• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    黔东注溪黑色岩系地球化学特征及矿化富集规律

    刘文 李欢 陈正山 冯运富 季国松 田永红

    刘文, 李欢, 陈正山, 冯运富, 季国松, 田永红, 2019. 黔东注溪黑色岩系地球化学特征及矿化富集规律. 地球科学, 44(9): 2978-2994. doi: 10.3799/dqkx.2019.019
    引用本文: 刘文, 李欢, 陈正山, 冯运富, 季国松, 田永红, 2019. 黔东注溪黑色岩系地球化学特征及矿化富集规律. 地球科学, 44(9): 2978-2994. doi: 10.3799/dqkx.2019.019
    Liu Wen, Li Huan, Chen Zhengshan, Feng Yunfu, Ji Guosun, Tian Yonghong, 2019. Geochemical Characteristics and Metal Enrichment Rules of Black Shales in the Zhuxi Vanadium Ore Field, Eastern Guizhou. Earth Science, 44(9): 2978-2994. doi: 10.3799/dqkx.2019.019
    Citation: Liu Wen, Li Huan, Chen Zhengshan, Feng Yunfu, Ji Guosun, Tian Yonghong, 2019. Geochemical Characteristics and Metal Enrichment Rules of Black Shales in the Zhuxi Vanadium Ore Field, Eastern Guizhou. Earth Science, 44(9): 2978-2994. doi: 10.3799/dqkx.2019.019

    黔东注溪黑色岩系地球化学特征及矿化富集规律

    doi: 10.3799/dqkx.2019.019
    基金项目: 

    贵州省地质矿产勘查开发局项目 SDK2010-2

    详细信息
      作者简介:

      刘文(1980-), 男, 高级工程师, 硕士, 主要从事地质矿产勘查工作

      通讯作者:

      李欢

    • 中图分类号: P595

    Geochemical Characteristics and Metal Enrichment Rules of Black Shales in the Zhuxi Vanadium Ore Field, Eastern Guizhou

    • 摘要: 目前急需分析黔东注溪钒矿形成的环境、成矿的物质来源以及矿化富集规律,指导实际地质勘查工作.系统研究了注溪矿区内中洞、老屋基和坪哨3个典型岩性剖面中黑色岩含矿岩系及矿层的全岩主微量元素组成.结果表明,含矿岩系具有较高的SiO2、MnO、Ce/Ce*和Eu/Eu*值,而矿层则含相对较高的Al2O3、Fe2O3、TiO2、CaO、Na2O、K2O、P2O5、V2O5、REE、As、Cu、Pb、Zn、Mo、Ni、Ti、Cr、Rb、Sr、Th、U和V.含矿岩系与矿层的主微量地球化学特征显示注溪钒矿床的成矿物源具有一定程度陆源物质的输入,且在成矿阶段受到了热水作用及生物作用的影响.另外,由南至北各剖面的热水成矿作用逐渐减弱;含矿岩系及矿层沉积环境均属缺氧环境,其中坪哨剖面的矿层沉积环境的缺氧程度要高于其他剖面.因此,注溪钒矿床钒富集成矿主要受古环境的还原条件和热液活动的影响,其中还原环境对钒元素的富集成矿起主要作用.据此推测坪哨剖面矿层形成时的海水深度应最深,北矿段中洞剖面的最浅;喷流热水带来的V等大量多金属元素在喷口及其附近大规模成矿.

       

    • 图  1  贵州省寒武纪梅树村期岩相古地理简图

      戴传固等(2013)和杨捷等(2013)

      Fig.  1.  Simplified Cambrian (Meishucun period) lithofacies paleogeographic map of the Guizhou Province

      图  2  注溪钒矿区域地质简图

      陆国章(2013)

      Fig.  2.  Simplified geological map of the Zhuxi V ore field

      图  3  注溪钒矿区地层及矿层野外照片

      a.陡山沱组与上覆留茶坡组呈整合接触关系;b.多金属层中的磷质结核;c.寒武系下统九门冲组的多金属层;d.多金属层与围岩产状一致

      Fig.  3.  Field photos of the ore-bearing strata and ores in the Zhuxi V ore field

