• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    喜马拉雅造山带两种不同类型榴辉岩与印度大陆差异性俯冲

    张泽明 丁慧霞 董昕 田作林

    张泽明, 丁慧霞, 董昕, 田作林, 2019. 喜马拉雅造山带两种不同类型榴辉岩与印度大陆差异性俯冲. 地球科学, 44(5): 1602-1619. doi: 10.3799/dqkx.2019.040
    引用本文: 张泽明, 丁慧霞, 董昕, 田作林, 2019. 喜马拉雅造山带两种不同类型榴辉岩与印度大陆差异性俯冲. 地球科学, 44(5): 1602-1619. doi: 10.3799/dqkx.2019.040
    Zhang Zeming, Ding Huixia, Dong Xin, Tian Zuolin, 2019. Two Contrasting Eclogite Types in the Himalayan Orogen and Differential Subduction of Indian Continent. Earth Science, 44(5): 1602-1619. doi: 10.3799/dqkx.2019.040
    Citation: Zhang Zeming, Ding Huixia, Dong Xin, Tian Zuolin, 2019. Two Contrasting Eclogite Types in the Himalayan Orogen and Differential Subduction of Indian Continent. Earth Science, 44(5): 1602-1619. doi: 10.3799/dqkx.2019.040

    喜马拉雅造山带两种不同类型榴辉岩与印度大陆差异性俯冲

    doi: 10.3799/dqkx.2019.040
    基金项目: 

    国家自然科学基金项目 41872064

    国家自然科学基金项目 91855210

    国家重点科技研发项目 2016YFC0600310

    详细信息
      作者简介:

      张泽明(1961-), 男, 研究员, 博士, 主要从事造山带变质作用与构造演化研究

    • 中图分类号: P588

    Two Contrasting Eclogite Types in the Himalayan Orogen and Differential Subduction of Indian Continent

    • 摘要: 印度与亚洲大陆新生代碰撞-俯冲形成的喜马拉雅造山带核部由高压和超高压变质岩组成.超高压榴辉岩分布在喜马拉雅造山带西段,由石榴石、绿辉石、柯石英、多硅白云母、帘石、蓝晶石和金红石组成.超高压榴辉岩的峰期变质条件为2.6~2.8 GPa和600~620℃,其经历了角闪岩相退变质作用和低程度熔融.超高压榴辉岩的进变质、峰期和退变质年龄分别为~50 Ma、45~47 Ma和35~40 Ma,指示一个快速俯冲与快速折返过程.高压榴辉岩产出在喜马拉雅造山带中-东段,由石榴石、绿辉石、多硅白云母、石英和金红石组成.高压榴辉岩的峰期变质条件为> 2.1 GPa和> 750℃,叠加了高温麻粒岩相退变质作用与强烈部分熔融.高压榴辉岩的峰期和退变质年龄可能分别是~38 Ma和14~17 Ma,很可能经历了一个缓慢俯冲与缓慢折返过程.喜马拉雅造山带两种不同类型榴辉岩的存在表明,印度与亚洲大陆约在51~53 Ma碰撞后,印度大陆地壳的西北缘陡俯冲到了地幔深度,导致表壳岩石经历了超高压变质作用,而印度大陆地壳的东北缘平缓俯冲到亚洲大陆之下,导致表壳岩石经历了高压变质作用.

       

    • 图  1  高压和超高榴辉岩形成条件与深度

      Gilotti(2013)修改

      Fig.  1.  Metamorphic conditions and related depths of high- and ultrahigh-pressure eclogites

      图  2  喜马拉雅造山带与高压和超高压变质岩分布

      Ding et al.(2016a)张泽明等(2017, 2018)修改.MFT.主前缘逆冲断裂;MBT.主边界逆冲断裂;MCT.主中央逆冲断裂;STD.藏南拆离系.图中标注了较深入研究的中压、高压和超高压变质岩的地点与变质年龄,资料来源:Ama Drime (Kellett et al., 2014), Annapurna (Kohn and Corrie, 2011), Everest (Cottle et al., 2009), Gianbul (Horton et al., 2014), Jomolhari (Regis et al., 2014), Kaghan (Kaneko et al., 2003), Kali Gandaki (Iaccarino et al., 2015), Mabja dome (Lee and Whitehouse, 2007), Namche Barwa Syntaxis (Zhang et al., 2015), Nyalam (Wang et al., 2015), Sikkim (Rubatto et al., 2012), Tso Morari (Donaldson et al., 2013), Yadong (Zhang et al., 2017)和Yardoi dome (Ding et al., 2016b).变质作用类型:MP.中压;HP.高压;UHP.超高压

      Fig.  2.  Geological map of the Himalayan orogen, showing distributions of representative medium-, high- and ultrahigh-pressure metamorphic rocks

      图  3  喜马拉雅造山带西段Kaghan超高压榴辉岩显微照片

      Rehman et al.(2007, 2013).a.超高压榴辉岩由石榴石、绿辉石和绿帘石组成,部分绿辉石边缘被角闪石,或由单斜辉石+角闪石+石英组成的合晶替代;b.超高压榴辉岩由石榴石、绿辉石、绿帘石、金红石、钛铁矿和柯石英组成.柯石英呈包裹体产于绿辉石中,发育放射状裂纹.部分石榴石和绿辉石被单斜辉石+角闪石+石英合晶替代;c.超高压榴辉岩,由石榴石、绿辉石和榍石组成,部分绿辉石被单斜辉石+角闪石+石英合晶冠状体替代;d.超高压榴辉岩绿辉石中的柯石英包体以及沿包体向外发育的放射状裂纹.注意绿辉石中含有出溶的石英棒或页片.矿物代号:Amp.角闪石;Coe.柯石英;Ep.绿帘石;Grt.石榴石;Ilm.钛铁矿;Omp.绿辉石;Qtz.石英;Rt.金红石;Sym.后成合晶;Tt.榍石;Zo.黝帘石

