., et al., 2000.Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey.Journal of Volcanology and Geothermal Research, 102(1-2):67-95. https://doi.org/10.1016/s0377-0273(00)00182-7
      Black, L.P., Gulson, B.L., 1978.The Age of the Mud Tank Carbonatite, Strang Ways Range, Northern Territory.BMR Journal of Australian Geology and Geophysics, 3(3):227-232. http://www.researchgate.net/publication/301347326_The_age_of_the_Mud_Tank_carbonatite_Strangways_range_Northern_Territory
      Boynton, W. V., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https: //doi. org/10. 1016/B978-0-444-42148-7. 50008-3
      Chen, X.J., Xu, Z.Q., Meng, Y.K., et al., 2014.Petrogenesis of Miocene Adakitic Diorite-Porphyrite in Middle Gangdese Batholith, Southern Tibet:Constraints from Geochemistry, Geochronology and Sr-Nd-Hf Isotopes.Acta Petrologica Sinica, 30(8):2253-2268 (in Chinese with English abstract). http://www.researchgate.net/publication/295561425_Petrogenesis_of_Miocene_adakitic_diorite-porphyrite_in_middle_Gangdese_batholith_southern_Tibet_Constraints_from_geochemistry_geochronology_and_Sr-Nd-Hf_isotopes
      Chung, S.L., Chu, M.F., Ji, J.Q., et al., 2009.The Nature and Timing of Crustal Thickening in Southern Tibet:Geochemical and Zircon Hf Isotopic Constraints from Post-Collisional Adakites.Tectonophysics, 477(1-2):36-48. https://doi.org/10.1016/j.tecto.2009.08.008
      Chung, S.L., Chu, M.F., Zhang, Y.Q., et al., 2005.Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism.Earth-Science Reviews, 68(3-4):173-196. https://doi.org/10.1016/j.earscirev.2004.05.001
      Chung, S.L., Liu, D., Ji, J.Q., et al., 2003.Adakites from Continental Collision Zones:Melting of Thickened Lower Crust beneath Southern Tibet.Geology, 31(11):1021-1024. https://doi.org/10.1130/g19796.1
      Defant, M.J., Drummond, M.S., 1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0
      Gao, Y.F., Hou, Z.Q., Kamber, B.S., et al., 2007.Adakite-Like Porphyries from the Southern Tibetan Continental Collision Zones:Evidence for Slab Melt Metasomatism.Contributions to Mineralogy and Petrology, 153(1):105-120. https://doi.org/10.1007/s00410-006-0137-9
      Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004.Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons.Precambrian Research, 131(3-4):231-282. https://doi.org/10.1016/j.precamres.2003.12.011
      Guan, Q., Zhu, D.C., Zhao, Z.D., et al., 2012.Crustal Thickening Prior to 38 Ma in Southern Tibet:Evidence from Lower Crust-Derived Adakitic Magmatism in the Gangdese Batholith.Gondwana Research, 21(1):88-99. https://doi.org/10.1016/j.gr.2011.07.004
      Guo, Z.F., Wilson, M., Liu, J.Q., 2007.Post-Collisional Adakites in South Tibet:Products of Partial Melting of Subduction-Modified Lower Crust.Lithos, 96(1-2):205-224. https://doi.org/10.1016/j.lithos.2006.09.011
      Harrison, T.M., Yin, A., Grove, M., et al., 2000.The Zedong Window:A Record of Superposed Tertiary Convergence in Southeastern Tibet.Journal of Geophysical Research:Solid Earth, 105(B8):19211-19230. https://doi.org/10.1029/2000jb900078
      Hoskin, P.W.O., Schaltegger, U., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62. https://doi.org/10.2113/0530027
      Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015.Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen.Economic Geology, 110:1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      Hou, Z.Q., Gao, Y.F., Qu, X.M., et al., 2004.Origin of Adakitic Intrusives Generated during Mid-Miocene East-west Extension in Southern Tibet.Earth and Planetary Science Letters, 220(1-2):139-155. https://doi.org/10.1016/s0012-821x(04)00007-x
      Hou, Z.Q., Wang, E.Q., Mo, X.X., et al., 2008.Collisional Orogeny and Metallogenesis of the Tibetan Plateau.Geological Publishing House, Beijing (in Chinese).
