• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东天山哈尔里克地区晚石炭世淡色花岗岩成因及其地质意义

    朱小辉 朱涛 张欣 奚任刚 孟勇 王凯

    朱小辉, 朱涛, 张欣, 奚任刚, 孟勇, 王凯, 2018. 东天山哈尔里克地区晚石炭世淡色花岗岩成因及其地质意义. 地球科学, 43(12): 4443-4458. doi: 10.3799/dqkx.2018.989
    引用本文: 朱小辉, 朱涛, 张欣, 奚任刚, 孟勇, 王凯, 2018. 东天山哈尔里克地区晚石炭世淡色花岗岩成因及其地质意义. 地球科学, 43(12): 4443-4458. doi: 10.3799/dqkx.2018.989
    Zhu Xiaohui, Zhu Tao, Zhang Xin, Xi Rengang, Meng Yong, Wang Kai, 2018. Petrogenesis and Geological Implications of Late Carboniferous Leucogranites in Harlik Area, Eastern Tianshan. Earth Science, 43(12): 4443-4458. doi: 10.3799/dqkx.2018.989
    Citation: Zhu Xiaohui, Zhu Tao, Zhang Xin, Xi Rengang, Meng Yong, Wang Kai, 2018. Petrogenesis and Geological Implications of Late Carboniferous Leucogranites in Harlik Area, Eastern Tianshan. Earth Science, 43(12): 4443-4458. doi: 10.3799/dqkx.2018.989

    东天山哈尔里克地区晚石炭世淡色花岗岩成因及其地质意义

    doi: 10.3799/dqkx.2018.989
    基金项目: 

    国家自然科学基金项目 41402051

    中国地质调查局工作项目 1212012110000026

    中国地质调查局工作项目 DD20179395

    详细信息
      作者简介:

      朱小辉(1986-), 博士研究生, 岩石学专业

    • 中图分类号: P59

    Petrogenesis and Geological Implications of Late Carboniferous Leucogranites in Harlik Area, Eastern Tianshan

    • 摘要: 淡色花岗岩对深入理解造山带构造演化具有重要意义.哈尔里克山南麓小铺地区出露多种类型的淡色花岗岩脉,包括黑云母花岗岩、二云母花岗岩、含电气石花岗岩以及含石榴石花岗岩.岩石地球化学研究显示这些淡色花岗岩整体具有高硅(SiO2=73.22%~75.12%)、铝(Al2O3=13.59%~14.49%)、碱(ALK=7.11%~9.67%),低钛(TiO2=0.01%~0.14%)、铁(TFeO=0.26%~1.37%)、镁(MgO=0.09%~0.46%)、钙(CaO=0.46%~1.92%)的特点,属于弱过铝质钙碱性-钾玄岩系列岩石.其中黑云母花岗岩具有较高的CaO/Na2O比值(0.46~0.47)和低的Rb/Sr比值(0.31~0.33),指示其为砂质源岩经黑云母脱水熔融形成;二云母花岗岩和含电气石花岗岩具有较低的CaO/Na2O比值(0.11~0.31)和高的Rb/Sr比值(1.41~3.75),为泥质源岩经白云母脱水熔融形成;含石榴石花岗岩具有强烈的Eu负异常以及"海鸥状"稀土配分模式,为高分异型花岗岩.小铺淡色花岗岩初始岩浆温度较低(T=637~744℃),结合其野外地质特征,认为其形成可能与深部物质的折返、造山带的伸展垮塌有关.利用LA-ICP-MS微区原位锆石U-Pb定年获得黑云母花岗岩的形成时代为308.5±2.2 Ma,含电气石花岗岩的形成时代为307.8±2.3 Ma,二者在误差范围内近乎一致,指示哈尔里克地区在晚石炭世末处于伸展构造背景.

       

    • 图  1  哈尔里克山地区地质简图

      孙桂华(2007)修改.ALT.阿尔泰造山带;JB.准噶尔盆地;TS.天山造山带;TRB.塔里木盆地;KL-ALT.昆仑-阿尔金造山带

      Fig.  1.  Geological sketch of the Harlik area

      图  2  小铺地区淡色花岗岩野外露头照片

      Grt.石榴子石;Tou.电气石

      Fig.  2.  The outcrop photos for the leucogranites from Xiaopu area

      图  3  小铺地区淡色花岗岩主量元素判别图解

      图a据Rickwood(1989);图b据Peccerillo and Taylor(1976)

      Fig.  3.  Major element diagrams for the leucogranites from Xiaopu area

      图  4  小铺地区淡色花岗岩稀土配分模式和微量元素蛛网图

      球粒陨石及原始地幔标准值据Sun and McDonough(1989)

      Fig.  4.  Chondrite-normalized REE patterns and primitive mantle-normalized spider diagrams for the leucogranites from Xiaopu area

      图  5  小铺地区黑云母淡色花岗岩(a)及电气石淡色花岗岩(b)锆石U-Pb年龄谐和图

      Fig.  5.  Zircon U-Pb concordia diagrams for the biotite (a) and tourmaline (b) leucogranites from Xiaopu area

      图  6  小铺淡色花岗岩类Rb/Sr-Rb/Ba图解

      Sylvester(1998)

      Fig.  6.  Rb/Sr-Rb/Ba diagram for the leucogranites from Xiaopu area

      图  7  小铺淡色花岗岩类Rb/Sr-Ba图解

      张宏飞等(2005); Mu(VA).缺乏蒸汽相的白云母熔融反应;Bi(VA).缺乏蒸汽相的黑云母熔融反应;Mu(VP).饱和蒸汽相的白云母熔融反应

      Fig.  7.  Rb/Sr-Ba diagram for the leucogranites from Xiaopu area

      表  1  东天山小铺地区淡色花岗岩主量元素(%)、微量元素(10-6)分析结果

      Table  1.   Major element (%) and trace element (10-6) compositions of the leucogranites from Xiaopu area