      Fig.  3.  Photomicrographs of ultrahigh-pressure eclogites from the Kaghan Valley, the western Himalaya

      图  4  喜马拉雅造山带高压和超高压榴辉岩变质作用P-T-t轨迹

      图中的数字为年龄(Ma),其中Groppo et al.(2007)P-T轨迹上的38 Ma峰压力年龄和15 Ma退变质年龄分别为Kellett et al.(2014)获得的石榴石Lu-Hf等时线年龄和锆石U-Pb年龄.变质相:AM.角闪岩相;Amp-Ec.角闪石榴辉岩相;BS.蓝片岩相;Dry-Ec.干榴辉岩相;EA.绿帘角闪岩相;Ep-Ec.绿帘石榴辉岩相;G.麻粒岩相;GS.绿片岩相;HG.高压麻粒岩相;Lw-Ec.硬柱石榴辉岩相;WGS.湿的花岗岩固相线.Coe.柯石英;Qtz.石英

      Fig.  4.  Metamorphic P-T-t paths of the high- and ultrahigh-pressure eclogites in the Himalayan orogen

      图  5  喜马拉雅造山带西段Tso Morari地块超高压榴辉岩显微照片

      Jonnalagadda et al.(2017).a.超高压榴辉岩由石榴石、绿辉石、多硅白云母和石英组成.注意,石榴石核部含石英和多硅白云母包体,而石榴石边缘含柯石英包体.部分绿辉石边缘被由极细的角闪石+斜长石合晶组合的冠状体替代;b.超高压榴辉岩石榴石变斑晶中的角闪石包体定向分布;c.超高压榴辉岩由石榴石、绿辉石、多硅白云母、绿帘石和方解石组成;d.超高压榴辉岩中的绿辉石含有近平行分布的出溶页片.矿物代号:Amp.角闪石;Cc.方解石;Coe.柯石英;Grt.石榴石;Omp.绿辉石;Phe.多硅白云母;Qtz.石英

      Fig.  5.  Photomicrographs of ultrahigh-pressure eclogites from the Tso Morari massif of the western Himalaya

      图  6  喜马拉雅造山带中东段Ama Drime麻粒岩化高压榴辉岩显微照片

      Kellett et al.(2014).a.麻粒岩化榴辉岩由石榴石、单斜辉石、角闪石、黑云母、斜长石和石英组成.绿辉石全部被由细粒斜长石+单斜辉石组成的合晶替代;b.榴辉岩石榴石核部含细小的矿物包体,其边缘被由斜长石+角闪石+斜方辉石+黑云母组成的合晶冠状体替代;c.榴辉岩中的绿辉石被由斜长石+角闪石+单斜辉石+斜方辉石组成的合晶替代.矿物代号:Amp.角闪石;Bt.黑云母;Grt.石榴石;Pl.斜长石;Sym.后成合晶

      Fig.  6.  Photomicrographs of granulitized high-pressure eclogites from the Ama Drime massif of the eastern Himalaya

      图  7  喜马拉雅造山带中东段Thongmön高压榴辉岩显微照片

      Li et al.(2018).a.高压榴辉岩由石榴石和包含的单斜辉石(绿辉石)、角闪石和石英组成,石榴石被由单斜辉石、斜长石和斜方辉石,或角闪石和斜长石组成的合晶冠状体替代;b.高压榴辉岩的单斜辉石(绿辉石)发育由单斜辉石和斜长石组成的冠状体,或被角闪石部分替代;c.高压榴辉岩中残余的单斜辉石(绿辉石)被单斜辉石和斜长石合晶部分替代;d.高压榴辉岩中的多硅白云母被黑云母+斜长石合晶替代,单斜辉石+斜长石替代绿辉石,角闪石+斜长石合晶替代石榴石.矿物代号:Amp.角闪石;Bt.黑云母;Cpx.单斜辉石;Grt.石榴石;Ilm.钛铁矿;Omp.绿辉石;Opx.斜方辉石;Pl.斜长石;Qtz.石英

      Fig.  7.  Photomicrographs of granulitized high-pressure eclogites from the Thongmön of the eastern Himalaya

      图  8  喜马拉雅造山带中始新世(~47 Ma)构造模式

      a.在喜马拉雅造山带中东段,印度岩石圈平缓俯冲到亚洲大陆地壳之下,导致地壳加厚和高压榴辉岩相变质作用;b.在喜马拉雅造山带中东段,印度地壳平缓俯冲到亚洲大陆地壳之下,导致地壳加厚和高压榴辉岩相变质作用,而印度岩石圈地幔与地壳分离,并发生陡俯冲;c.在喜马拉雅造山带西段,印度岩石圈陡俯冲到地幔之中,导致地壳岩石发生超高压榴辉岩相变质作用