      图  4  注溪钒矿矿石构造与显微结构

      a.层状构造;b.条纹状构造;c.不等晶结构;d.粉-微晶结构和缝合线构造

      Fig.  4.  Ore structures and microscopic textures in the Zhuxi V ore field

      图  5  注溪钒矿含矿岩系与矿层主微量元素图解

      Fig.  5.  Plots for major and trace element compositions of ore-bearing rocks and ores from the Zhuxi V ore field

      图  6  注溪钒矿各剖面含矿岩系与矿层主微量元素平均值变化

      Fig.  6.  Plots for average major and trace element compositions of ore-bearing rocks and ores from three lithological sections of the Zhuxi V ore field

      图  7  注溪钒矿含矿岩系与矿层北美页岩标准化稀土配分模式图(a、b)与平均地壳标准化微量元素蛛网图(c、d)

      标准化值分别据Haskin(1984)Yaroshevsky(2006)

      Fig.  7.  North American shale-normalized REE patterns (a, b) and average crust-normalized trace elements patterns (c, d) for ore-bearing rocks and ores from the Zhuxi V ore field

      图  8  注溪钒矿主微量元素图解

      a.Al/(Al+Fe+Mn)-SiO2/Al2O3图解;b. SiO2/(K2O+Na2O)-MnO/TiO2图解,据Murray(1994);c. Y-Ho图解;d. REE-La/Yb图解,据Allègre and Minster(1978);e. Th-U图解,据Boström(1983);f. Al2O3/(Al2O3+Fe2O3T)-Fe2O3T /TiO2图解, 据Murray(1994)

      Fig.  8.  Plots of major and trace elements for the Zhuxi V ore field

      图  9  注溪钒矿矿化富集模式简图

      杨剑(2009)修改

      Fig.  9.  Cartoon-like profile of the mineralization enrichment patterns for the Zhuxi V ore field

      表  1  注溪钒矿含矿岩系及矿石特征

      Table  1.   Characteristics of ore-bearing rocks and ores in the Zhuxi V ore field