      Hu, Y.B., Liu, J.Q., Ling, M.X., et al., 2015.The Formation of Qulong Adakites and Their Relationship with Porphyry Copper Deposit:Geochemical Constraints.Lithos, 220-223:60-80. https://doi.org/10.1016/j.lithos.2014.12.025
      Huang, Y.M., Hawkesworth, C., Smith, I., et al.2000.Geochemistry of Late Cenozoic Basaltic Volcanism in Northland and Coromandel New Zealand:Implications for Mantle Enrichment Processes.Chemical Geology, 64(3-4):219-238. https://doi.org/10.1016/S0009-2541(99)00145-X
      Irvine, T.N., Baragar, W.R.A., 1971.A Guide to the Chemical Classification of the Common Volcanic Rocks.Canadian Journal of Earth Sciences, 8(5):523-548. https://doi.org/10.1139/e71-055
      Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004.The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In Situ U-Pb Zircon Geochronology.Chemical Geology, 211(1):47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017
      Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2009.Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet.Chemical Geology, 262(3-4):229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020
      Ji, W.Q., Wu, F.Y., Liu, C.Z., et al., 2012.Early Eocene Crustal Thickening in Southern Tibet:New Age and Geochemical Constraints from the Gangdese Batholith.Journal of Asian Earth Sciences, 53(2):82-95. https://doi.org/10.1016/j.jseaes.2011.08.020
      Jiang, Y.H., Jiang, S.Y., Dai, B.Z., et al., 2009.Middle to Late Jurassic Felsic and Mafic Magmatism in Southern Hunan Province, Southeast China:Implications for a Continental Arc to Rifting.Lithos, 107(3-4):185-204. https://doi.org/10.1016/j.lithos.2008.10.006
      Johnson, K., Barnes, C.G., Miller, C.A., 1997.Petrology, Geochemistry, and Genesis of High-Al Tonalite and Trondhjemites of the Cornucopia Stock, Blue Mountains, Northeastern Oregon.Journal of Petrology, 38(11):1585-1611. doi: 10.1093/petroj/38.11.1585
      Li, G.M., Rui, Z.Y., Wang, G.M., et al., 2005.Molybdenite Re-Os Dating of Jiama and Zhibula Polymetallic Copper Deposits in the Gangdese Metallogenic Belt of Tibet and Its Significance.Mineral Deposits, 24(5):482-489 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200505002.htm
      Li, G.W., Kohn, B., Sandiford, M., et al., 2015a.Constraining the Age of Liuqu Conglomerate, Southern Tibet:Implications for Evolution of the India-Asia Collision Zone.Earth and Planetary Science Letters, 426:259-266. https://doi.org/10.1016/j.epsl.2015.06.010
      Li, G.W., Kohn, B., Sandiford, M., et al., 2016.Synorogenic Morphotectonic Evolution of the Gangdese Batholith, South Tibet:Insights from Low-Temperature Thermochronology.Geochemistry, Geophysics, Geosystems, 17(1):101-112. https://doi.org/10.1002/2015gc006047
      Li, J.X., Qin, K.Z., Li, G.M., et al., 2011.Post-Collisional Ore-Bearing Adakitic Porphyries from Gangdese Porphyry Copper Belt, Southern Tibet:Melting of Thickened Juvenile Arc Lower Crust.Lithos, 126(3):265-277. https://doi.org/10.1016/j.lithos.2011.07.018
      Li, Y.L., Wang, C.S., Dai, J.G., et al., 2015b.Propagation of the Deformation and Growth of the Tibetan-Himalayan Orogen:A Review.Earth-Science Reviews, 143:36-61. https://doi.org/10.1016/j.earscirev.2015.01.001
      Ludwig, K. R., 2003. Use's Manual for Isoplot 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley.