      样品 二云母花岗岩 黑云母花岗岩 含电气石花岗岩 含石榴石花岗岩
      14XP-01
      (1)
      14XP-01
      (2)
      14XP-01
      (3)
      14XP-01
      (4)
      14XP-01
      (5)
      14XP-01
      (6)
      14XP-03
      (1)
      14XP-03
      (2)
      14XP-04
      (1)
      14XP-04
      (2)
      14XP-04
      (3)
      14XP-04
      (4)
      14XP-04
      (5)
      14XP-05
      (1)
      14XP-05
      (2)
      14XP-05
      (3)
      14XP-05
      (4)
      14XP-05
      (5)
      14XP-05
      (6)
      SiO2 74.26 74.95 74.84 75.06 74.90 74.76 73.22 73.29 74.39 73.69 74.60 75.12 74.85 74.16 74.93 74.61 74.21 74.12 74.93
      Al2O3 13.97 13.60 13.86 13.90 13.59 13.87 14.49 14.38 14.33 14.31 14.44 14.25 14.07 14.37 14.08 14.20 14.27 14.31 14.21
      Fe2O3 0.25 0.18 0.26 0.22 0.30 0.23 0.60 0.72 0.23 0.35 0.06 0.11 0.05 0.07 0.02 0.03 0.13 0.11 0.23
      FeO 0.25 0.38 0.25 0.30 0.32 0.25 0.82 0.72 0.30 0.32 0.28 0.16 0.40 0.68 0.55 0.50 0.42 0.58 0.38
      CaO 0.46 0.76 0.90 0.86 0.74 1.00 1.89 1.92 1.08 1.39 0.96 1.08 1.18 0.63 0.77 0.58 0.71 0.63 0.78
      MgO 0.20 0.19 0.13 0.22 0.20 0.15 0.44 0.46 0.13 0.21 0.09 0.09 0.12 0.10 0.09 0.09 0.10 0.15 0.12
      K2O 5.62 5.46 5.23 4.96 5.49 5.23 2.96 3.07 3.88 3.77 3.99 3.19 3.93 3.83 3.09 4.45 4.52 4.48 3.15
      Na2O 4.05 3.43 3.39 3.27 3.32 3.45 4.15 4.09 4.47 4.42 4.32 5.05 4.37 4.62 5.10 4.26 4.21 4.23 4.94
      TiO2 0.04 0.04 0.03 0.04 0.04 0.03 0.14 0.14 0.03 0.04 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
      P2O5 0.12 0.13 0.12 0.11 0.12 0.13 0.07 0.08 0.16 0.17 0.18 0.16 0.18 0.30 0.22 0.22 0.21 0.22 0.19
      MnO 0.01 0.02 0.02 0.02 0.02 0.02 0.04 0.04 0.03 0.04 0.04 0.01 0.04 0.19 0.14 0.10 0.09 0.12 0.05
      LOI 0.73 0.84 0.94 1.01 0.90 0.84 1.14 1.04 0.94 1.25 0.97 0.73 0.74 1.01 0.99 0.90 1.09 1.00 0.97
      Total 99.96 99.97 99.97 99.96 99.94 99.96 99.96 99.95 99.97 99.95 99.95 99.97 99.96 99.97 99.99 99.95 99.97 99.96 99.96
      Cu 1.56 1.34 1.16 1.78 1.44 1.55 1.97 2.71 1.40 2.94 1.19 0.84 1.25 0.87 1.19 1.16 1.43 2.30 0.86
      Pb 30.4 37.8 36.5 31.6 36.8 37.3 24.2 22.9 30.4 30.7 18.9 22.9 28.5 16.8 16.7 19.2 20.1 20.2 17.6
      Zn 9.79 12.1 13.4 10.4 15.4 15.4 35.9 34.7 18.2 22.2 7.80 6.98 14.1 34.3 12.0 12.7 11.1 15.4 46.2
      Cr 1.78 1.68 1.92 2.00 1.23 1.90 2.47 4.31 1.11 6.36 1.53 1.11 0.99 1.61 1.63 1.66 2.34 0.97 1.36
      Ni 2.54 2.05 2.60 2.67 2.62 2.72 10.5 8.79 2.49 3.43 2.40 2.06 2.21 2.61 2.10 2.15 2.26 1.46 1.60
      Co 60.9 49.9 91.3 66.8 67.4 112 54.6 65.3 70.0 40.9 47.4 71.3 32.4 84.3 75.4 66.4 78.9 41.7 47.7
      Rb 170 173 171 148 169 169 88.2 90.7 193 179 196 157 190 238 193 318 331 336 223
      Cs 5.19 7.03 7.55 6.40 6.98 7.49 6.46 6.72 20.5 20.2 17.5 14.7 18.2 11.3 9.69 11.8 12.2 12.6 9.07