      岩石名称 矿物成分 结构构造 其他特征
      硅质岩 主要矿物成分为硅质,含有少量的粘土矿物、粉砂质碎屑、有机质等.粉砂级碎屑主要成分为石英矿物屑. 硅质呈微-隐晶结构,晶体呈半自形-他形;粘土矿物呈不均匀分布,具有显微鳞片状结构,沿长轴方向定向性排列好. 石英矿物屑,呈次圆状-圆状零星分布,磨圆度和分选性均良好,碎屑矿物成熟度良好.有机质特征为污染状分布.
      多金属层 岩性为灰绿色含黄铁矿含炭粘土质粉砂岩,含磷质结核.矿物成分有粉砂级陆源碎屑、粘土矿物、有机质和黄铁矿等.粉砂级陆源碎屑矿物成分以石英矿物屑为主. 粉砂状结构、层纹-条纹-条带状构造. 粉砂级陆源碎屑呈次圆状、圆状,呈层不均匀分布,具有良好的磨圆度和分选性,碎屑矿物成熟度较高.粘土矿物呈显微鳞片状晶体,层状分布.有机质呈层纹状不均匀分布.黄铁矿呈星散状分布,结晶颗粒大小为细-粉-微-隐晶级,粒度 < 0.25 mm,颗粒形态为半自形-他形,粒状晶体.
      黑色炭质粉砂岩、炭质粘土岩 岩石矿物成分由陆源碎屑、有机质和泥质等组分组成,其中陆源碎屑成分以石英矿物屑为主. 粉砂质、泥质结构,层纹状、层状构造. 陆源碎屑呈不均匀层纹状分布,表现良好的磨圆度和分选性,呈次圆状、圆状.
      下载: 导出CSV
    • Alibo, D.S., Nozaki, Y., 1999. Rare Earth Elements in Seawater: Particle Association, Shale-Normalization, and Ce Oxidation. Geochimica et Cosmochimica Acta, 63(3-4): 363-372. https://doi.org/10.1016/s0016-7037(98)00279-8
      Allègre, C.J., Minster, J.F., 1978. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 38(1): 1-25. https://doi.org/10.1016/0012-821x(78)90123-1
      Anderson, R.F., Fleisher, M.Q., LeHuray, A.P., 1989. Concentration, Oxidation State, and Particulate Flux of Uranium in the Black Sea. Geochimica et Cosmochimica Acta, 53(9): 2215-2224. https://doi.org/10.1016/0016-7037(89)90345-1
      Bau, M., Dulski, P., 1996. Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1-2): 37-55. https://doi.org/10.1016/0301-9268(95)00087-9
      Bolhar, R., Van Kranendonk, M. J., 2007. A Non-Marine Depositional Setting for the Northern Fortescue Group, Pilbara Craton, Inferred from Trace Element Geochemistry of Stromatolitic Carbonates. Precambrian Research, 155(3-4): 229-250. https://doi.org/10.1016/j.precamres.2007.02.002
      Boström, K., 1983. Genesis of Ferromanganese Deposits-Diagnostic Criteria for Recent and Old Deposits. Hydrothermal Processes at Seafloor Spreading Centers, 12:473-489. https://doi.org/10.1007/978-1-4899-0402-7_20
      Bradley, D.C., 2008. Passive Margins through Earth History. Earth-Science Reviews, 91(1-4): 1-26. https://doi.org/10.1016/j.earscirev.2008.08.001
      Bradley, D.C., 2011. Secular Trends in the Geologic Record and the Supercontinent Cycle. Earth-Science Reviews, 108(1-2): 16-33. https://doi.org/10.1016/j.earscirev.2011.05.003
      Chang, H.J., Chu, X.L., Feng, L.J., et al., 2009.Redox Sensitive Trace Elements as Paleoenvironments Proxies. Geological Review, 55(1):91-99 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200901011
      Chen, D.R., Wu, B., Yang, E.L., et al., 2014. Geological Characteristics of Polymetallic Layer in Zhuxi V Deposit, Cengu County, Guizhou Province. Western Prospecting Engineering, 26(8):184-187 (in Chinese).
      Chen, D. Z., Qing, H. R., Yan, X., et al., 2006. Hydrothermal Venting and Basin Evolution (Devonian, South China): Constraints from Rare Earth Element Geochemistry of Chert. Sedimentary Geology, 183(3-4): 203-216. https://doi.org/10.1016/j.sedgeo.2005.09.020
      Chen, D. Z., Wang, J. G., Qing, H. R., et al., 2009a. Hydrothermal Venting Activities in the Early Cambrian, South China: Petrological, Geochronological and Stable Isotopic Constraints. Chemical Geology, 258(3-4): 168-181. https://doi.org/10.1016/j.chemgeo.2008.10.016
      Chen, Y.Q., Jiang, S.Y., Ling, H.F., et al., 2009b. Pb-Pb Dating of Black Shales from the Lower Cambrian and Neoproterozoic Strata, South China. Geochemistry, 69(2):183-189. https://doi.org/10.1016/j.chemer.2008.12.005