      Ma, S.W., Meng, Y.K., Xu, Z.Q., et al., 2017a.The Discovery of Late Triassic Mylonitic Granite and Geologic Significance in the Middle Gangdese Batholiths, Southern Tibet.Journal of Geodynamics, 104:49-64. https://doi.org/10.1016/j.jog.2016.10.007
      Ma, X.X., Xu, Z.Q., Chen, X.J., et al., 2017b.The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet.Journal of Earth Science, 28(2):265-282. doi: 10.1007/s12583-016-0925-8
      Ma, S.W., Xu, Z.Q., Zhang, Z.K., et al., 2016.Structural Deformation and Its Constraints of Mineralization of the Jiama Copper-Polymetallic Deposit, Southern Tibet.Acta Petrologica Sinica, 32(12):3781-3799 (in Chinese with English abstract). http://www.researchgate.net/publication/313309948_Structural_deformation_and_its_constrains_of_mineralization_of_the_Jiama_copper-polymetallic_deposit_southern_Tibet
      Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
      Meng, Y.K., 2016.Tectonic Evolution of the Southern Region in the Middle Gangdese Batholith, Southern Tibet (Dissertation).Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      Meng, Y.K., Xu, Z.Q., Chen, X.J., et al., 2015.Zircon Geochronology and Hf Isotopic Composition of Eocene Granite Batholith from Xaitongmoin in Middle Gangdise and Its Geological Significance.Geotectonica et Metallogenia, 39(5):933-948 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201505015
      Meng, Y.K., Xu, Z.Q., Ma, S.W., et al., 2016a.Deformational Characteristics and Geochronological Constraints of Quxu Ductile Shear Zone in Middle Gangdese Magmatic Belt, South Tibet.Earth Science, 41(7):1081-1098 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.090
      Meng, Y.K., Xu, Z.Q., Ma, S.W., et al., 2016b.The 40Ar/39Ar Geochronological Constraints on the Xaitongmoin-Quxu Ductile Shear Zone in the Gangdese Batholith, Southern Tibet.Geological Review, 62(4):795-806 (in Chinese with English abstract). https://doi.org/10.16509/j.georeview.2016.04.002
      Meng, Y.K., Xu, Z.Q., Santosh, M., et al., 2016.Late Triassic Crustal Growth in Southern Tibet:Evidence from the Gangdese Magmatic Belt.Gondwana Research, 37:449-464. https://doi.org/10.1016/j.gr.2015.10.007
      Middlemost, E.A.K., 1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Mo, X.X., 2011.Magmatism and Evolution of the Tibetan Plateau.Geological Journal of China Universities, 17(3):351-367 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX201103003.htm
      Mo, X.X., Hou, Z.Q., Niu, Y.L., et al., 2007.Mantle Contributions to Crustal Thickening during Continental Collision:Evidence from Cenozoic Igneous Rocks in Southern Tibet.Lithos, 96(1-2):225-242. https://doi.org/10.1016/j.lithos.2006.10.005
      Mo, X.X., Zhao, Z.D., Yu, X.H., et al., 2009.Cenozoic Collisional-Postcollisional Igneous Rocks in the Tibetan Plateau.Geological Publishing House, Beijing (in Chinese).
      Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial Temporal Framework of the Gangdese Orogenic Belt and Its Evolution.Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). http://www.oalib.com/paper/1472080
      Patino Douce, A.E., 1999.What do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas?Geological Society, London, Special Publications, 168(1):55-75. https://doi.org/10.1144/gsl.sp.1999.168.01.05
      Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/BF00384745
      Petford, N., Atherton, M., 1996.Na-Rich Partial Melts from Newly Underplated Basaltic Crust:The Cordillera Blanca Batholith, Peru.Journal of Petrology, 37(6):1491-1521. https://doi.org/10.1093/petrology/37.6.1491
      Qian, Y., Sun, F.Y., Li, B.L., et al., 2014.Early Permian-Late Triassic Magmatism in the Tuotuohe Region of the Qinghai-Tibet Plateau:Constraints on the Tectonic Evolution of the Western Segment of the Jinshajiang Suture.Acta Geologica Sinica (English Edition), 88(2):498-516. https://doi.org/10.1111/1755-6724.12210
      Qin, K.Z., Xia, D.X., Duo, J., et al., 2014.Porphyry and Skarn Cu-Molybdenum Deposit of Qulong, Tibet.Science Press, Beijing (in Chinese).