      Fig.  8.  Middle Eocene (~47 Ma) tectonic model of the Himalayan orogen

    • Aitchison, J.C., Ali, J.R., Davis, A.M., 2007.When and Where did India and Asia Collide?.Journal of Geophysical Research, 112(B5):423. https://doi.org/10.1029/2006jb004706
      Ambrose, T.K., Larson, K.P., Guilmette, C., et al., 2015.Lateral Extrusion, Underplating, and Out-of-Sequence Thrusting within the Himalayan Metamorphic Core, Kanchenjunga, Nepal.Lithosphere, 7(4):441-464. https://doi.org/10.1130/l437.1
      Bouilhol, P., Jagoutz, O., Hanchar, J.M., et al., 2013.Dating the India-Eurasia Collision through Arc Magmatic Records.Earth and Planetary Science Letters, 366:163-175. https://doi.org/10.1016/j.epsl.2013.01.023
      Burchfiel, B.C., Chen, Z.L., Hodges, K.V., et al., 1992.The South Tibetan Detachment System, Himalayan Orogen:Extension Contemporaneous with and Parallel to Shortening in a Collisional Mountain Belt.Geological Society of America Special Papers, 269:1-41. doi: 10.1130/SPE269
      Burg, J.P., Guiraud, M., Chen, G.M., et al., 1984.Himalayan Metamorphism and Deformations in the North Himalayan Belt (Southern Tibet, China).Earth and Planetary Science Letters, 69(2):391-400.https://doi.org/10.1016/0012-821x (84)90197-3 doi: 10.1016/0012-821x(84)90197-3
      Chopin, C., 1984.Coesite and Pure Pyrope in High-Grade Blueschists of the Western Alps:A First Record and Some Consequences.Contributions to Mineralogy and Petrology, 86(2):107-118. https://doi.org/10.1007/bf00381838
      Chopin, C., 2003.Ultrahigh-Pressure Metamorphism:Tracing Continental Crust into the Mantle.Earth and Planetary Science Letters, 212(1-2):1-14.https://doi.org/10.1016/s0012-821x (03)00261-9 doi: 10.1016/s0012-821x(03)00261-9
      Chu, M.F., Chung, S.L., O'Reilly, S.Y., et al., 2011.India's Hidden Inputs to Tibetan Orogeny Revealed by Hf Isotopes of Transhimalayan Zircons and Host Rocks.Earth and Planetary Science Letters, 307(3-4):479-486. https://doi.org/10.1016/j.epsl.2011.05.020
      Corrie, S.L., Kohn, M.J., Vervoort, J.D., 2010.Young Eclogite from the Greater Himalayan Sequence, Arun Valley, Eastern Nepal:P-T-t Path and Tectonic Implications.Earth and Planetary Science Letters, 289(3-4):406-416. https://doi.org/10.1016/j.epsl.2009.11.029
      Cottle, J.M., Jessup, M.J., Newell, D.L., et al., 2009.Geochronology of Granulitized Eclogite from the Ama Drime Massif:Implications for the Tectonic Evolution of the South Tibetan Himalaya.Tectonics, 28(1):TC1002. https://doi.org/10.1029/2008tc002256
      Dasgupta, S., Chakraborty, S., Neogi, S., 2009.Petrology of an Inverted Barrovian Sequence of Metapelites in Sikkim Himalaya, India:Constraints on the Tectonics of Inversion.American Journal of Science, 309(1):43-84. https://doi.org/10.2475/01.2009.02
      Dasgupta, S., Ganguly, J., Neogi, S., 2004.Inverted Metamorphic Sequence in the Sikkim Himalayas:Crystallization History, P-T Gradient and Implications.Journal of Metamorphic Geology, 22(5):395-412. https://doi.org/10.1111/j.1525-1314.2004.00522.x
      DeCelles, P.G., Kapp, P., Gehrels, G.E., et al., 2014.Paleocene-Eocene Foreland Basin Evolution in the Himalaya of Southern Tibet and Nepal:Implications for the Age of Initial India-Asia Collision.Tectonics, 33(5):824-849. https://doi.org/10.1002/2014tc003522
      de Sigoyer, J., Chavagnac, V., Blichert-Toft, J., et al., 2000.Dating the Indian Continental Subduction and Collisional Thickening in the Northwest Himalaya:Multichronology of the Tso Morari Eclogites.Geology, 28(6):487-490.https://doi.org/10.1130/0091-7613(2000)028<0487:dticsa>2.3.co;2 doi: 10.1130/0091-7613(2000)028<0487:dticsa>2.3.co;2
      de Sigoyer, J., Guillot, S., Dick, P., 2004.Exhumation of the Ultrahigh-Pressure Tso Morari Unit in Eastern Ladakh (NW Himalaya):A Case Study.Tectonics, 23(3):TC3003. https://doi.org/10.1029/2002tc001492
      de Sigoyer, J.D., Guillot, S., Lardeaux, J.M., et al., 1997.Glaucophane-Bearing Eclogites in the Tso Morari Dome (Eastern Ladakh, NW Himalaya).European Journal of Mineralogy, 9(5):1073-1084. https://doi.org/10.1127/ejm/9/5/1073
      Ding, H.X., Zhang, Z.M., Dong, X., et al., 2016a.Early Eocene (ca.50 Ma) Collision of the Indian and Asian Continents:Constraints from the North Himalayan Metamorphic Rocks, Southeastern Tibet.Earth and Planetary Science Letters, 435:64-73. https://doi.org/10.1016/j.epsl.2015.12.006
      Ding, L., Qasim, M., Jadoon, I.A.K., et al., 2016b.The India-Asia Collision in North Pakistan:Insight from the U-Pb Detrital Zircon Provenance of Cenozoic Foreland Basin.Earth and Planetary Science Letters, 455:49-61. https://doi.org/10.1016/j.epsl.2016.09.003
