• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    纳如松多矿集区电性结构特征及对成矿作用的约束

    盛跃 金胜 梁宏达 魏文博 叶高峰 卢占武

    盛跃, 金胜, 梁宏达, 魏文博, 叶高峰, 卢占武, 2019. 纳如松多矿集区电性结构特征及对成矿作用的约束. 地球科学, 44(6): 2106-2116. doi: 10.3799/dqkx.2019.030
    引用本文: 盛跃, 金胜, 梁宏达, 魏文博, 叶高峰, 卢占武, 2019. 纳如松多矿集区电性结构特征及对成矿作用的约束. 地球科学, 44(6): 2106-2116. doi: 10.3799/dqkx.2019.030
    Sheng Yue, Jin Sheng, Liang Hongda, Wei Wenbo, Ye Gaofeng, Lu Zhanwu, 2019. Electrical Structure of Narusongduo Ore Concentration District and Its Constraints on Mineralization. Earth Science, 44(6): 2106-2116. doi: 10.3799/dqkx.2019.030
    Citation: Sheng Yue, Jin Sheng, Liang Hongda, Wei Wenbo, Ye Gaofeng, Lu Zhanwu, 2019. Electrical Structure of Narusongduo Ore Concentration District and Its Constraints on Mineralization. Earth Science, 44(6): 2106-2116. doi: 10.3799/dqkx.2019.030

    纳如松多矿集区电性结构特征及对成矿作用的约束

    doi: 10.3799/dqkx.2019.030
    基金项目: 

    国家重点研发计划 2016YFC0600301

    国家自然基金项目 41704099

    中央高校基本科研业务费 181gpy15

    详细信息
      作者简介:

      盛跃(1989-), 男, 在读博士, 研究方向为深部地球物理

      通讯作者:

      金胜, 教授

    • 中图分类号: P319

    Electrical Structure of Narusongduo Ore Concentration District and Its Constraints on Mineralization

    • 摘要: 为了研究西藏纳如松多矿集区的电性结构特征和对成矿作用的约束,对覆盖矿集区的大地电磁测深数据进行全面的数据处理分析,得到了可靠的二维电性结构模型.研究结果表明,分别在深度为40~50 km,20~30 km和10 km处见高导体,推测这些高导体可能为部分熔融和水流体共同所致.由于纳如松多矿集区内矿床为岩浆-热液型,深部岩浆的上涌在成矿作用中起到关键作用,所以壳内高导体可能为与成矿有关岩浆房的电性痕迹,将这些高导体连起来可能代表着深部热液向上运移的古通道.电性结构主要体现了壳内高导体与区域成矿动力作用的关系,向上运移的富矿岩浆也可能通过局部的隐伏构造运移到Pb-Zn和Fe-Cu矿床的位置,再演化形成矿体.

       

    • 图  1  (a) 研究区点位图; (b)青藏高原及邻区地形图

      a图中包括主要大地构造和MT测点.黑色圆点表示宽频大地电磁测深点位, 红色圆点表示长周期大地电磁测深点位, 蓝色圆圈表示典型测点点位.b图中红色矩形为研究区.TH.特提斯-喜马拉雅地块; LS.拉萨地块; QT.羌塘地块; SPGZ.松潘-甘孜地块; QD.柴达木盆地; TB.塔里木盆地; IYS.印度-雅鲁藏布江缝合带; LMF.洛巴堆-米拉山断裂; BNS.班公湖-怒江缝合带; JRS.金沙江缝合带; AMS.阿尼玛卿缝合带.矿集区位置引自中国地质科学院地质研究所岩石圈中心——冈底斯成矿带深地震反射剖面探测

      Fig.  1.  (a) Topography map showing major tectonic structures and MT station locations in the survey area, (b) topography of the Tibetan Plateau and its adjacent areas

      图  2  宽频(点号NR-06、NR-17和NR-24)及长周期(点号NR-15)数据曲线

      Fig.  2.  The combination of broad-band (station NR-06, NR-17, NR-24) and long-period (NR-15) MT data

      图  3  Bahr二维偏离度拟断面

      Fig.  3.  Pseudosection of Bahr skewness

      图  4  阻抗张量分解图

      a.0.1~1.0 s, b.1~10 s, c.10~100 s, d.100~1 000 s; 玫瑰花图显示相应频段的走向分析结果

      Fig.  4.  Impedance tensor maps

      图  5  模型粗糙度、拟合误差随正则化因子变化的曲线

      Fig.  5.  L-curve of RMS values and roughness corresponding to different tau values