      Qin, Z.P., 2013.Genetic Model of the Jiama Copper-Polymetallic Ore Deposits, Tibet (Dissertation).Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Qin, Z.P., Wang, X.W., Dor, J., et al., 2011.LA-ICP-MS U-Pb Zircon Age of Intermediate-Acidic Intrusive Rocks in Jiama of Tibet and Its Metallogenic Significance.Mineral Deposits, 30(2):339-348 (in Chinese with English abstract). http://www.researchgate.net/publication/285347618_LA-ICP-MS_U-Pb_zircon_age_of_intermediate-acidic_intrusive_rocks_in_Jiama_of_Tibet_and_its_metallogenic_significance
      Qu, X.M., Hou, Z.Q., Li, Y.G., 2004.Melt Components Derived from a Subducted Slab in Late Orogenic Ore-Bearing Porphyries in the Gangdese Copper Belt, Southern Tibetan Plateau.Lithos, 74(3-4):131-148. https://doi.org/10.1016/j.lithos.2004.01.003
      Rapp, R.P., Watson, E.B., 1995.Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling.Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891
      Richards, J.P., Kerrich, R., 2007.Adakite-Like Rocks:Their Diverse Origins and Questionable Role in Metallogenesis.Economic Geology, 102(4):537-576. https://doi.org/10.2113/gsecongeo.102.4.537
      Schiano, P., Monzier, M., Eissen, J.P., et al., 2010.Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes.Contributions to Mineralogy and Petrology, 60(2):297-312. https://doi.org/10.1007/s00410-009-0478-2
      Sun, J., Mao, J.W., Yao, F.J., et al., 2017.Relation between Magmatic Processes and Porphyry Copper-Gold Ore Formation, the Duolong District, Central Tibet.Acta Petrologica Sinica, 33(10):3217-3238 (in Chinese with English abstract).
      Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sun, X., Zheng, Y.Y., Xu, J., et al., 2017.Metallogenesis and Ore Controls of Cenozoic Porphyry Mo Deposits in the Gangdese Belt of Southern Tibet.Ore Geology Reviews, 81:996-1014. https://doi.org/10.1016/j.oregeorev.2016.01.009
      Tang, J.X., Deng, S.L., Zheng, W.B., et al., 2011.An Exploration Model for Jiama Copper Polymetallic Deposit in Maizhokunggar County, Tibet.Mineral Deposits, 30(2):179-196 (in Chinese with English abstract). http://www.researchgate.net/publication/312661222_An_exploration_model_for_Jiama_copper_polymetallic_deposit_in_Maizhokunggar_County_Tibet
      Tang, J.X., Duo, J., Liu, H.F., et al., 2012.Minerogenetic Series of Ore Deposits in the East Part of the Gangdise Metallogenic Belt.Acta Geoscientica Sinica, 33(4):393-410 (in Chinese with English abstract). http://www.oalib.com/paper/1559914
      Tang, J.X., Lang, X.H., Xie, F.W., et al., 2015.Geological Characteristics and Genesis of the Jurassic No.1 Porphyry Cu-Au Deposit in the Xiongcun District, Gangdese Porphyry Copper Belt, Tibet.Ore Geology Reviews, 70(4):438-456. https://doi.org/10.1016/j.oregeorev.2015.02.008
      Tang, J.X., Wang, D.H., Wang, X.W., et al., 2010.Geological Features and Metallogenic Model of the Jiama Copper-Polymetallic Deposit in Tibet.Acta Geoscientica Sinica, 31(4):495-506 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201004002.htm
      Wang, C., Ding, L., Zhang, L.Y., et al., 2016.Petrogenesis of Middle-Late Triassic Volcanic Rocks from the Gangdese Belt, Southern Lhasa Terrane:Implications for Early Subduction of Neo-Tethyan Oceanic Lithosphere.Lithos, 262:320-333. https://doi.org/10.1016/j.lithos.2016.07.021
      Wang, Q., 2016. Origin and Petrogenesis of the Post-Collisional Magmatism in Both North and South Sides of Lhasa Terrane (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Wang, Q., Xu, J.F., Jian, P., et al., 2006.Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China:Implications for the Genesis of Porphyry Copper Mineralization.Journal of Petrology, 47(1):119-144. https://doi.org/10.1093/petrology/egi070