      Ding, L., Maksatbek, S., Cai, F.L., et al., 2017.Processes of Initial Collision and Suturing between India and Asia.Science in China (Series D:Earth Sciences), 47(3):293-309(in Chinese).
      Donaldson, D.G., Webb, A.A.G., Menold, C.A., et al., 2013.Petrochronology of Himalayan Ultrahigh-Pressure Eclogite.Geology, 41(8):835-838. https://doi.org/10.1130/g33699.1
      Epard, J.L., Steck, A., 2008.Structural Development of the Tso Morari Ultra-High Pressure Nappe of the Ladakh Himalaya.Tectonophysics, 451(1-4):242-264. https://doi.org/10.1016/j.tecto.2007.11.050
      Ferrando, S., Rolfo, F., Lombardo, B., 2007.Fluid Evolution from Metamorphic Peak to Exhumation in Himalayan Granulitised Eclogites, Ama Drime Range, Southern Tibet.European Journal of Mineralogy, 19(4):439-461. https://doi.org/10.1127/0935-1221/2007/0019-1748
      Gao, R., Lu, Z.W., Klemperer, S.L., et al., 2016.Crustal-Scale Duplexing beneath the Yarlung Zangbo Suture in the Western Himalaya.Nature Geoscience, 9(7):555-560. https://doi.org/10.1038/ngeo2730
      Ghazanfar, M., Chaudhry, M.N., 1986.Reporting MCT in Northwest Himalaya, Pakistan.University of Punjab Geological Bulletin, 21:10-18.
      Ghazanfar, M., Chaudhry, M.N., 1987, Geology, Structure and Geomorphology of Upper Kaghan Valley, Northwest Himalaya, Pakistan.University of Punjab Geological Bulletin, 22:13-56.
      Gibbons, A.D., Zahirovic, S., Müller, R.D., et al., 2015.A Tectonic Model Reconciling Evidence for the Collisions between India, Eurasia and Intra-Oceanic Arcs of the Central-Eastern Tethys.Gondwana Research, 28(2):451-492. https://doi.org/10.1016/j.gr.2015.01.001
      Gilotti, J.A., 2013.The Realm of Ultrahigh-Pressure Metamorphism.Elements, 9(4):255-260. https://doi.org/10.2113/gselements.9.4.255
      Groppo, C., Lombardo, B., Rolfo, F., et al., 2007.Clockwise Exhumation Path of Granulitized Eclogites from the Ama Drime Range (Eastern Himalayas).Journal of Metamorphic Geology, 25(1):51-75. https://doi.org/10.1111/j.1525-1314.2006.00678.x
      Groppo, C., Rolfo, F., Indares, A., 2012.Partial Melting in the Higher Himalayan Crystallines of Eastern Nepal:The Effect of Decompression and Implications for the'Channel Flow'Model.Journal of Petrology, 53(5):1057-1088. https://doi.org/10.1093/petrology/egs009
      Grujic, D., Warren, C.J., Wooden, J.L., 2011.Rapid Synconvergent Exhumation of Miocene-Aged Lower Orogenic Crust in the Eastern Himalaya.Lithosphere, 3(5):346-366. https://doi.org/10.1130/l154.1
      Guillot, S., de Sigoyer, J., Lardeaux, J.M., et al., 1997.Eclogitic Metasediments from the Tso Morari Area (Ladakh, Himalaya):Evidence for Continental Subduction during India-Asia Convergence.Contributions to Mineralogy and Petrology, 128(2-3):197-212. https://doi.org/10.1007/s004100050303
      Guillot, S., Garzanti, E., Baratoux, D., et al., 2003.Reconstructing the Total Shortening History of the NW Himalaya.Geochemistry, Geophysics, Geosystems, 4(7):1064. https://doi.org/10.1029/2002gc000484
      Guillot, S., Mahéo, G., de Sigoyer, J., et al., 2008.Tethyan and Indian Subduction Viewed from the Himalayan High-to Ultrahigh-Pressure Metamorphic Rocks.Tectonophysics, 451(1-4):225-241. https://doi.org/10.1016/j.tecto.2007.11.059
      Guillot, S., Replumaz, A., Hattori, K.H., et al., 2007.Initial Geometry of Western Himalaya and Ultrahigh-Pressure Metamorphic Evolution.Journal of Asian Earth Sciences, 30(3-4):557-564. https://doi.org/10.1016/j.jseaes.2007.01.004
      Guilmette, C., Indares, A., Hébert, R., 2011.High-Pressure Anatectic Paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis:Textural Evidence for Partial Melting, Phase Equilibria Modeling and Tectonic Implications.Lithos, 124(1-2):66-81. https://doi.org/10.1016/j.lithos.2010.09.003
      Guo, X.Y., Gao, R., Zhao, J.M., et al., 2018.Deep-Seated Lithospheric Geometry in Revealing Collapse of the Tibetan Plateau.Earth-Science Reviews, 185:751-762. https://doi.org/10.1016/j.earscirev.2018.07.013
      Hermann, J., Zheng, Y.F., Rubatto, D., 2013.Deep Fluids in Subducted Continental Crust.Elements, 9(4):281-287. https://doi.org/10.2113/gselements.9.4.281
      Honegger, K., Le Fort, P., Mascle, G., et al., 1989.The Blueschists along the Indus Suture Zone in Ladakh, NW Himalaya.Journal of Metamorphic Geology, 7(1):57-72. https://doi.org/10.1111/j.1525-1314.1989.tb00575.x
      Horton, F., Lee, J., Hacker, B., et al., 2014.Himalayan Gneiss Dome Formation in the Middle Crust and Exhumation by Normal Faulting:New Geochronology of Gianbul Dome, Northwestern India.Geological Society of America Bulletin, 127(1-2):162-180. https://doi.org/10.1130/b31005.1
      Hu, X.M., Garzanti, E., Wang, J.G., et al., 2016.The Timing of India-Asia Collision Onset-Facts, Theories, Controversies.Earth-Science Reviews, 160:264-299. https://doi.org/10.1016/j.earscirev.2016.07.014