      Mo 0.09 0.11 0.11 0.09 0.13 0.11 0.12 0.09 0.14 0.16 0.10 0.12 0.12 0.10 0.13 0.14 0.15 0.14 0.15
      Sr 120 84.4 66.2 53.4 70.8 63.7 269 288 66.1 59.8 52.8 57.9 50.7 6.17 6.56 5.48 7.26 5.41 5.90
      Ba 264 278 220 152 267 195 241 247 198 181 156 137 176 11.7 7.33 5.62 6.05 5.40 5.79
      V 3.21 0.80 0.45 2.15 1.38 0.98 11.7 11.8 1.35 2.09 0.85 0.82 0.81 0.66 0.60 0.64 0.53 1.55 0.64
      Sc 7.29 8.09 6.89 5.93 5.48 5.67 8.35 9.70 7.60 7.98 6.09 7.83 7.00 7.45 7.36 5.39 7.02 8.37 7.10
      Nb 7.76 7.53 7.05 7.38 7.65 6.62 8.92 9.10 7.74 9.50 7.30 5.00 7.28 11.1 8.63 9.42 8.96 9.97 15.8
      Ta 1.15 1.18 1.05 0.96 1.22 1.01 1.21 1.20 1.21 1.20 1.17 0.80 1.02 1.54 1.31 1.37 1.32 1.46 2.21
      Zr 39.4 45.8 37.7 39.7 43.8 36.5 89.3 93.7 21.8 22.3 26.9 27.9 29.9 43.4 35.2 21.8 20.4 22.6 26.4
      Hf 1.87 2.21 1.80 1.94 2.09 1.75 2.78 2.82 1.23 1.19 1.46 1.45 1.51 3.48 2.35 1.38 1.34 1.37 1.70
      Ga 12.6 14.3 14.0 14.4 13.8 12.4 17.5 17.7 12.8 14.6 14.5 11.7 13.3 16.3 15.7 15.3 15.8 15.8 16.1
      U 1.81 2.41 2.42 1.82 1.96 2.43 1.38 1.28 1.75 1.97 1.37 1.57 1.41 1.39 1.16 1.17 1.15 1.63 1.39
      Th 1.64 2.52 2.36 1.74 2.08 1.88 4.16 4.86 2.22 2.71 1.78 1.89 1.66 1.12 1.15 0.75 0.87 0.96 0.88
      La 3.05 3.56 3.39 2.40 3.11 2.74 10.7 12.7 3.72 4.09 2.96 2.83 2.51 1.36 1.43 1.05 1.06 1.23 1.36
      Ce 6.45 7.88 7.16 4.86 6.64 5.86 23.8 27.1 7.74 8.22 6.00 5.94 4.60 3.21 3.36 2.46 2.47 2.86 3.02
      Pr 0.71 0.93 0.86 0.62 0.82 0.70 2.88 3.38 0.95 1.01 0.74 0.70 0.57 0.38 0.41 0.27 0.32 0.37 0.34
      Nd 2.75 3.69 3.72 2.75 3.40 2.99 10.7 12.9 3.65 4.18 2.98 2.98 2.35 1.56 1.74 1.06 1.30 1.53 1.44
      Sm 0.75 1.02 1.08 0.81 1.01 0.85 2.12 2.50 1.02 1.21 0.86 0.84 0.71 0.41 0.50 0.32 0.39 0.46 0.42
      Eu 0.24 0.34 0.33 0.24 0.34 0.26 0.46 0.53 0.26 0.25 0.20 0.20 0.15 0.02 0.01 0.01 0.01 0.01 0.01
      Gd 1.08 1.56 1.67 1.2 1.52 1.29 2.02 2.36 1.21 1.55 1.10 1.07 0.99 0.61 0.65 0.38 0.44 0.52 0.66
      Tb 0.20 0.28 0.30 0.21 0.29 0.23 0.34 0.40 0.22 0.27 0.21 0.20 0.20 0.11 0.11 0.07 0.08 0.10 0.12
      Dy 1.30 1.86 2.04 1.38 1.88 1.55 2.14 2.47 1.40 1.75 1.35 1.30 1.31 0.70 0.71 0.44 0.50 0.61 0.72
      Ho 0.27 0.38 0.41 0.29 0.38 0.32 0.45 0.50 0.29 0.35 0.27 0.27 0.27 0.14 0.14 0.09 0.10 0.12 0.13
      Er 0.74 1.03 1.10 0.80 1.04 0.86 1.23 1.41 0.76 0.97 0.74 0.72 0.75 0.35 0.36 0.23 0.26 0.32 0.36
      Tm 0.11 0.14 0.16 0.12 0.15 0.13 0.19 0.21 0.11 0.14 0.11 0.10 0.12 0.049 0.053 0.03 0.04 0.05 0.05
      Yb 0.63 0.85 0.98 0.78 0.98 0.81 1.20 1.32 0.70 0.88 0.68 0.67 0.73 0.3 0.32 0.21 0.24 0.29 0.31
      Lu 0.09 0.13 0.14 0.12 0.14 0.12 0.18 0.20 0.10 0.12 0.10 0.10 0.11 0.04 0.05 0.03 0.04 0.05 0.05
      Y 7.04 9.79 12.3 8.44 11.2 9.67 12.8 14.9 8.25 10.2 7.96 8.08 8.22 3.53 3.99 2.10 2.36 3.04 3.48
      下载: 导出CSV