      Wang, R., Richards, J.P., Zhou, L.M., et al., 2015.The Role of Indian and Tibetan Lithosphere in Spatial Distribution of Cenozoic Magmatism and Porphyry Cu-Mo Deposits in the Gangdese Belt, Southern Tibet.Earth-Science Reviews, 150:68-94. https://doi.org/10.1016/j.earscirev.2015.07.003
      Williams, H., Turner, S., Kelley, S., et al., 2001.Age and Composition of Dikes in Southern Tibet:New Constraints on the Timing of East-West Extension and Its Relationship to Postcollisional Volcanism.Geology, 29(4):188-193.https://doi.org/10.1130/0091-7613(2001)029<0339:aacodi>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0339:aacodi>2.0.co;2
      Xiong, X.L., Li, X.H., Xu, J.F., et al., 2003.Extremely High-Na Adakite-Like Magmas Derived from Alkali-Rich Basaltic Underplate:The Late Cretaceous Zhantang Andesites in the Huichang Basin, SE China.Geochemical Journal, 37(2):233-252. https://doi.org/10.2343/geochemj.37.233
      Xu, W. C., 2010. Spatial Variation of Zircon U-Pb Ages and Hf Isotopic Compositions of the Gangdese Granitoids and Its Geologic Implications (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Xu, Z.Q., Wang, Q., Li Z.H., et al., 2016.Indo-Asian Collision:Tectonic Transition from Compression to Strike Slip.Acta Geologica Sinica, 90(1):1-23 (in Chinese with English abstract). doi: 10.1111/1755-6724.12639
      Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2011.On the Tectonics of the India-Asia Collision.Acta Geologica Sinica, 85(1):1-33 (in Chinese with English abstract). doi: 10.1111/acgs.2011.85.issue-1
      Xu, Z.Q., Yang, J.S., Li, W.C., et al., 2012.Tectonic Background of Important Metallogenenic Belts in the Southern and Southeastern Tibetan Plateau and Ore Prospecting.Acta Geologica Sinica, 86(12):1857-1868 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201212002.htm
      Yang J.S., Xu, Z.Q., Geng, Q.R., et al., 2006.A Possible New HP/UHP (?) Metormorphic Belt in China:Discovery of Eclogite in the Lhasa Terrane, Tibet.Acta Geologica Sinica, 80(12):1787-1792 (in Chinese with English abstract).
      Yang, Z., Jiang, H., Yang, M.G., et al., 2017.Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance.Earth Science, 42(3):339-356 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.026
      Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(28):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Ying, L.J., Tang, J.X., Wang, D.H., et al., 2009.Re-Os Isotopic Dating of Molybdenite in Skarn from the Jiama Copper Polymetallic Deposit of Tibet and Its Metallogenic Significance.Rock and Mineral Analysis, 28(3):265-268 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200903022.htm
      Ying, L.J., Tang, J.X., Wang, D.H., et al., 2011.Zircon SHRIMP U-Pb Dating of Porphyry Vein from the Jiama Copper Polymetallic Deposits in Tibet and Its Significance.Acta Petrologica Sinica, 27(7):2095-2102 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201107018.htm
      Ying, L.J., Wang, D.H., Tang, J.X., et al., 2010.Re-Os Dating of Molybdenite from the Jiama Copper Deposit in Tibet and Its Metallogenic Significance.Acta Geologica Sinica, 84(8):1165-1174 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201008010.htm
      Zhang, K.J., 2004.Secular Geochemical Variations of the Lower Cretaceous Siliciclastic Rocks from Central Tibet (China) Indicate a Tectonic Transition from Continental Collision to Back-Arc Rifting.Earth and Planetary Science Letters, 229(1):73-89. https://doi.org/10.1016/j.epsl.2004.10.030
      Zhang, K.J., Cai, J.X., Zhang, Y.X., et al., 2006.Eclogites from Central Qiangtang, Northern Tibet (China) and Tectonic Implications.Earth and Planetary Science Letters, 245(3-4):722-729. https://doi.org/10.1016/j.epsl.2006.02.025