      Iaccarino, S., Montomoli, C., Carosi, R., et al., 2015.Pressure-Temperature-Time-Deformation Path of Kyanite-Bearing Migmatitic Paragneiss in the Kali Gandaki Valley (Central Nepal):Investigation of Late Eocene-Early Oligocene Melting Processes.Lithos, 231:103-121. https://doi.org/10.1016/j.lithos.2015.06.005
      Imayama, T., Takeshita, T., Yi, K., et al., 2012.Two-Stage Partial Melting and Contrasting Cooling History within the Higher Himalayan Crystalline Sequence in the Far-Eastern Nepal Himalaya.Lithos, 134-135:1-22. https://doi.org/10.1016/j.lithos.2011.12.004
      Jagoutz, O., Royden, L., Holt, A.F., et al., 2015.Anomalously Fast Convergence of India and Eurasia Caused by Double Subduction.Nature Geoscience, 8(6):475-478. https://doi.org/10.1038/ngeo2418
      Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2014.The Gangdese Magmatic Constraints on a Latest Cretaceous Lithospheric Delamination of the Lhasa Terrane, Southern Tibet.Lithos, 210-211:168-180. https://doi.org/10.1016/j.lithos.2014.10.001
      Jonnalagadda, M.K., Karmalkar, N.R., Duraiswami, R.A., 2017.Geochemistry of Eclogites of the Tso Morari Complex, Ladakh, NW Himalayas:Insights into Trace Element Behavior during Subduction and Exhumation.Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2017.05.013
      Kali, E., Leloup, P.H., Arnaud, N., et al., 2010.Exhumation History of the Deepest Central Himalayan Rocks, Ama Drime Range:Key Pressure-Temperature-Deformation-Time Constraints on Orogenic Models.Tectonics, 29(2):TC2014. https://doi.org/10.1029/2009tc002551
      Kaneko, Y., Katayama, I., Yamamoto, H., et al., 2003.Timing of Himalayan Ultrahigh-Pressure Metamorphism:Sinking Rate and Subduction Angle of the Indian Continental Crust beneath Asia.Journal of Metamorphic Geology, 21(6):589-599. https://doi.org/10.1046/j.1525-1314.2003.00466.x
      Kellett, D.A., Cottle, J.M., Smit, M., 2014.Eocene Deep Crust at Ama Drime, Tibet:Early Evolution of the Himalayan Orogen.Lithosphere, 6(4):220-229. https://doi.org/10.1130/l350.1
      Kohn, M.J., 2014.Himalayan Metamorphism and Its Tectonic Implications.Annual Review of Earth and Planetary Sciences, 42(1):381-419. https://doi.org/10.1146/annurev-earth-060313-055005
      Kohn, M.J., Corrie, S.L., 2011.Preserved Zr-Temperatures and U-Pb Ages in High-Grade Metamorphic Titanite:Evidence for a Static Hot Channel in the Himalayan Orogen.Earth and Planetary Science Letters, 311(1-2):136-143. https://doi.org/10.1016/j.epsl.2011.09.008
      Lee, J., Whitehouse, M.J., 2007.Onset of Mid-Crustal Extensional Flow in Southern Tibet:Evidence from U/Pb Zircon Ages.Geology, 35(1):45. https://doi.org/10.1130/g22842a.1
      Leech, M., Singh, S., Jain, A., et al., 2005.The Onset of India-Asia Continental Collision:Early, Steep Subduction Required by the Timing of UHP Metamorphism in the Western Himalaya.Earth and Planetary Science Letters, 234(1-2):83-97. https://doi.org/10.1016/j.epsl.2005.02.038
      Leech, M.L., Singh, S., Jain, A.K., 2007.Continuous Metamorphic Zircon Growth and Interpretation of U-Pb SHRIMP Dating:An Example from the Western Himalaya.International Geology Review, 49(4):313-328. https://doi.org/10.2747/0020-6814.49.4.313
      Li, D.W., 2003.SHRIMP U-Pb Zircon Geochronology of Granulites at Rimana (Southern Tibet) in the Central Segment of Himalayan Orogen.Chinese Science Bulletin, 48(23):2647. https://doi.org/10.1360/03wd0080
      Li, J.T., Song, X.D., 2018.Tearing of Indian Mantle Lithosphere from High-Resolution Seismic Images and Its Implications for Lithosphere Coupling in Southern Tibet.Proceedings of the National Academy of Sciences, 115(33):8296-8300. https://doi.org/10.1073/pnas.1717258115
      Li, Q.Y., Zhang, L.F., Fu, B., et al., 2018.Petrology and Zircon U-Pb Dating of Well-Preserved Eclogites from the Thongmön Area in Central Himalaya and Their Tectonic Implications.Journal of Metamorphic Geology, 37(2):203-226. https://doi.org/10.1111/jmg.12457
      Liou, J.G., Ernst, W.G., Zhang, R.Y., et al., 2009.Ultrahigh-Pressure Minerals and Metamorphic Terranes-The View from China.Journal of Asian Earth Sciences, 35(3-4):199-231. https://doi.org/10.1016/j.jseaes.2008.10.012
      Lombardo, B., Pertusati, P., Rolfo, F., et al., 1998.First Report of Eclogites from the Eastern Himalaya:Implications for the Himalayan Orogeny.Memorie di Scienze Geologichedell' Universitá di Padova, 50:67-68.
      Lombardo, B., Rolfo, F., 2000.Two Contrasting Eclogite Types in the Himalayas:Implications for the Himalayan Orogeny.Journal of Geodynamics, 30(1-2):37-60. https://doi.org/10.1016/s0264-3707(99)00026-5