      图  6  二维TE模式和TM模式联合反演模型

      a.反演单点拟合差(RMS); b.二维反演电性模型, LMF.洛巴堆-米拉山断裂; NR1~NR3.地壳内高导体; 黑色虚线为上、中、下地壳分界面(源自Hou et al., 2015); c.基于电性结构的纳如松多矿集区成矿动力模型示意图

      Fig.  6.  2-D electrical structure model using TE+TM data

      图  7  30~50 km电导曲线

      Fig.  7.  The curve of the total longitudinal conductance at the depth of 30~50 km

      图  8  (a) 8~15 km电导曲线; (b)20~30 km电导曲线

      Fig.  8.  (a) is the curve of the conductance at the depth of 8-15 km; (b) is the curve of the conductance at the depth of 20-30 km

      图  9  印度-欧亚大陆主碰撞期间(65~50 Ma)南-中拉萨地块内矽卡岩型Fe(Fe-Cu)矿床和花岗岩有关的Pb-Zn矿床成矿示意

      Hou et al.(2015)修改

      Fig.  9.  Sketch topography of South-Central Lhasa terrane during the main-stage of India-Eurasia continental collision (65-50 Ma) and the mineralization of the skarn Fe (Fe-Cu) ore deposit and the granite-related Pb-Zn ore deposit

      图  10  矿集区地下浅层电性结构

      图a为2 km深度; 图b为5 km深度

      Fig.  10.  The electrical structure in the shallow area of the ore deposit district