      Zhang, K.J., Xia, B., Zhang, Y.X., et al., 2014.Central Tibetan Meso-Tethyan Oceanic Plateau.Lithos, 210-211:278-288. https://doi.org/10.1016/j.lithos.2014.09.004
      Zhang, K.J., Xia, B.D., Wang, G.M., et al., 2004.Early Cretaceous Stratigraphy, Depositional Environments, Sandstone Provenance, and Tectonic Setting of Central Tibet, Western China.Geological Society of America Bulletin, 116(9-10):1202-1222. https://doi.org/10.1130/b25388.1
      Zhang, K.J., Zhang, Y.X., Li, B., et al., 2007.Nd Isotopes of Siliciclastic Rocks from Tibet, Western China:Constraints on Provenance and Pre-Cenozoic Tectonic Evolution.Earth and Planetary Science Letters, 256(3-4):604-616. https://doi.org/10.1016/j.epsl.2007.02.014
      Zhang, K.J., Zhang, Y.X., Tang, X.C., et al., 2012.Late Mesozoic Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian Collision.Earth-Science Reviews, 114(3-4):236-249. https://doi.org/10.1016/j.earscirev.2012.06.001
      Zheng, W. B., 2012. The Study on Metallogenic Model and Prospecting Pattern for Jiama Polymetallic Copper Deposit, Tibet (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Zheng, W.B., Tang, J.X., Zhong, K.H., et al., 2016.Geology of the Jiama Porphyry Copper-Polymetallic System, Lhasa Region, China.Ore Geology Reviews, 74:151-169. https://doi.org/10.1016/j.oregeorev.2015.11.024
      Zheng, Y.Y., Sun, X., Gao, S.B., et al., 2014.Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet:Implications for Eocene and Miocene Magma Sources and Resource Potential.Journal of Asian Earth Sciences, 79:842-857. https://doi.org/10.1016/j.jseaes.2013.03.029
      Zhong, K.H., Li, L., Zhou, H.W., et al., 2012.Features of Jiama (Gyama)-Kajunguo Thrust-Gliding Nappe Tectonic System in Tibet.Acta Geoscientica Sinica, 33(4):411-423 (in Chinese with English abstract). https://www.researchgate.net/publication/289410495_Features_of_Jiama-Kajunguo_thrust-gliding_nappe_tectonic_system_in_TibetJ?ev=auth_pub
      Zhu, D.C., Mo, X.X., Wang, L.Q., et al., 2008.Hotspot-Ridge Interaction for the Evolution of Neo-Tethys:Insights from the Late Jurassic-Early Cretaceous Magmatism in Southern Tibet.Acta Petrologica Sinica, 24(2):225-237 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200802006.htm
      Zhu, D.C., Wang, Q., Zhao, Z.D., et al., 2015.Magmatic Record of India-Asia Collision.Scientific Reports, (5):14289. https://doi.org/10.1038/srep14289
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      陈希节, 许志琴, 孟元库, 等, 2014.冈底斯带中段中新世埃达克质岩浆作用的年代学、地球化学及Sr-Nd-Hf同位素制约.岩石学报, 30(8): 2253-2268. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20140810&journal_id=ysxb&year_id=2014
      侯增谦, 王二七, 莫宣学, 等, 2008.青藏高原碰撞造山与成矿作用.北京:地质出版社.
      李光明, 芮宗瑶, 王高明, 等, 2005.西藏冈底斯成矿带甲马和知不拉铜多金属矿床的Re-Os同位素年龄及其意义.矿床地质, 24(5): 481-489. http://d.old.wanfangdata.com.cn/Periodical/kcdz200505002
      马士委, 许志琴, 张忠坤, 等, 2016.藏南甲玛铜多金属矿床构造变形及其对成矿的制约.岩石学报, 32(12): 3781-3799. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20161215
      孟元库, 2016. 藏南冈底斯带中段南缘构造演化(博士学位论文). 北京: 中国地质科学院. http://cdmd.cnki.com.cn/Article/CDMD-82501-1016056636.htm
      孟元库, 许志琴, 陈希节, 等, 2015.藏南冈底斯中段谢通门始新世复式岩体锆石U-Pb年代学、Hf同位素特征及其地质意义.大地构造与成矿学, 39(5): 933-948. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201505015
      孟元库, 许志琴, 马士委, 等, 2016a.藏南冈底斯岩浆带中段曲水韧性剪切带的变形特征及其年代学约束.地球科学, 41(7): 1081-1098. https://doi.org/10.3799/dqkx.2016.090
      孟元库, 许志琴, 马士委, 等, 2016b.藏南冈底斯地体谢通门-曲水韧性剪切带40Ar/39Ar年代学约束.地质论评, 62(4): 795-806. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201604002
      莫宣学, 2011.岩浆作用与青藏高原演化.高校地质学报, 17(3): 351-367. http://www.cqvip.com/QK/90539X/201103/39866061.html
      莫宣学, 赵志丹, 喻学惠, 等, 2009.青藏高原新生代碰撞-后碰撞火成岩.北京:地质出版社.
      潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3): 521-533. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001
      秦克章, 夏代祥, 多吉, 等, 2014.西藏驱龙斑岩-夕卡岩铜钼矿床.北京:科学出版社.