      Chen, D. Z., Zhou, X. Q., Fu, Y., et al., 2015. New U-Pb Zircon Ages of the Ediacaran-Cambrian Boundary Strata in South China. Terra Nova, 27(1): 62-68. https://doi.org/10.1111/ter.12134
      Chen, H.S., Yang, E.L., Yang, X. D., et al., 2013.Vanadium Deposits in the Lower Cambrian Black Rock Series in Eastern Guizhou Province. Contributions to Geology and Mineral Resources Research, 28(2):230-235 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzzklc201302010
      Chen, L., Zhong, H., Hu, R.Z., et al., 2006.Early Cambrian Oceanic Anoxic Event in Northern Guizhou: Biomarkers and Organic Carbon Isotope. Acta Petrologica Sinica, 22(9):2413-2423 (in Chinese with English abstract).
      Chen, Y.X., Cui, Y.L., Liao, J.F., et al., 2013.Research and Ore Prospecting Problem of the Lower Cambrian Black Series in Yunnan Province, China. Acta Mineralogica Sinica, 33(4):637-642 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201304032
      Dai, C.G., Wang, M., Chen, J.S., et al., 2013.Tectonic Movement Characteristic and Its Geological Significance of Guizhou.Guizhou Geology, 30(2):119-124 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzdz201302008
      Fang, W.X., Hu, R.Z., Su, W.C., et al., 2002.Geochemical Characteristics of Dahebian-Gongxi Superlarge Barite Deposits and Analysis on Its Background of Tectonic Geology, China. Acta Petrologica Sinica, 18(2):247-256 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200202013
      Feng, Y.F., Chen, D.R., Wu, Z.C., et al., 2013. Exploration for Stratum-Controlled Mineralization Enrichment Rules of Zhuxi V Orebody in Cengu County. The Earth, (5):100-104 (in Chinese).
      Fu, Y., Dong, L., Li, C., et al., 2016. New Re-Os Isotopic Constrains on the Formation of the Metalliferous Deposits of the Lower Cambrian Niutitang Formation. Journal of Earth Science, 27(2): 271-281. https://doi.org/10.1007/s12583-016-0606-7
      Gao, P., He, Z. L., Li, S. J., et al., 2018. Volcanic and Hydrothermal Activities Recorded in Phosphate Nodules from the Lower Cambrian Niutitang Formation Black Shales in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 505: 381-397. https://doi.org/10.1016/j.palaeo.2018.06.019
      German, C.R., Elderfield, H., 1990. Application of the Ce Anomaly as a Paleoredox Indicator: The Ground Rules. Paleoceanography, 5(5): 823-833. https://doi.org/10.1029/pa005i005p00823
      German, C.R., Holliday, B.P., Elderfield, H., 1991. Redox Cycling of Rare Earth Elements in the Suboxic Zone of the Black Sea. Geochimica et Cosmochimica Acta, 55(12): 3553-3558. https://doi.org/10.1016/0016-7037(91)90055-a
      Han, T., Zhu, X. Q., Li, K., et al., 2015. Metal Sources for the Polymetallic Ni-Mo-PGE Mineralization in the Black Shales of the Lower Cambrian Niutitang Formation, South China. Ore Geology Reviews, 67: 158-169. https://doi.org/10.1016/j.oregeorev.2014.11.020
      Haskin, L.A., 1984. Chapter 4: Petrogenetic Modelling—Use of Rare Earth Elements. Developments in Geochemistry, 2:115-152. https://doi.org/10.1016/B978-0-444-42148-7.50009-5
      Jewell, P.W., Stallard, R.F., 1991. Geochemistry and Paleoceanographic Setting of Central Nevada Bedded Barites. The Journal of Geology, 99(2): 151-170. https://doi.org/10.1086/629482
      Jenkins, R.J.F., Cooper, J. A., Compston, W., 2002. Age and Biostratigraphy of Early Cambrian Tuffs from SE Australia and Southern China. Journal of the Geological Society, 159(6): 645-658. https://doi.org/10.1144/0016-764901-127