      表  2  东天山小铺地区淡色花岗岩锆石LA-ICP-MS分析结果

      Table  2.   LA-ICP-MS zircon dating results for the leucogranites from Xiaopu area

      点号 元素含量(10-6) Th/U 同位素比值 表面年龄(Ma)
      Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
      黑云母花岗岩
      1 11.0 87.7 173 0.51 0.052 91 0.003 10 0.357 68 0.019 47 0.049 02 0.001 30 325 128 311 15 309 8
      2 15.0 115 238 0.48 0.053 19 0.001 82 0.356 46 0.011 42 0.048 59 0.000 85 337 76 310 9 306 5
      3 52.9 375 898 0.42 0.056 51 0.001 84 0.366 08 0.011 10 0.046 98 0.000 84 472 71 317 8 296 5
      4 50.0 237 930 0.26 0.061 67 0.001 96 0.373 88 0.010 95 0.043 96 0.000 78 663 67 323 8 277 5
      5 73.5 191 1 311 0.15 0.055 44 0.002 27 0.376 96 0.014 26 0.049 30 0.001 03 430 89 325 11 310 6
      6 67.6 498 1 084 0.46 0.054 79 0.000 93 0.373 10 0.006 20 0.049 38 0.000 62 404 37 322 5 311 4
      7 130 665 2 002 0.33 0.055 49 0.001 28 0.404 05 0.008 85 0.052 81 0.000 76 432 50 345 6 332 5
      8 44.6 253 779 0.32 0.062 51 0.001 51 0.394 17 0.008 91 0.045 73 0.000 69 692 51 337 6 288 4
      9 50.5 299 842 0.36 0.053 39 0.001 10 0.362 35 0.007 17 0.049 22 0.000 67 345 46 314 5 310 4
      10 26.7 97.2 439 0.22 0.057 80 0.003 45 0.389 14 0.021 30 0.048 82 0.001 40 522 126 334 16 307 9
      11 16.2 82.9 272 0.30 0.054 20 0.001 75 0.368 10 0.011 12 0.049 26 0.000 85 379 71 318 8 310 5
      12 43.7 207 737 0.28 0.052 73 0.001 33 0.357 46 0.008 51 0.049 17 0.000 74 317 56 310 6 309 5
      13 56.9 363 937 0.39 0.056 62 0.001 43 0.382 68 0.009 09 0.049 02 0.000 74 476 55 329 7 309 5
      14 110 696 1 845 0.38 0.053 04 0.000 86 0.358 21 0.005 76 0.048 98 0.000 61 331 36 311 4 308 4
      15 60.6 477 919 0.52 0.113 67 0.002 67 0.679 22 0.014 26 0.043 34 0.000 72 1 859 42 526 9 274 4
      16 86.1 624 1 402 0.45 0.052 38 0.000 85 0.356 12 0.005 72 0.049 31 0.000 61 302 37 309 4 310 4
      17 68.3 491 1 127 0.44 0.051 94 0.001 01 0.350 19 0.006 60 0.048 90 0.000 65 283 44 305 5 308 4
      18 48.9 264 848 0.31 0.060 70 0.001 37 0.389 06 0.008 29 0.046 49 0.000 67 629 48 334 6 293 4
      19 48.6 322 753 0.43 0.053 02 0.003 85 0.385 01 0.025 73 0.052 67 0.001 76 329 156 331 19 331 11
      20 77.8 517 1 284 0.40 0.068 82 0.001 30 0.442 84 0.007 96 0.046 67 0.000 63 894 38 372 6 294 4
      21 46.5 422 743 0.57 0.051 27 0.001 02 0.345 13 0.006 61 0.048 83 0.000 65 253 45 301 5 307 4
      22 101 792 1665 0.48 0.051 60 0.000 91 0.348 14 0.006 02 0.048 94 0.000 62 268 40 303 5 308 4
      23 29.9 248 496 0.50 0.051 62 0.001 21 0.343 62 0.007 68 0.048 28 0.000 69 269 53 300 6 304 4
      24 71.1 315 1 300 0.24 0.059 06 0.002 18 0.374 74 0.012 73 0.046 02 0.000 91 569 78 323 9 290 6
      25 99.0 617 1 658 0.37 0.053 43 0.000 87 0.361 57 0.005 79 0.049 08 0.000 61 347 36 313 4 309 4
      含电气石花岗岩
      1 11.1 87.1 172 0.51 0.053 52 0.003 21 0.357 57 0.019 92 0.048 56 0.001 32 351 130 310 15 306 8
      2 14.1 102 220 0.46 0.054 89 0.002 05 0.367 28 0.012 81 0.048 63 0.000 91 408 81 318 10 306 6
      3 53.8 392 958 0.41 0.056 47 0.001 32 0.347 19 0.007 65 0.044 68 0.000 64 470 51 303 6 282 4
      4 55.8 241 1 003 0.24 0.063 33 0.001 58 0.391 82 0.009 12 0.044 96 0.000 69 719 52 336 7 284 4
      5 80.7 183 1 403 0.13 0.059 49 0.000 97 0.402 19 0.006 40 0.049 13 0.000 61 585 35 343 5 309 4
      6 67.6 498 1 084 0.46 0.055 04 0.000 93 0.370 66 0.006 14 0.048 93 0.000 61 414 37 320 5 308 4
      7 130 664 2 005 0.33 0.055 64 0.001 40 0.400 13 0.009 50 0.052 25 0.000 79 438 55 342 7 328 5
      8 45.7 249 763 0.33 0.063 44 0.001 40 0.412 76 0.008 57 0.047 27 0.000 68 723 46 351 6 298 4
      含电气石花岗岩
      9 50.7 297 840 0.35 0.053 30 0.001 01 0.360 14 0.006 62 0.049 09 0.000 64 342 42 312 5 309 4
      10 25.4 96.4 390 0.25 0.056 90 0.003 50 0.410 57 0.023 16 0.052 41 0.001 53 487 131 349 17 329 9
      11 16.2 82.9 272 0.30 0.054 30 0.001 75 0.366 91 0.01 108 0.049 08 0.000 84 383 71 317 8 309 5
      12 43.1 207 724 0.29 0.053 20 0.001 30 0.359 41 0.008 32 0.049 06 0.000 72 337 54 312 6 309 4
      13 53.4 307 823 0.37 0.055 38 0.002 17 0.398 36 0.014 47 0.052 24 0.001 06 427 85 341 11 328 6
      14 110 698 1 840 0.38 0.053 30 0.000 88 0.360 01 0.005 82 0.049 04 0.000 61 342 37 312 4 309 4
      15 53.0 399 932 0.43 0.109 42 0.001 75 0.579 73 0.008 80 0.038 47 0.000 51 1790 29 464 6 243 3
      16 85.7 620 1 402 0.44 0.052 44 0.000 85 0.354 96 0.005 66 0.049 14 0.000 61 305 36 308 4 309 4
      17 71.7 554 1 191 0.46 0.052 52 0.001 31 0.351 96 0.008 30 0.048 65 0.000 72 308 56 306 6 306 4
      18 53.5 285 940 0.30 0.062 30 0.001 48 0.394 79 0.008 82 0.046 00 0.000 69 684 50 338 6 290 4
      19 52.5 354 856 0.41 0.053 54 0.003 94 0.365 88 0.024 77 0.049 61 0.001 69 352 158 317 18 312 10
      20 69.1 457 1 206 0.38 0.064 63 0.001 18 0.399 99 0.007 00 0.044 93 0.000 59 762 38 342 5 283 4