      Lombardo, B., Rolfo, F., Compagnoni, R., 2000.Glaucophane and Barroisite Eclogites from the Upper Kaghan Nappe:Implications for the Metamorphic History of the NW Himalaya.Geological Society, London, Special Publications, 170(1):411-430. https://doi.org/10.1144/gsl.sp.2000.170.01.22
      Lombardo, B., Rolfo, F., McClelland, W., 2016.A Review of the First Eclogites Discovered in the Eastern Himalaya.European Journal of Mineralogy, 28(6):1099-1109. https://doi.org/10.1127/ejm/2016/0028-2553
      Meng, J., Wang, C.S., Zhao, X.X., et al., 2012.India-Asia Collision was at 24°N and 50 Ma:Palaeomagnetic Proof from Southernmost Asia.Scientific Reports, 2(1):925. https://doi.org/10.1038/srep00925
      Mukherjee, B.K., Sachan, H.K., 2001.Discovery of Coesite from the Indian Himalaya:A Record of Ultrahigh Pressure Metamorphism in Indian Continental Crust.Current Science, 81:1358-1361.
      Mukherjee, B.K., Sachan, H.K., Ogasawara, Y., et al., 2003.Carbonate-Bearing UHPM Rocks from the Tso-Morari Region, Ladakh, India:Petrological Implications.International Geology Review, 45(1):49-69. https://doi.org/10.2747/0020-6814.45.1.49
      Najman, Y., Appel, E., Boudagher-Fadel, M., et al., 2010.Timing of India-Asia Collision:Geological, Biostratigraphic, and Palaeomagnetic Constraints.Journal of Geophysical Research, 115(B12):416. https://doi.org/10.1029/2010jb007673
      O'Brien, P.J., Zotov, N., Law, R., 1999.First Discovery of Coesite in the Kaghan Eclogites (Pakistan); Implications for Himalayan Evolution.Terra Nova, 2:109-111.
      O'Brien, P.J., Zotov, N., Law, R., et al., 2001.Coesite in Himalayan Eclogite and Implications for Models of India-Asia Collision.Geology, 29(5):435-438.https://doi.org/10.1130/0091-7613(2001)029<0435:ciheai>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0435:ciheai>2.0.co;2
      Palin, R.M., Reuber, G.S., White, R.W., et al., 2017.Subduction Metamorphism in the Himalayan Ultrahigh-Pressure Tso Morari Massif:An Integrated Geodynamic and Petrological Modelling Approach.Earth and Planetary Science Letters, 467:108-119. https://doi.org/10.1016/j.epsl.2017.03.029
      Parrish, R.R., Gough, S.J., Searle, M.P., et al., 2006.Plate Velocity Exhumation of Ultrahigh-Pressure Eclogites in the Pakistan Himalaya.Geology, 34(11):989-992. https://doi.org/10.1130/g22796a.1
      Peng, M., Jiang, M., Li, Z.H., et al., 2016.Complex Indian Subduction Style with Slab Fragmentation beneath the Eastern Himalayan Syntaxis Revealed by Teleseismic P-Wave Tomography.Tectonophysics, 667:77-86. https://doi.org/10.1016/j.tecto.2015.11.012
      Pognante, U., Spencer, D.A., 1991.First Report of Eclogites from the Himalayan Belt, Kaghan Valley (Northern Pakistan).European Journal of Mineralogy, 3(3):613-618. https://doi.org/10.1127/ejm/3/3/0613
      Ravikant, V., Wu, F.Y., Ji, W.Q., 2009.Zircon U-Pb and Hf Isotopic Constraints on Petrogenesis of the Cretaceous-Tertiary Granites in Eastern Karakoram and Ladakh, India.Lithos, 110(1-4):153-166. https://doi.org/10.1016/j.lithos.2008.12.013
      Regis, D., Warren, C.J., Young, D., et al., 2014.Tectono-Metamorphic Evolution of the Jomolhari Massif:Variations in Timing of Syn-Collisional Metamorphism across Western Bhutan.Lithos, 190-191:449-466. https://doi.org/10.1016/j.lithos.2014.01.001
      Rehman, H.U., Kobayash, K., Tsujimori, T., et al., 2013.Ion Microprobe U-Th-Pb Geochronology and Study of Micro-Inclusions in Zircon from the Himalayan High-and Ultrahigh-Pressure Eclogites, Kaghan Valley of Pakistan.Journal of Asian Earth Sciences, 63:179-196. https://doi.org/10.1016/j.jseaes.2012.04.025
      Rehman, H.U., Yamamoto, H., Kaneko, Y., et al., 2007.Thermobaric Structure of the Himalayan Metamorphic Belt in Kaghan Valley, Pakistan.Journal of Asian Earth Sciences, 29(2-3):390-406. https://doi.org/10.1016/j.jseaes.2006.06.002
      Rehman, H.U., Yamamoto, H., Khalil, M.A.K., et al., 2008.Metamorphic History and Tectonic Evolution of the Himalayan UHP Eclogites in Kaghan Valley, Pakistan.Journal of Mineralogical and Petrological Sciences, 103(4):242-254. https://doi.org/10.2465/jmps.080222
      Rolfo, F., McClelland, W., Lombardo, B., 2005.Geochronological Constraints on the Age of the Eclogite-Facies Metamorphism in the Eastern Himalaya.Geologie Alpine, Memoire H.S.44, 20th Himalaya-Karakorum-Tibet Workshop, Abstract Volume, 170.
      Rubatto, D., Chakraborty, S., Dasgupta, S., 2012.Timescales of Crustal Melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) Inferred from Trace Element-Constrained Monazite and Zircon Chronology.Contributions to Mineralogy and Petrology, 165(2):349-372. https://doi.org/10.1007/s00410-012-0812-y
      Schertl, H.P., O'Brien, P.J., 2013.Continental Crust at Mantle Depths:Key Minerals and Microstructures.Elements, 9(4):261-266. https://doi.org/10.2113/gselements.9.4.261