      Jiang, S.Y., Pi, D.H., Heubeck, C., et al., 2009. Early Cambrian Ocean Anoxia in South China. Nature, 459(7248): E5-E6. https://doi.org/10.1038/nature08048
      Jiang, Y.H., Li, S.R., 2005.A Study of the Fluid Environment of Silicalite of Transitional Precambrian-Cambrian Age in Hunan and Guizhou Provinces. Earth Science Frontiers, 12(4):622-629 (in Chinese with English abstract). doi: 10.1074-jbc.M111.287474/
      Jones, B., Manning, D.A.C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1-4): 111-129. https://doi.org/10.1016/0009-2541(94)90085-x
      Kamber, B.S., Webb, G.E., 2001. The Geochemistry of Late Archaean Microbial Carbonate: Implications for Ocean Chemistry and Continental Erosion History. Geochimica et Cosmochimica Acta, 65(15): 2509-2525. https://doi.org/10.1016/s0016-7037(01)00613-5
      Kimura, H., Watanabe, Y., 2001. Oceanic Anoxia at the Precambrian-Cambrian Boundary. Geology, 29(11): 995. https://doi.org/10.1130/0091-7613(2001)029 < 0995:oaatpc > 2.0.co; 2 doi: 10.1130/0091-7613(2001)029<0995:oaatpc>2.0.co;2
      Lan, Z. W., Li, X.H., Chu, X. L., et al., 2017. SIMS U-Pb Zircon Ages and Ni-Mo-PGE Geochemistry of the Lower Cambrian Niutitang Formation in South China: Constraints on Ni-Mo-PGE Mineralization and Stratigraphic Correlations. Journal of Asian Earth Sciences, 137: 141-162. https://doi.org/10.1016/j.jseaes.2016.12.046
      Li, S.S., Wei, G.F., Nie, J.T., et al., 2012.The Geological and Geochemical Characteristics of Shuigou Vanadium Deposit in Southern Qinling and Its Genesis.Geoscience, 26(2):243-253 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201202004
      Li, Z.X., Bogdanova, S.V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-Up History of Rodinia: A Synthesis. Precambrian Research, 160(1-2): 179-210. https://doi.org/10.1016/j.precamres.2007.04.021
      Li, Z.X., Li, X.H., Kinny, P.D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents: Evidence for a Mantle Superplume that Broke Up Rodinia. Precambrian Research, 122(1-4): 85-109. https://doi.org/10.1016/s0301-9268(02)00208-5
      Ling, H.F., Chen, X., Li, D., et al., 2013. Cerium Anomaly Variations in Ediacaran-Earliest Cambrian Carbonates from the Yangtze Gorges Area, South China: Implications for Oxygenation of Coeval Shallow Seawater. Precambrian Research, 225: 110-127. https://doi.org/10.1016/j.precamres.2011.10.011
      Lu, G.Z., 2013. Geological Characteristics and Clues for Prospecting of Zhuxi V Deposit in Cengong. Mineral Resources and Geology, 27(3):217-221 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcydz201303007
      Mao, J.W., Lehmann, B., Du, A.D., et al., 2002. Re-Os Dating of Polymetallic Ni-Mo-PGE-Au Mineralization in Lower Cambrian Black Shales of South China and Its Geologic Significance. Economic Geology, 97(5): 1051-1061. https://doi.org/10.2113/gsecongeo.97.5.1051
      Mao, Z.C., Du, Y.S., Zhang, M., et al., 2008.Devonian Sedimentary Environment and Sedimentary Organic Matter Characteristics of Central Guangxi Province. Science in China (Series D), 38(S2):80-86 (in Chinese).
      Marchig, V., Gundlach, H., Möller, P., et al., 1982. Some Geochemical Indicators for Discrimination between Diagenetic and Hydrothermal Metalliferous Sediments. Marine Geology, 50(3): 241-256. https://doi.org/10.1016/0025-3227(82)90141-4