      21 48.1 426 780 0.55 0.053 23 0.000 98 0.354 62 0.006 34 0.048 35 0.000 63 339 41 308 5 304 4
      22 101 755 1 682 0.45 0.052 86 0.000 79 0.355 42 0.005 32 0.048 80 0.000 59 323 34 309 4 307 4
      23 30.2 249 501 0.50 0.052 51 0.001 18 0.349 76 0.007 53 0.048 34 0.000 68 308 50 305 6 304 4
      24 70.1 322 1 233 0.26 0.060 54 0.001 46 0.395 84 0.008 99 0.047 45 0.000 72 623 51 339 7 299 4
      25 99.0 617 1 658 0.37 0.053 21 0.000 86 0.363 11 0.005 82 0.049 51 0.000 62 338 36 315 4 312 4
      下载: 导出CSV
    • Braun, I., Raith, M., Kumar, G.R.R., 1996.Dehydration-Melting Phenomena in Leptynitic Gneisses and the Generation of Leucogranites:A Case Study from the Kerala Khondalite Belt, Southern India.Journal of Petrology, 37(6):1285-1305. https://doi.org/10.1093/petrology/37.6.1285
      Brown, M., 2002.Retrograde Processes in Migmatites and Granulites Revisited.Journal of Metamorphic Geology, 20(1):25-40. https://doi.org/10.1046/j.0263-4929.2001.00362.x
      Cao, F.G., Tu, Q.J., Zhang, X.M., et al., 2006.Preliminary Determination of the Early Paleozoic Magmatic Arc in the Karlik Mountains, East Tianshan, Xinjiang, China-Evidence from Zircon SHRIMP U-Pb Dating of Granite Bodies in the Tashuihe Area.Geological Bulletin of China, 25(8):923-927 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200608004
      Cao, F.G., Zhang, Y.P., Li, Y., et al., 2009.The Gelogical Character of Nanhuan System Qingshixia Formation Qincheng Hami, Xijiang.Xinjiang Geology, 27(4):303-307 (in Chinese with English abstract).
      Chen, X.J., Shu, L.S., 2010.Features of the Post-Collisional Tectono-Magmatism and Geochronological Evidence in the Harlik Mt., Xinjiang.Acta Petrologica Sinica, 26(10):3057-3064 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201010017.htm
      Chen, X.J., Shu, L.S., Santosh, M., 2011.Late Paleozoic Post-Collisional Magmatism in the Eastern Tianshan Belt, Northwest China:New Insights from Geochemistry, Geochronology and Petrology of Bimodal Volcanic Rocks.Lithos, 127(3-4):581-598. https://doi.org/10.1016/j.lithos.2011.06.008
      Chen, X.J., Zhang, K.H., Zhang, G.L., et al., 2016.Characteristics, Petrogenesis and Tectonic Implications of the Permian Omoertage Alkaline Granites in Harlik Area, Xinjiang.Acta Petrologica et Mineralogica, 35(6):929-946 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201606002
      Chung, S.L., Chu, M.F., Zhang, Y.Q., et al., 2005.Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism.Earth-Science Reviews, 68(3-4):173-196.https://doi.org/10.1016/j.earscirev.2004.05.001 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=edd81f21a4b046d1678a4727beb6f78a
      Gao, L.E., Zeng, L.S., 2014.Fluxed Melting of Metapelite and the Formation of Miocene High-CaO Two-Mica Granites in the Malashan Gneiss Dome, Southern Tibet.Geochimica et Cosmochimica Acta, 130:136-155. https://doi.org/10.1016/j.gca.2014.01.003
      Gao, L.E., Zeng, L.S., Hu, G.Y., 2010.High Sr/Y Two-Mica Granite from Quedang Area, Southern Tibet, China:Formation Mechanism and Tectonic Implications.Geologcal Bulletin of China, 29(2):214-226 (in Chinese with English abstract).
      Gao, L.E., Zeng, L.S., Liu, J., et al., 2009.Early Oligocene Na-Rich Peraluminous Leucogranites in the YardoiGneiss Dome, Southern Tibet:Formation Mechanism and Tectonic Implications.Acta Petrologica Sinica, 25(9):2289-2302 (in Chinese with English abstract).
      Gao, L.E., Zeng, L.S., Asimow, P.D., 2016.Contrasting Geochemical Signatures of Fluid-Absent versus Fluid-Fluxed Melting of Muscovite in Metasedimentary Sources:The Himalayan Leucogranites.Geology, 45(1):39-42.https://doi.org/10.1130/g38336.1 http://adsabs.harvard.edu/abs/2017Geo....45...39G
      Gu, L.X., Hu, S.X., Chu, Q., et al., 1999.Pre-Collision Granites and Post-Collision Intrusive Assemblage of the Kelameili-Harlik Orogenic Belt.Acta Geologica Sinica (English Edition), 73(3):316-329.https://doi.org/10.1111/j.1755-6724.1999.tb00840.x doi: 10.1111/acgs.1999.73.issue-3
      Gu, L.X., Zhang, Z.Z., Wu, C.Z., et al., 2006.Some Problems on Granites and Vertical Growth of the Continental Crust in the Eastern Tianshan Mountains, NW China.Acta Petrologica Sinica, 22(5):1103-1120 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200605005
      Guo, H.C., Zhong, L., Li, L.Q., 2006.Zircon SHRIMP U-Pb Dating of Quartz Diorite in the Koumenzi Area, Karlik Mountains, East Tianshan, Xinjiang, China, and Its Geological Significance.Geological Bulletin of China, 25(8):928-931 (in Chinese with English abstract).
      Guo, S.S., Li, S.G., 2007.Petrological and Geochemical Constraints on the Origin of Leucogranites.Earth Science Frontiers, 14(6):290-298 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200706036