    • Bahr, K., 1991. Geological Noise in Magnetotelluric Data:A Classification of Distortion Types. Physics of the Earth and Planetary Interiors, 66(1-2):24-38. https://doi.org/10.1016/0031-9201(91)90101-m
      Chave, A.D., Jones, A.G., MacKie, R., et al., 2012.The Mag-netotelluric Method:Theory and Practice. Cambridge University Press, Cambridge.
      Chu, M. F., Chung, S. L., O'Reilly, S. Y., et al., 2011. India's Hidden Inputs to Tibetan Orogeny Revealed by Hf Isotopes of Transhimalayan Zircons and Host Rocks.Earth and Planetary Science Letters, 307(3-4):479-486. https://doi.org/10.1016/j.epsl.2011.05.020
      Groom, R.W., Bailey, R.C., 1989.Decomposition of Magneto-telluric Impedance Tensors in the Presence of Local Three-Dimensional Galvanic Distortion.Journal of Geo-physical Research, 94(B2):1913-1925. doi: 10.1029/JB094iB02p01913
      Guo, X.Y., Li, W.H., Gao, R., et al., 2017.Nonuniform Sub-duction of the Indian Crust beneath the Himalayas.Scien-tific Reports, 7(1):12497. https://doi.org/10.1038/s41598-017-12908-0
      Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015.Lithospheric Ar-chitecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      Jin, S., 2009. The Characteristic of Crust-Mantle Electrical Structure and Dynamics within Tibetan Plateau (Disser-tation).China University of Geosciences, Beijing, 67-80(in Chinese with English abstract).
      Ledo, J., 2005.2-D versus 3-D Magnetotelluric Data Interpre-tation. Surveys in Geophysics, 26(5):511-543. https://doi.org/10.1007/s10712-005-1757-8
      Li, Y.X., Li, G.M., Xie, Y.L., et al., 2018.Properties and Evo-lution Path of Ore-Forming Fluid in Qiagong Polymetal-lic Deposit of Middle Gangdese in Tibet, China.Earth Sci-ence, 43(8):2684-2700(in Chinese with English abstract).
      Liang, H. D., Jin, S., Wei, W. B., et al., 2018. Lithospheric Electrical Structure of the Middle Lhasa Terrane in the South Tibetan Plateau. Tectonophysics, 731-732:95-103. https://doi.org/10.1016/j.tecto.2018.01.020
      Mo, X. X., Dong, G. C., Zhao, Z. D., et al., 2005. Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution. Geological Journal of China Universities, 11(3):281-290(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503001
      Mo, X.X., Niu, Y.L., Dong, G.C., et al., 2008.Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volca-nic Succession in Southern Tibet.Chemical Geology, 250(1-4):49-67. https://doi.org/10.1016/j.chem-geo.2008.02.003
      Pan, G.T., Ding, J., Yao, D.S., et al., 2004.Guidebook of 1:1 500 000 Geologic Map of the Qinghai-Xizang (Tibet) Plateau and Adjacent Areas. Cartographic Publishing House, Chengdu.
      Rodi, W., MacKie, R.L., 2001.Nonlinear Conjugate Gradients Algorithm for 2-D Magnetotelluric Inversion. Geophys-ics, 66(1):174-187. doi: 10.1190/1.1444893
      Sun, J., 2013. The Genetic Study of Narusongduo Lead Zinc Ore Deposit in Middle Gangdese Belt, Tibet (Disserta-tion). China University of Geosciences, Beijing, 74-78(in Chinese with English abstract).
      Swift, C.M., 1967.A Magnetotelluric Investigation of an Elec-trical Conductivity Anomaly in the Southwestern United States. Massachusetts Institute of Technology, Cam-bridge.
      Tang, J.X., Duo, J., Liu, H.F., et al., 2012.Minerogenetic Se-ries of Ore Deposits in the East Part of the Gangdise Metallogenic Belt.Acta Geoscientica Sinica, 33(4), 393-410(in Chinese with English abstract).
      Tang, J.X., Wang, L.Q., Zheng, W.B., et al., 2014.Ore Depos-its Metallogenic Regularity and Prospecting in the East-ern Section of the Gangdese Metallogenic Belt.Acta Geo-logica Sinica, 88(12):2545-2555(in Chinese with Eng-lish abstract).
      Tang, Z.L., Qian, Z.Z., Jiang, C.Y., et al., 2011.Trends of Re-search in Exploration of Magmatic Sulfide Deposits and Small Intrusions Metallogenic System. Journal of Earth Sciences and Environment, 33(1):1-9(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX201101003.htm
      Unsworth, M. J., Jones, A. G., Wei, W., et al., 2005. Crustal Rheology of the Himalaya and Southern Tibet Inferred from Magnetotelluric Data. Nature, 438(7064):78-81. https://doi.org/10.1038/nature04154
      Wang, G., Wei, W. B., Jin, S., et al., 2017. A Study on the Electrical Structure of Eastern Gangdese Metallogenic Belt. Chinese Journal of Geophysics, 60(8):2993-3003(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201708008.htm
      Wei, W., Unsworth, M., Jones, A., et al., 2001. Detection of Widespread Fluids in the Tibetan Crust by Magnetotellu-ric Studies. Science, 292(5517):716-719. https://doi.org/10.1126/science.1010580