      Meyer, E.E., Quicksall, A.N., Landis, J.D., et al., 2012. Trace and Rare Earth Elemental Investigation of a Sturtian Cap Carbonate, Pocatello, Idaho: Evidence for Ocean Redox Conditions before and during Carbonate Deposition. Precambrian Research, 192-195: 89-106. https://doi.org/10.1016/j.precamres.2011.09.015
      Morford, J.L., Emerson, S., 1999. The Geochemistry of Redox Sensitive Trace Metals in Sediments.Geochimica et Cosmochimica Acta, 63(11-12): 1735-1750. https://doi.org/10.1016/s0016-7037(99)00126-x
      Murray, R.W., 1994. Chemical Criteria to Identify the Depositional Environment of Chert: General Principles and Applications. Sedimentary Geology, 90(3-4): 213-232. https://doi.org/10.1016/0037-0738(94)90039-6
      Murray, R.W., Buchholtz Ten Brink, M. R., Gerlach, D. C., et al., 1991. Rare Earth, Major, and Trace Elements in Chert from the Franciscan Complex and Monterey Group, California: Assessing REE Sources to Fine-Grained Marine Sediments. Geochimica et Cosmochimica Acta, 55(7): 1875-1895. https://doi.org/10.1016/0016-7037(91)90030-9
      Nozaki, Y., Zhang, J., Amakawa, H., 1997. The Fractionation between Y and Ho in the Marine Environment. Earth and Planetary Science Letters, 148(1-2): 329-340. https://doi.org/10.1016/s0012-821x(97)00034-4
      Owen, A.W., Armstrong, H.A., Floyd, J.D., 1999. Rare Earth Element Geochemistry of Upper Ordovician Cherts from the Southern Uplands of Scotland. Journal of the Geological Society, 156(1): 191-204. https://doi.org/10.1144/gsjgs.156.1.0191
      Peng, J., Tian, J.C., Yi, H.S., et al., 2000.The Late Precambrian Hot Water Sedimentation of the Southeast Yangtze Plate Continental Margin. Acta Sedimentologica Sinica, 18(1):107-113 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200001018
      Sageman, B.B., Murphy, A.E., Werne, J.P., et al., 2003. A Tale of Shales: The Relative Roles of Production, Decomposition, and Dilution in the Accumulation of Organic-Rich Strata, Middle-Upper Devonian, Appalachian Basin. Chemical Geology, 195(1-4): 229-273. https://doi.org/10.1016/s0009-2541(02)00397-2
      Slack, J.F., Grenne, T., Bekker, A., et al., 2007. Suboxic Deep Seawater in the Late Paleoproterozoic: Evidence from Hematitic Chert and Iron Formation Related to Seafloor-Hydrothermal Sulfide Deposits, Central Arizona, USA. Earth and Planetary Science Letters, 255(1-2): 243-256. https://doi.org/10.1016/j.epsl.2006.12.018
      Tang, H.S., Xu, W.J., Xie, S.Y., et al., 2005. The Ore Type in Lower Cambrian Black Rock Series in China. Mineral Resources and Geology, 19(4):341-344 (in Chinese with English abstract).
      Tang, X., Zhang, J. C., Liu, Y., et al., 2018. Geochemistry of Organic Matter and Elements of Black Shale during Weathering in Northern Guizhou, Southwestern China: Their Mobilization and Inter-Connection. Geochemistry, 78(1): 140-151. https://doi.org/10.1016/j.chemer.2017.08.002
      Taylor, S.R., McLennan, S.M., 1986. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Cambridge.
      Tribovillard, N., Algeo, T.J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
      Wang, J.J., Zeng, P.S., Ma, J., et al., 2015.Black Rock Series and Associated Minerals: An Example of the Yangtze Platform. Geology and Exploration, 51(4):677-689 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201504008