      Harrison, M.T., Grove, M., Mckeegan, K.D., et al., 1999.Origin and Episodic Emplacement of the Manaslu Intrusive Complex, Central Himalaya.Journal of Petrology, 40(1):3-19. https://doi.org/10.1093/petroj/40.1.3
      Hou, Z.Q., Zheng, Y.C., Zeng, L.S., et al., 2012.Eocene-Oligocene Granitoids in Southern Tibet:Constraints on Crustal Anatexis and Tectonic Evolution of the Himalayan Orogen.Earth and Planetary Science Letters, 349-350:38-52. https://doi.org/10.1016/j.epsl.2012.06.030
      Inger, S., Harris, N., 1993.Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya.Journal of Petrology, 34(2):345-368. https://doi.org/10.1093/petrology/34.2.345
      King, J., Harris, N., Argles, T., et al., 2010.Contribution of Crustal Anatexis to the Tectonic Evolution of Indian Crust beneath Southern Tibet.Geological Society of America Bulletin, 123(1-2):218-239.https://doi.org/10.1130/b30085.1 doi: 10.1130-B30085.1/
      Li, J.T., He, X.F., Liu, L., et al., 2017.Ordovician Tectonic Evolution of Harlik in Eastern Tianshan of Xinjiang:Constraints from LA-ICP-MS Zircon U-Pb Geochronology and Geochemistry of Volcanic Rocks.Geoscience, 31(3):460-473 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201703004.htm
      Li, J.Y., 2004.Late Neoproterozoic and Paleozoic Tectonic Framework and Evolution of Eastern Xinjiang, NW China.Geological Review, 50(3):304-322 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200403015
      Li, J.Y., He, G.Q., Xu, X., et al., 2006.Crustal Tectonic Framework of Northern Xinjiang and Adjacent Regions and Its Formation.Acta Geologica Sinica, 80(1):148-168 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200601017
      Liu, L., He, X.F., Li, J.T., et al., 2017.Petrogenesis and Tectonic Signficances of the Qincheng Tianshengquan Pluton in the Harlik Orogen of Eastern Xinjiang.Geological Science and Technology Information, 36(2):86-96 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201702011.htm
      Liu, Z.C., Wu, F.Y., Ji, W.Q., et al., 2014.Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model.Lithos, 208-209:118-136. https://doi.org/10.1016/j.lithos.2014.08.022
      Luo, T., Chen, J.P., Liao, Q.A., et al., 2018.Geochronology, Geochemistry and Geological Significance of the Late Carboniferous Bimodal Volcanic Rocks in the Balikun Area, Eastern Tianshan.Earth Science, 43(9):3018-3035 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2018.603 http://d.old.wanfangdata.com.cn/Periodical/dqkx201809008
      Ma, X.H., Chen, B., Wang, C., et al., 2015.Early Paleozoic Subduction of the Paleo-Asian Ocean:Zircon U-Pb Geochronological, Geochemical and Sr-Nd Isotopic Evidence from the Harlik Pluton, Xinjiang.Acta Petrologica Sinica, 31(1):89-104 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501007
      McDermott, F., Harris, N.B.W., Hawkesworth, C.J., 1996.Geochemical Constraints on Crustal Anatexis:A Case Study from the Pan-African Damara Granitoids of Namibia.Contributions to Mineralogy and Petrology, 123(4):406-423. https://doi.org/10.1007/s004100050165
      Miller, C.F., McDowell, S.M., Mapes, R.W., 2003.Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance.Geology, 31(6):529.https://doi.org/10.1130/0091-7613(2003)031<0529:hacgio>2.0.co;2 doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
      Nabelek, P.I., Bartlett, C.D., 1998.Petrologic and Geochemical Links between the Post-Collisional Proterozoic Harney Peak Leucogranite, South Dakota, USA, and Its Source Rocks.Lithos, 45(1-4):71-85.https://doi.org/10.1016/s0024-4937(98)00026-7 doi: 10.1016/S0024-4937(98)00026-7
      Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81.https://doi.org/10.1007/bf00384745 doi: 10.1007/BF00384745
      Rickwood, P.C., 1989.Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements.Lithos, 22(4):247-263. https://doi.org/10.1016/0024-4937(89)90028-5
      Şeng ör, A.M.C., Natal'in, B.A., Burtman, V.S., 1993.Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia.Nature, 364(6435):299-307. https://doi.org/10.1038/364299a0
      Song, P., Tong, Y., Wang, T., et al., 2018.Zircon U-Pb Ages, Genetic Evolution and Geological Significance of Carboniferous Granites in the Harlik Mountain, East Tianshan, Xinjiang.Geological Bulletin of China, 37(5):790-804 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgqydz201805004
      Stevens, G., Clemens, J.D., Droop, G.T.R., 1997.Melt Production during Granulite-Facies Anatexis:Experimental Data from "Primitive" Metasedimentary Protoliths.Contributions to Mineralogy and Petrology, 128(4):352-370. https://doi.org/10.1007/s004100050314
      Sun, G.H., 2007.Structural Deformation and Tectonic Evolution of Harlik Mountain, in Xinjiang since the Paleozoic(Dissertation).Chinese Academy of Geological Sciences, Beijing, 1-226 (in Chinese with English abstract).