      Searle.M.P., 2007.Diagnostic Features and Processes in the Construction and Evolution of Oman-Zagros-, Himalayan-, Karakoram-, and Tibetan-Type Orogenic Belts.In: Hatcher, R.D., Jr., Carlson, M.P., McBride, J.H., et al., eds., 4-D Framework of Continental Crust.Geological Society of America Memoir, 200: 41-61.
      Shams, F.A., 1972.Glaucophane-Bearing Rocks from near Topsin, Swat:First Record from Pakistan.Pakistan Journal of Scientific Research, 24:343-345.
      Singh, P., Saikia, A., Pant, N.C., et al., 2013.Insights into the P-T Evolution Path of Tso Morari Eclogites of the North-Western Himalayas:Constraints on the Geodynamic Evolution of the Region.Journal of Earth System Science, 122(3):677-698. https://doi.org/10.1007/s12040-013-0307-x
      Smith, D.C., 1984.Coesite in Clinopyroxene in the Caledonides and Its Implications for Geodynamics.Nature, 310(5979):641-644. https://doi.org/10.1038/310641a0
      Sobolev, N.V., Shatsky, V.S., 1990.Diamond Inclusions in Garnets from Metamorphic Rocks:A New Environment for Diamond Formation.Nature, 343(6260):742-746. https://doi.org/10.1038/343742a0
      Spencer, D.A., Gebauer, D., 1996.SHRIMP Evidence for a Permian Protolith Age and a 44 Ma Metamorphic Age for the Himalayan Eclogites Upper Kaghan, Pakistan: Implications for the Subduction of Tethys and the Subdivision Terminology of the NW Himalaya.11th Himalaya-Karakorum-Tibet Workshop, Abstract Volume, 147.
      Spencer, D.A., Ramsay, J., Spencer-Cervato, C., et al., 1990.High Pressure (Eclogite Facies) Metamorphism in the Indian Plate, Northwestern Himalaya, Pakistan.Proceedings of the Second Pakistan Geological Congress, Geological Bulletin University of Peshawar, 23:87-100.
      Spencer, D.A., Tonarini, S., Pognante, U., 1995.Geochemical and Sr-Nd Isotopic Characterisation of Higher Himalayan Eclogites (and Associated Metabasites).European Journal of Mineralogy, 7(1):89-102. https://doi.org/10.1127/ejm/7/1/0089
      St-Onge, M.R., Rayner, N., Palin, R.M., et al., 2013.Integrated Pressure-Temperature-Time Constraints for the Tso Morari Dome (Northwest India):Implications for the Burial and Exhumation Path of UHP Units in the Western Himalaya.Journal of Metamorphic Geology, 31(5):469-504. https://doi.org/10.1111/jmg.12030
      Thanh, N.X., Sajeev, K., Itaya, T., et al., 2011.Multiple Garnet Growth in Garnet-Kyanite-Staurolite Gneiss, Pangong Metamorphic Complex, Ladakh Himalaya:New Constraints on Tectonic Setting.Lithos, 127(3-4):552-563. https://doi.org/10.1016/j.lithos.2011.09.023
      Tonarini, S., Villa, I.M., Oberli, F., et al., 1993.Eocene Age of Eclogite Metamorphism in Pakistan Himalaya:Implications for India-Eurasia Collision.Terra Nova, 5(1):13-20. https://doi.org/10.1111/j.1365-3121.1993.tb00221.x
      Wang, J.M., Rubatto, D., Zhang, J.J., 2015.Timing of Partial Melting and Cooling Across the Greater Himalayan Crystalline Complex (Nyalam, Central Himalaya):In-Sequence Thrusting and Its Implications.Journal of Petrology, 56(9):1677-1702. https://doi.org/10.1093/petrology/egv050
      Wang, J.M., Zhang, J.J., Liu, K., et al., 2016.Spatial and Temporal Evolution of Tectonometamorphic Discontinuities in the Central Himalaya:Constraints from P-T Paths and Geochronology.Tectonophysics, 679:41-60. https://doi.org/10.1016/j.tecto.2016.04.035
      Wang, J.M., Zhang, J.J., Wang, X.X., 2013.Structural Kinematics, Metamorphic P-T Profiles and Zircon Geochronology across the Greater Himalayan Crystalline Complex in South-Central Tibet:Implication for a Revised Channel Flow.Journal of Metamorphic Geology, 31(6):607-628. https://doi.org/10.1111/jmg.12036
      Wang, Y.H., Zhang, L.F., Zhang, J.J., et al., 2017.The Youngest Eclogite in Central Himalaya:P-T Path, U-Pb Zircon Age and Its Tectonic Implication.Gondwana Research, 41:188-206. https://doi.org/10.1016/j.gr.2015.10.013
      Warren, C.J., Grujic, D., Kellett, D.A., et al., 2011.Probing the Depths of the India-Asia Collision:U-Th-Pb Monazite Chronology of Granulites from NW Bhutan.Tectonics, 30(2):46. https://doi.org/10.1029/2010tc002738
      Wilke, F.D.H., O'Brien, P.J., Altenberger, U., et al., 2010.Multi-Stage Reaction History in Different Eclogite Types from the Pakistan Himalaya and Implications for Exhumation Processes.Lithos, 114(1-2):70-85. https://doi.org/10.1016/j.lithos.2009.07.015
      Wilke, F.D.H., O'Brien, P.J., Schmidt, A., et al., 2015.Subduction, Peak and Multi-Stage Exhumation Metamorphism:Traces from one Coesite-Bearing Eclogite, Tso Morari, Western Himalaya.Lithos, 231:77-91. https://doi.org/10.1016/j.lithos.2015.06.007