      Wang, X. Q., Shi, X. Y., Jiang, G. Q., et al., 2012. New U-Pb Age from the Basal Niutitang Formation in South China: Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran-Cambrian Transition. Journal of Asian Earth Sciences, 48: 1-8. https://doi.org/10.1016/j.jseaes.2011.12.023
      Wang, Z.Z., Chen, D.Z., Wang, J.G., et al., 2007.Ree Geochemistry and Depositional Settings of the Devonian Cherts in Nanning Area, Guangxi. Chinese Journal of Geology (Scientia Geologica Sinica), 42(3):558-569 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200703011
      Wedepohl, K.H., 1971. Environmental Influences on the Chemical Composition of Shales and Clays.Physics and Chemistry of the Earth, 8:307-333. https://doi.org/10.1016/0079-1946(71)90020-6
      Wignall, P.B., Twitchett, R.J., 1996. Oceanic Anoxia and the End Permian Mass Extinction. Science, 272(5265): 1155-1158. https://doi.org/10.1126/science.272.5265.1155
      Wilde, P., Quinby-Hunt, M.S., Erdtmann, B.D., 1996. The Whole-Rock Cerium Anomaly: A Potential Indicator of Eustatic Sea-Level Changes in Shales of the Anoxic Facies. Sedimentary Geology, 101(1-2): 43-53. https://doi.org/10.1016/0037-0738(95)00020-8
      Xu, L. G., Lehmann, B., Mao, J. W., et al., 2011. Re-Os Age of Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China—A Reassessment. Economic Geology, 106(3):511-522. https://doi.org/10.2113/econgeo.106.3.511
      Xu, L. G., Lehmann, B., Mao, J. W., et al., 2012. Mo Isotope and Trace Element Patterns of Lower Cambrian Black Shales in South China: Multi-Proxy Constraints on the Paleoenvironment. Chemical Geology, 318-319: 45-59. https://doi.org/10.1016/j.chemgeo.2012.05.016
      Xu, S.Q., 1997.The Best Location of Middle-Upper Cambrian Demarcation Line from Cambrian Sequence Framework in the Western Hunan. Earth Science, 22(5): 511-514 (in Chinese with English abstract).
      Yang, J., 2009. Study on the Formation Environment and Geochemistry of Lower Cambrian Black Shale Series, Northern Guizhou Province, China (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract).
      Yang, J., Jin, S.R., He, T.Y., et al., 2013. Geological Features and Genetic Analysis of Nickel Molybdenum in New Tugou of Guizhou Zunyi. Journal of Southwest University of Science and Technology, 28(1):54-61 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xngxyxb201301011
      Yang, J., Yi, F. C., Hou, L. J., 2004.Genesis and Petrogeochemistry Characteristics of Lower Cambrian Black Shale Series in Northern Guizhou. Acta Mineralogica Sinica, 24(3):285-289 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb200403013
      Yang, X.L., Zhu, M.Y., Zhao, Y.L., et al., 2007. Trace Element Geochemical Characteristics from the Ediacaran Cambrian Transition Interval in Eastern Guizhou, South China. Acta Geologica Sinica, 81(10):1391-1397 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200710009
      Yang, X.L., Zhu, M.Y., Zhao, Y.L., et al., 2008.REE Geochemical Characteristics of the Ediacaran-Lower Cambrian Black Rock Series in Eastern Guizhou. Geological Review, 54(1):3-15 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000004406
      Yaroshevsky, A.A., 2006. Abundances of Chemical Elements in the Earth's Crust. Geochemistry International, 44(1): 48-55. https://doi.org/10.1134/s001670290601006x