      秦志鹏, 2013. 西藏甲玛铜多金属矿床成因模式(博士学位论文). 成都: 成都理工大学. http://cdmd.cnki.com.cn/Article/CDMD-10616-1013263626.htm
      秦志鹏, 汪雄武, 多吉, 等, 2011.西藏甲玛中酸性侵入岩LA-ICP-MS锆石U-Pb定年及成矿意义.矿床地质, 30(2): 339-348. http://d.old.wanfangdata.com.cn/Periodical/kcdz201102014
      孙嘉, 毛景文, 姚佛军, 等, 2017.西藏多龙矿集区岩浆岩成因与成矿作用关系研究.岩石学报, 33(10): 3217-3238. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201710016
      唐菊兴, 邓世林, 郑文宝, 等, 2011.西藏墨竹工卡县甲玛铜多金属矿床勘查模型.矿床地质, 30(2): 179-196. http://d.old.wanfangdata.com.cn/Periodical/kcdz201102002
      唐菊兴, 多吉, 刘鸿飞, 等, 2012.冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究.地球学报, 33(4): 393-410. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201204003.htm
      唐菊兴, 王登红, 汪雄武, 等, 2010.西藏甲玛铜多金属矿矿床地质特征及其矿床模型.地球学报, 31(4): 495-506. http://d.old.wanfangdata.com.cn/Periodical/dqxb201004002
      王青, 2016. 拉萨地体南北两侧碰撞后岩浆作用的岩浆起源和岩石成因(博士学位论文). 北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1016067934.htm
      徐旺春, 2010. 西藏冈底斯花岗岩类锆石U-Pb年龄和Hf同位素组成的空间变化及其地质意义(博士学位论文). 武汉: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-2010250454.htm
      许志琴, 王勤, 李忠海, 等, 2016.印度-亚洲碰撞:从挤压到走滑的构造转换.地质学报, 90(1): 1-23. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201601001.htm
      许志琴, 杨经绥, 李海兵, 等, 2011.印度-亚洲碰撞大地构造.地质学报, 85(1): 1-33. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DIDD201108001005.htm
      许志琴, 杨经绥, 李文昌, 等, 2012.青藏高原南部与东南部重要成矿带的大地构造定格与找矿前景.地质学报, 86(12): 1857-1868. doi: 10.3969/j.issn.0001-5717.2012.12.001
      杨经绥, 许志琴, 耿全如, 等, 2006.中国境内可能存在一条新的高压/超高压(?)变质带--青藏高原拉萨地体中发现榴辉岩带.地质学报, 80(12): 1787-1792. doi: 10.3321/j.issn:0001-5717.2006.12.001
      杨震, 姜华, 杨明国, 等, 2017.冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义.地球科学, 42(3): 339-356. https://doi.org/10.3799/dqkx.2017.026
      应立娟, 唐菊兴, 王登红, 等, 2009.西藏甲玛铜多金属矿床矽卡岩中辉钼矿铼-锇同位素定年及其成矿意义.岩矿测试, 28(3): 265-268. http://d.old.wanfangdata.com.cn/Periodical/ykcs200903014
      应立娟, 唐菊兴, 王登红, 等, 2011.西藏甲玛超大型铜矿区斑岩脉成岩时代及其与成矿的关系.岩石学报, 27(7): 2095-2102. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107017
      应立娟, 王登红, 唐菊兴, 等, 2010.西藏墨竹工卡县甲玛铜多金属矿不同矿石中辉钼矿Re-Os同位素定年及其成矿意义.地质学报, 84(8): 1165-1174. http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=2009058
      郑文宝, 2012. 西藏甲玛铜多金属矿床成矿模式与找矿模型(博士学位论文). 成都: 成都理工大学. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2216090
      钟康惠, 李磊, 周慧文, 等, 2012.西藏甲玛-卡军果推-滑覆构造系特征.地球学报, 33(4): 411-423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201204003
      朱弟成, 莫宣学, 王立全, 等, 2008.新特提斯演化的热点与洋脊相互作用:西藏南部晚侏罗世-早白垩世岩浆作用推论.岩石学报, 24(2): 225-237. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20080204&journal_id=ysxb&year_id=2008
    • 加载中
    图(14)
    计量
    • 文章访问数:  4126
    • HTML全文浏览量:  1672
    • PDF下载量:  66
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-12-15
    • 刊出日期:  2018-04-15

    目录

      /

      返回文章
      返回