      Wu, F.Y., Liu, Z.C., Liu, X.C., et al., 2015.Himalayan Leucogranite:Petrogenesis and Implications to Orogenesis and Plateau Uplift.Acta Petrologica Sinica, 31(1):1-36(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501001
      Xu, Q., Zhao, J.M., Yuan, X.H., et al., 2015.Mapping Crustal Structure beneath Southern Tibet:Seismic Evidence for Continental Crustal Underthrusting.Gondwana Research, 27(4):1487-1493. https://doi.org/10.1016/j.gr.2014.01.006
      Xu, S.T., Okay, A.I., Ji, S.Y., et al., 1992.Diamonds from the Dabie Shan Metamorphic Rocks and Its Implication for Tectonic Setting.Science, 256:80-82. doi: 10.1126/science.256.5053.80
      Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Zeiger, K., Gordon, S.M., Long, S.P., et al., 2015.Timing and Conditions of Metamorphism and Melt Crystallization in Greater Himalayan Rocks, Eastern and Central Bhutan:Insight from U-Pb Zircon and Monazite Geochronology and Trace-Element Analyses.Contributions to Mineralogy and Petrology, 169(5):1-19. https://doi.org/10.1007/s00410-015-1143-6
      Zhang, J.J., Santosh, M., Wang, X.X., et al., 2012.Tectonics of the Northern Himalaya since the India-Asia Collision.Gondwana Research, 21(4):939-960. https://doi.org/10.1016/j.gr.2011.11.004
      Zhang, Z.M., Ding, H.X., Dong, X., et al., 2018.High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen.Journal of Earth Science, 29(5):1010-1025. https://doi.org/10.1007/s12583-018-0852-y
      Zhang, Z.M., Ding, H.X., Dong, X., et al., 2019.Formation and Evolution of the Gangdese Magmatic Arc, Southern Tibet.Acta Petrologica Sinica, 35(2):275-294(in Chinese with English abstract). https://doi.org/10.18654/1000-0569/2019.02.01
      Zhang, Z.M., Dong, X., Ding, H.X., et al., 2017.Metamorphism and Partial Melting and the Himalayan Orogen.Acta Petrologica Sinica, 33(8):2313-2341(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505003
      Zhang, Z.M., Kang, D.Y., Ding, H.X., et al., 2018.Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites.Earth Science, 43(1):82-98(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201801005
      Zhang, Z.M., Xiang, H., Dong, X., et al., 2015.Long-Lived High-Temperature Granulite-Facies Metamorphism in the Eastern Himalayan Orogen, South Tibet.Lithos, 212-215:1-15. https://doi.org/10.1016/j.lithos.2014.10.009
      Zhang, Z.M., Xiang, H., Dong, X., et al., 2017.Oligocene HP Metamorphism and Anatexis of the Higher Himalayan Crystalline Sequence in Yadong Region, East-Central Himalaya.Gondwana Research, 41:173-187. https://doi.org/10.1016/j.gr.2015.03.002
      Zhao, W.L., Morgan, W.J., 1985.Uplift of Tibetan Plateau.Tectonics, 4(4):359-369. https://doi.org/10.1029/tc004i004p00359
      Zhao, W.J., Nelson, K.D., Che, J., et al., 1993.Deep Seismic Reflection Evidence for Continental Underthrusting beneath Southern Tibet.Nature, 366(6455):557-559. https://doi.org/10.1038/366557a0
      Zheng, Y.F., Xia, Q.X., Chen, R.X., et al., 2011.Partial Melting, Fluid Supercriticality and Element Mobility in Ultrahigh-Pressure Metamorphic Rocks during Continental Collision.Earth-Science Reviews, 107(3-4):342-374. https://doi.org/10.1016/j.earscirev.2011.04.004
      Zhu, D.C., Wang, Q., Cawood, P.A., et al., 2017.Raising the Gangdese Mountains in Southern Tibet.Journal of Geophysical Research (Solid Earth), 122(1):214-223. https://doi.org/10.1002/2016jb013508
      Zhu, D.C., Wang, Q., Zhao, Z.D., et al., 2015.Magmatic Record of India-Asia Collision.Scientific Reports, 5(1):14289. https://doi.org/10.1038/srep14289
      Zhuang, G.S., Najman, Y., Guillot, S., et al., 2015.Constraints on the Collision and the Pre-Collision Tectonic Configuration between India and Asia from Detrital Geochronology, Thermochronology, and Geochemistry Studies in the Lower Indus Basin, Pakistan.Earth and Planetary Science Letters, 432:363-373. https://doi.org/10.1016/j.epsl.2015.10.026
      丁林, Maksatbek, S., 蔡福龙, 等, 2017.印度与欧亚大陆初始碰撞时限、封闭方式和过程.中国科学(D辑:地球科学), 47(3):293-309. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201703003.htm
      吴福元, 刘志超, 刘小驰, 等, 2015.喜马拉雅淡色花岗岩.岩石学报, 31(1):1-36. http://d.old.wanfangdata.com.cn/Periodical/dqkx200503003
      张泽明, 董昕, 丁慧霞, 等, 2017.喜马拉雅造山带的变质作用与部分熔融.岩石学报, 33(8):2313-2341. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201708001
      张泽明, 丁慧霞, 董昕, 田作林, 2019.冈底斯岩浆弧的形成与演化.岩石学报, 35(2):275-294. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201902001
      张泽明, 康东艳, 丁慧霞, 等, 2018.喜马拉雅造山带的部分熔融与淡色花岗岩成因机制.地球科学, 43(1):82-98. http://earth-science.net/WebPage/Article.aspx?id=3726
    • 加载中
    图(8)
    计量
    • 文章访问数:  6252
    • HTML全文浏览量:  1643
    • PDF下载量:  118
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-02-15
    • 刊出日期:  2019-05-15

    目录

      /

      返回文章
      返回