      Sun, G.H., Li, J.Y., Gao, L.M., et al., 2005.Zircon SHRIMP U-Pb Age of a Dioritic Pluton in the Harlik Mountain, Eastern Xinjiang, and Its Tectonic Implication.Geological Review, 51(4):463-469 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005244
      Sun, G.H., Li, J.Y., Zhu, Z.X., et al., 2007a.Detrital Zircon SHRIMP U-Pb Dating of Carboniferous Sandstone from the Southern Foot of the Harlik Mountains, Eastern Xinjiang, and Its Geological Implications.Geology in China, 34(5):778-789 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200705004
      Sun, G.H., Li, J.Y., Zhu, Z.X., et al., 2007b.Zircons SHRIMP U-Pb Dating of Gneissoid-Biotitic Granite in Harlik Mountains, Eastern of Xinjiang and Its Geological Implications.Xinjiang Geology, 25(1):4-10 (in Chinese with English abstract).
      Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19
      Sylvester, P.J., 1998.Post-Collisional Strongly Peraluminous Granites.Lithos, 45(1-4):29-44.https://doi.org/10.1016/s0024-4937(98)00024-3 doi: 10.1016/S0024-4937(98)00024-3
      Wang, C., Ma, X.H., Chen, B., et al., 2017.Late Carboniferous Volcanism of the Harlik Orogenic Belt, Xinjiang:Zircon U-Pb Geochronological, Geochemical and Sr-Nd Isotopic Evidence.Acta Petrologica Sinica, 33(2):440-454 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSXB201702009.htm
      Wang, C.S., Gu, L.X., Zhang, Z.Z., et al., 2009a.Petrogenesis and Geological Implications of the Permian High-K Calc-Alkaline Granites in Harlik Mountains of Eastern Tianshan, NW China.Acta Petrologica Sinica, 25(6):1499-1511 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200906021
      Wang, C.S., Gu, L.X., Zhang, Z.Z., et al., 2009b.Petrogenesis and Tectonic Implications of the Permian Alkaline Granite and Quartz-Syenite Assemblage in Harlik Mountains, Xinjiang.Acta Petrologica Sinica, 25(12):3182-3196 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200912007
      Wang, L.Y., Liao, Q.A., Xiao, D., et al., 2016.Petrogenesis and Tectonic Significance of Early Carboniferous A-Type Granite in Harlik, Xinjiang.Journal of Geomechanics, 22(4):1032-1048 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201604020
      Wang, X.X., Zhang, J.J., Wang, J.M., 2016.Geochronology and Formation Mechanism of the Paiku Granite in the Northern Himalaya, and Its Tectonic Implications.Earth Science, 41(6):982-998 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2016.082 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201606006
      Wei, C.J., Wang, W., 2007.Phase Equilibria of Anatexis in High-Grade Metapelites.Earth Science Frontiers, 14(1):125-134 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200701012
      Windley, B.F., Alexeiev, D., Xiao, W., et al., 2007.Tectonic Models for Accretion of the Central Asian Orogenic Belt.Journal of the Geological Society, 164(1):31-47. https://doi.org/10.1144/0016-76492006-022
      Wu, F.Y., Liu, X.C., Ji, W.Q., et al., 2017.Highly Fractionated Granites:Recognition and Research.Science China Earth Sciences, 60(7):1201-1219. https://doi.org/10.1007/s11430-016-5139-1
      Xiao, W., Windley, B.F., Badarch, G., et al., 2004.Palaeozoic Accretionary and Convergent Tectonics of the Southern Altaids:Implications for the Growth of Central Asia.Journal of the Geological Society, 161(3):339-342. https://doi.org/10.1144/0016-764903-165
      Xie, K.J., Zeng, L.S., Liu, J., et al., 2010.Late-Eocene Dala Adakitic Granite, Southern Tibet and Geological Implications.Acta Petrologica Sinica, 26(4):1016-1026 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201004002
      Zeng, L.S., Gao, L.E., 2017.Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt.Acta Petrologica Sinica, 33(5):1420-1444 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201705004
      Zhang, H.F., Harris, N., Parrish, R., et al., 2004.Causes and Consequences of Protracted Melting of the Mid-Crust Exposed in the North Himalayan Antiform.Earth and Planetary Science Letters, 228(1-2):195-212. https://doi.org/10.1016/j.epsl.2004.09.031
      Zhang, H.F., Nigel, H., Randall, P., et al., 2005.Geochemistry of North Himalayan Leucogranites:Regional Comparison, Petrogenesis and Tectonic Implications.Earth Science, 30(3):275-288 (in Chinese with English abstract). http://cpfd.cnki.com.cn/Article/CPFDTOTAL-IGQM200408001058.htm
      Zhao, M., Shu, L.S., Wang, C.Y., 1997.Characteristics of Metamorphism in the Harlik Metamorphic Belt, East Xinjiang, and Its Tectonic Environment.Geological Journal of China Universities, 3(1):40-50 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700148698
      Zhao, M., Shu, L.S., Zhu, W.B., et al., 2002.Zircon U-Pb Dating of the Rocks from the Harlik Metamorphic Belt in Eastern Xinjiang and Its Geological Significance.Acta Geologica Sinica, 76(3):379-383 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200203010