      Wei, W. B., Jin, S., Ye, G. F., et al., 2009. The Conductivity Structure and Rheology of the Lithosphere in the South-ern Tibet:The Result of the Study of Ultra-Wide Band Magnetotelluric Sounding.Science in China(Series D), 39(11):1591-1606(in Chinese).
      Wessel, P., Smith, W.H.F., 1998.New, Improved Version of Generic Mapping Tools Released. Eos, Transactions American Geophysical Union, 79(47):579. doi: 10.1029/98EO00426
      Xie, C. L., Jin, S., Wei, W. B., et al., 2016. Crustal Electrical Structures and Deep Processes of the Eastern Lhasa Ter-rane in the South Tibetan Plateau as Revealed by Mag-netotelluric Data.Tectonophysics, 675:168-180. https://doi.org/10.1016/j.tecto.2016.03.017
      Xu, Q., Zhao, J.M., Yuan, X.H., et al., 2015.Mapping Crustal Structure beneath Southern Tibet:Seismic Evidence for Continental Crustal Underthrusting. Gondwana Re-search, 27(4):1487-1493. https://doi.org/10.1016/j.gr.2014.01.006
      Zhang, L.T., 2017.A Review of Recent Developments in the Study of Regional Lithospheric Electrical Structure of the Asian Continent.Surveys in Geophysics, 38(5):1043-1096. https://doi.org/10.1007/s10712-017-9424-4
      Zhang, L.T., Jin, S., Wei, W.B., et al., 2012.Electrical Struc-ture of Crust and Upper Mantle beneath the Eastern Mar-gin of the Tibetan Plateau and the Sichuan Basin.Chinese Journal of Geophysics, 55(12):4126-4137(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201212026.htm
      Zheng, Y.Y., Ci, Q., Wu, S., et al., 2017.The Discovery and Significance of Rongga Porphyry Mo Deposit in the Ban-gong-Nujiang Metallogenic Belt, Tibet.Earth Science, 42(9):1441-1453(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.109
      Zheng, Y.Y., Sun, X., Zheng, H.T., et al., 2012.Magma Evo-lution of Small Intrusion and Mineralization in Gang-dese, Tibet. Northwestern Geology, 45(4):165-174(in Chinese with English abstract).
      Zhu, D.C., Mo, X.X., Niu, Y.L., et al., 2009.Geochemical In-vestigation of Early Cretaceous Igneous Rocks along an East-West Traverse throughout the Central Lhasa Ter-rane, Tibet. Chemical Geology, 268(3-4):298-312. https://doi.org/10.1016/j.chemgeo.2009.09.008
      Zhu, D. C., Mo, X. X., Zhao, Z. D., et al., 2010. Presence of Permian Extension-and Arc-Type Magmatism in South-ern Tibet:Paleogeographic Implications.Geological Soci-ety of America Bulletin, 122(7-8):979-993. doi: 10.1130/B30062.1
      Zhu, D. C., Zhao, Z. D., Niu, Y., et al., 2011. The Lhasa Ter-rane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth & Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2012. Cambrian Bi-modal Volcanism in the Lhasa Terrane, Southern Tibet:Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin. Chemical Geology, 328:290-308. https://doi.org/10.1016/j.chemgeo.2011.12.024
      金胜, 2009.青藏高原的壳幔电性结构特征及其动力学意义(博士学位论文).北京: 中国地质大学, 67-80. http://cdmd.cnki.com.cn/Article/CDMD-11415-2009075365.htm
      李应栩, 李光明, 谢玉玲, 等, 2018.西藏冈底斯中段恰功多金属矿床成矿流体性质与演化.地球科学, 43(8):2684-2700. http://www.earth-science.net/WebPage/Article.aspx?id=3905
      莫宣学, 董国臣, 赵志丹, 等, 2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 11(3):281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001
      孙骥, 2013.冈底斯中段纳如松多铅锌矿床成因研究(硕士学位论文).北京: 中国地质大学, 74-78. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014164884.htm
      唐菊兴, 多吉, 刘鸿飞, 等, 2012.冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究.地球学报, 33(4):393-410. doi: 10.3975/cagsb.2012.04.02
      唐菊兴, 王立强, 郑文宝, 等, 2014.冈底斯成矿带东段矿床成矿规律及找矿预测.地质学报, 88(12):2545-2555. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201412027
      汤中立, 钱壮志, 姜常义, 等, 2011.岩浆硫化物矿床勘查研究的趋势与小岩体成矿系统.地球科学与环境学报, 33(1):1-9. doi: 10.3969/j.issn.1672-6561.2011.01.001
      王刚, 魏文博, 金胜, 等, 2017.冈底斯成矿带东段的电性结构特征研究.地球物理学报, 60(8):2993-3003. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201610003017.htm
      魏文博, 金胜, 叶高峰, 等, 2009.藏南岩石圈导电性结构与流变性——超宽频带大地电磁测深研究结果.中国科学(D辑), 39(11):1591-1606. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200911011.htm
      张乐天, 金胜, 魏文博, 等, 2012.青藏高原东缘及四川盆地的壳幔导电性结构研究.地球物理学报, 55(12):4126-4137. doi: 10.6038/j.issn.0001-5733.2012.12.025
      郑有业, 次琼, 吴松, 等, 2017西藏班公湖-怒江成矿带荣嘎斑岩型钼矿床的发现及意义.地球科学, 42(9):1441-1453. https://doi.org/10.3799/dqkx.2017.109
      郑有业, 孙祥, 郑海涛, 等, 2012.西藏冈底斯小斑岩体演化与成矿.西北地质, 45(4):165-174. doi: 10.3969/j.issn.1009-6248.2012.04.015
    • 加载中
    图(10)
    计量
    • 文章访问数:  4251
    • HTML全文浏览量:  1822
    • PDF下载量:  44
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-08-14
    • 刊出日期:  2019-06-15

    目录

      /

      返回文章
      返回