      Ye, J., Fan, D.L., 2000.Characteristics and Mineralization of Ore Deposits Related to Black Shale Series. Bulletin of Mineralogy Petrology and Geochemistry, 19(2):95-102(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200002004
      Yin, L., Li, J., Tian, H., et al., 2018. Rhenium-Osmium and Molybdenum Isotope Systematics of Black Shales from the Lower Cambrian Niutitang Formation, SW China: Evidence of a Well Oxygenated Ocean at ca. 520 Ma. Chemical Geology, 499: 26-42. https://doi.org/10.1016/j.chemgeo.2018.08.016
      常华进, 储雪蕾, 冯连君, 等, 2009.氧化还原敏感微量元素对古海洋沉积环境的指示意义.地质论评, 55(1):91-99. doi: 10.3321/j.issn:0371-5736.2009.01.011
      陈德荣, 吴波, 杨恩林, 等, 2014.贵州岑巩注溪钒矿床多金属层地质特征.西部探矿工程, 26(8):184-187. doi: 10.3969/j.issn.1004-5716.2014.08.055
      陈恨水, 杨恩林, 杨秀德, 等, 2013.黔东下寒武统黑色岩系钒矿床.地质找矿论丛, 28(2):230-235. http://d.old.wanfangdata.com.cn/Periodical/dzzklc201302010
      陈兰, 钟宏, 胡瑞忠, 等, 2006.黔北早寒武世缺氧事件:生物标志化合物及有机碳同位素特征.岩石学报, 22(9):2413-2423. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200609018
      陈艳霞, 崔银亮, 廖剑锋, 等, 2013.云南下寒武统黑色岩系矿床研究现状及相关找矿问题探讨.矿物学报, 33(4):637-642. http://d.old.wanfangdata.com.cn/Periodical/kwxb201304032
      戴传固, 王敏, 陈建书, 等, 2013.贵州构造运动特征及其地质意义.贵州地质, 30(2):119-124. doi: 10.3969/j.issn.1000-5943.2013.02.008
      方维萱, 胡瑞忠, 苏文超, 等, 2002.大河边-新晃超大型重晶石矿床地球化学特征及形成的地质背景.岩石学报, 18(2):247-256. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200202013
      冯运富, 陈德荣, 吴志成, 等, 2013.岑巩县注溪矿区钒矿层(体)层控富集规律初探.地球, (5):100-104.
      江永宏, 李胜荣, 2005.湘、黔地区前寒武-寒武纪过渡时期硅质岩生成环境研究.地学前缘, 12(4):622-629. doi: 10.3321/j.issn:1005-2321.2005.04.035
      李赛赛, 魏刚锋, 聂江涛, 等, 2012.南秦岭水沟钒矿床地质地球化学特征及成因.现代地质, 26(2):243-253. doi: 10.3969/j.issn.1000-8527.2012.02.004
      陆国章, 2013.岑巩县注溪钒矿地质特征及找矿标志.矿产与地质, 27(3):217-221. doi: 10.3969/j.issn.1001-5663.2013.03.007
      毛治超, 杜远生, 张敏, 等, 2008.广西桂中地区泥盆系沉积环境及沉积有机质特征.中国科学(D辑), 38(S2):80-86. doi: 10.1097-SAP.0b013e31822e5c4a/
      彭军, 田景春, 伊海生, 等, 2000.扬子板块东南大陆边缘晚前寒武纪热水沉积作用.沉积学报, 18(1):107-113. doi: 10.3969/j.issn.1000-0550.2000.01.018
      唐红松, 徐文杰, 谢世业, 等, 2005.我国下寒武统黑色岩系的矿产类型.矿产与地质, 19(4):341-344. doi: 10.3969/j.issn.1001-5663.2005.04.003
      王聚杰, 曾普胜, 麻菁, 等, 2015.黑色岩系及相关矿产——以扬子地台为例.地质与勘探, 51(4):677-689. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201504008
      王卓卓, 陈代钊, 汪建国, 等, 2007.广西南宁地区泥盆纪硅质岩稀土元素地球化学特征及沉积背景.地质科学, 42(3):558-569. doi: 10.3321/j.issn:0563-5020.2007.03.011
      徐世球, 1997.湖南凤凰寒武纪Fischer点图及其意义.地球科学, 22(5):511-514. http://www.earth-science.net/article/id/554
      杨剑, 2009.黔北地区下寒武统黑色岩系形成环境与地球化学研究(博士学位论文).西安: 长安大学. http://cdmd.cnki.com.cn/Article/CDMD-11941-2009176704.htm
      杨捷, 金少荣, 何天元, 等, 2013.贵州遵义新土沟镍钼矿地质特征及成因浅析.西南科技大学学报, 28(1):54-61. doi: 10.3969/j.issn.1671-8755.2013.01.011
      杨剑, 易发成, 侯兰杰, 等, 2004.黔北黑色岩系的岩石地球化学特征和成因.矿物学报, 24(3):285-289. doi: 10.3321/j.issn:1000-4734.2004.03.013
      杨兴莲, 朱茂炎, 赵元龙, 等, 2007.黔东前寒武纪-寒武纪转换时期微量元素地球化学特征研究.地质学报, 81(10):1391-1397. doi: 10.3321/j.issn:0001-5717.2007.10.009
      杨兴莲, 朱茂炎, 赵元龙, 等, 2008.黔东震旦系-下寒武统黑色岩系稀土元素地球化学特征.地质论评, 54(1):3-15. doi: 10.3321/j.issn:0371-5736.2008.01.002
      叶杰, 范德廉, 2000.黑色岩系型矿床的形成作用及其在我国的产出特征.矿物岩石地球化学通报, 19(2):95-102. doi: 10.3969/j.issn.1007-2802.2000.02.004
    • dqkx-44-9-2978-Table1-3.docx
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  4704
    • HTML全文浏览量:  2365
    • PDF下载量:  69
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-02-16
    • 刊出日期:  2019-09-15

    目录

      /

      返回文章
      返回