      Zhao, T.Y., Xu, S.Q., Zhu, Z.X., et al., 2014.Geological and Geochemical Features of Carboniferous Volcanic Rocks in Bogda-Harlik Mountains, Xinjiang and Their Tectonic Significances.Geological Review, 60(1):115-124 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZLP201401013.htm
      曹福根, 涂其军, 张晓梅, 等, 2006.哈尔里克山早古生代岩浆弧的初步确定——来自塔水河一带花岗质岩体锆石SHRIMP U-Pb测年的证据.地质通报, 25(8):923-927. doi: 10.3969/j.issn.1671-2552.2006.08.004
      曹福根, 张玉萍, 李艳, 等, 2009.新疆哈密沁城一带南华系青石峡组地质特征及意义.新疆地质, 27(4):303-307. doi: 10.3969/j.issn.1000-8845.2009.04.001
      陈希节, 舒良树, 2010.新疆哈尔里克山后碰撞期构造-岩浆活动特征及年代学证据.岩石学报, 26(10):3057-3064. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201010017
      陈希节, 张奎华, 张关龙, 等, 2016.新疆东天山哈尔里克二叠纪奥莫尔塔格碱性花岗岩特征、成因及构造意义.岩石矿物学杂志, 35(6):929-946. doi: 10.3969/j.issn.1000-6524.2016.06.002
      高利娥, 曾令森, 胡古月, 2010.藏南确当地区高Sr/Y比值二云母花岗岩的形成机制及其构造动力学意义.地质通报, 29(2):214-226. doi: 10.3969/j.issn.1671-2552.2010.02.005
      高利娥, 曾令森, 刘静, 等, 2009.藏南也拉香波早渐新世富钠过铝质淡色花岗岩的成因机制及其构造动力学意义.岩石学报, 25(9):2289-2302. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200909021
      顾连兴, 张遵忠, 吴昌志, 等, 2006.关于东天山花岗岩与陆壳垂向增生的若干认识.岩石学报, 22(5):1103-1120. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200605005
      郭华春, 钟莉, 李丽群, 2006.哈尔里克山口门子地区石英闪长岩锆石SHRIMP U-Pb测年及其地质意义.地质通报, 25(8):928-931. doi: 10.3969/j.issn.1671-2552.2006.08.005
      郭素淑, 李曙光, 2007.淡色花岗岩的岩石学和地球化学特征及其成因.地学前缘, 14(6):290-298. doi: 10.3321/j.issn:1005-2321.2007.06.036
      李江涛, 何学锋, 刘亮, 等, 2017.新疆东天山哈尔里克奥陶纪的构造属性:来自火山岩LA-ICP-MS锆石U-Pb年代学与地球化学的制约.现代地质, 31(3):460-473. doi: 10.3969/j.issn.1000-8527.2017.03.004
      李锦轶, 2004.新疆东部新元古代晚期和古生代构造格局及其演变.地质论评, 50(3):304-322. doi: 10.3321/j.issn:0371-5736.2004.03.015
      李锦轶, 何国琦, 徐新, 等, 2006.新疆北部及邻区地壳构造格架及其形成过程的初步探讨.地质学报, 80(1):148-168. doi: 10.3321/j.issn:0001-5717.2006.01.017
      刘亮, 何学锋, 李江涛, 等, 2017.新疆东部哈尔里克造山带沁城天生圈岩体岩石成因及其构造意义.地质科技情报, 36(2):86-96. http://www.cqvip.com/QK/93477A/201702/671732067.html
      罗婷, 陈继平, 廖群安, 等, 2018.东天山巴里坤地区晚石炭世双峰式火山岩年代学、地球化学及其构造意义.地球科学, 43(9):3018-3035. http://earth-science.net/WebPage/Article.aspx?id=3937
      马星华, 陈斌, 王超, 等, 2015.早古生代古亚洲洋俯冲作用:来自新疆哈尔里克侵入岩的锆石U-Pb年代学、岩石地球化学和Sr-Nd同位素证据.岩石学报, 31(1):89-104. http://d.wanfangdata.com.cn/Periodical/ysxb98201501007
      宋鹏, 童英, 王涛, 等, 2018.新疆东天山哈尔里克山石炭纪花岗岩锆石U-Pb年龄、成因演化及地质意义.地质通报, 37(5):790-804. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201805004
      孙桂华, 2007.新疆哈尔里克山古生代以来构造变形及构造演化(博士学位论文).北京:中国地质科学院, 1-226.
      孙桂华, 李锦轶, 高立明, 等, 2005.新疆东部哈尔里克山闪长岩锆石SHRIMP U-Pb定年及其地质意义.地质论评, 51(4):463-469. doi: 10.3321/j.issn:0371-5736.2005.04.015
      孙桂华, 李锦轶, 朱志新, 等, 2007a.新疆东部哈尔里克山南麓石炭纪砂岩碎屑锆石SHRIMP U-Pb定年及其地质意义.中国地质, 34(5):778-789. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200705004
      孙桂华, 李锦轶, 朱志新, 等, 2007b.新疆东部哈尔里克山片麻状黑云母花岗岩锆石SHRIMP U-Pb定年及其地质意义.新疆地质, 25(1):4-10. http://d.old.wanfangdata.com.cn/Periodical/xjdz200701002
      王超, 马星华, 陈斌, 等, 2017.新疆哈尔里克山地区晚石炭世火山作用:锆石U-Pb年代学、元素地球化学及Sr-Nd同位素研究.岩石学报, 33(2):440-454. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201702009
      汪传胜, 顾连兴, 张遵忠, 等, 2009a.东天山哈尔里克山区二叠纪高钾钙碱性花岗岩成因及地质意义.岩石学报, 25(6):1499-1511. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200906021
      汪传胜, 顾连兴, 张遵忠, 等, 2009b.新疆哈尔里克山二叠纪碱性花岗岩-石英正长岩组合的成因及其构造意义.岩石学报, 25(12):3182-3196. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200912007
      王良玉, 廖群安, 肖典, 等, 2016.新疆哈尔里克早石炭世A型花岗岩的岩石成因及构造意义.地质力学学报, 22(4):1032-1048. doi: 10.3969/j.issn.1006-6616.2016.04.020
      王晓先, 张进江, 王佳敏, 2016.北喜马拉雅佩枯花岗岩年代学、成因机制及其构造意义.地球科学, 41(6):982-998. http://earth-science.net/WebPage/Article.aspx?id=3311
      魏春景, 王伟, 2007.高级变质岩中深熔作用的相平衡研究.地学前缘, 14(1):125-134. doi: 10.3321/j.issn:1005-2321.2007.01.012
      谢克家, 曾令森, 刘静, 等, 2010.西藏南部晚始新世打拉埃达克质花岗岩及其构造动力学意义.岩石学报, 26(4):1016-1026. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201004002
      曾令森, 高利娥, 2017.喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩.岩石学报, 33(5):1420-1444. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201705004
      张宏飞, Nigel, H., Randall, P., 等, 2005.北喜马拉雅淡色花岗岩地球化学:区域对比、岩石成因及其构造意义.地球科学, 30(3):275-288. http://earth-science.net/WebPage/Article.aspx?id=1410
      赵明, 舒良树, 王赐银, 1997.东疆哈尔里克变质地带变质作用特征及形成构造环境研究.高校地质学报, 3(1):40-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700148698
      赵明, 舒良树, 朱文斌, 等, 2002.东疆哈尔里克变质带的U-Pb年龄及其地质意义.地质学报, 76(3):379-383. doi: 10.3321/j.issn:0001-5717.2002.03.010
      赵同阳, 徐仕琪, 朱志新, 等, 2014.新疆博格达-哈尔里克山地区石炭纪火山岩地质地球化学特征及其构造意义.地质论评, 60(1):115-124. http://www.cnki.com.cn/Article/CJFDTotal-DZLP201401013.htm
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  4700
    • HTML全文浏览量:  1775
    • PDF下载量:  53
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-03-23
    • 刊出日期:  2018-12-15

    目录

      /

      返回文章
      返回