• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    拉萨地体中部古新世早期灯垌火山-侵入杂岩成因及地壳硅质岩浆演化

    周逍遥 张玉修 张吉衡 胡俊成 李武毅 黄荣才 廖驾 王家浩 唐显春 朱利东

    周逍遥, 张玉修, 张吉衡, 胡俊成, 李武毅, 黄荣才, 廖驾, 王家浩, 唐显春, 朱利东, 2021. 拉萨地体中部古新世早期灯垌火山-侵入杂岩成因及地壳硅质岩浆演化. 地球科学, 46(2): 474-488. doi: 10.3799/dqkx.2019.073
    引用本文: 周逍遥, 张玉修, 张吉衡, 胡俊成, 李武毅, 黄荣才, 廖驾, 王家浩, 唐显春, 朱利东, 2021. 拉萨地体中部古新世早期灯垌火山-侵入杂岩成因及地壳硅质岩浆演化. 地球科学, 46(2): 474-488. doi: 10.3799/dqkx.2019.073
    Zhou Xiaoyao, Zhang Yuxiu, Zhang Jiheng, Hu Juncheng, Li Wuyi, Huang Rongcai, Liao Jia, Wang Jiahao, Tang Xianchun, Zhu Lidong, 2021. Petrogenesis of Early Paleocene Dengtong Volcanic-Plutonic Complex in Central Lhasa Terrane and Evolution of Crustal High-Silica Magma. Earth Science, 46(2): 474-488. doi: 10.3799/dqkx.2019.073
    Citation: Zhou Xiaoyao, Zhang Yuxiu, Zhang Jiheng, Hu Juncheng, Li Wuyi, Huang Rongcai, Liao Jia, Wang Jiahao, Tang Xianchun, Zhu Lidong, 2021. Petrogenesis of Early Paleocene Dengtong Volcanic-Plutonic Complex in Central Lhasa Terrane and Evolution of Crustal High-Silica Magma. Earth Science, 46(2): 474-488. doi: 10.3799/dqkx.2019.073

    拉萨地体中部古新世早期灯垌火山-侵入杂岩成因及地壳硅质岩浆演化

    doi: 10.3799/dqkx.2019.073
    基金项目: 

    国家自然科学基金项目 41472209

    国家自然科学基金项目 41877197

    中国地质调查局项目 DD2016008003

    中国地质调查局项目 DD20160015

    中国地质调查局项目 12120113033004

    中央高校基本科研业务费专项资金 Y95401BXX2

    详细信息
      作者简介:

      周逍遥(1994-), 女, 硕士, 构造地质学专业.ORCID: 0000-0002-3324-6344.E-mail: zxy419419@163.com

      通讯作者:

      张吉衡, ORCID: 0000-0002-7417-1465.E-mail: zhjiheng@ucas.ac.cn

    • 中图分类号: P581;P597

    Petrogenesis of Early Paleocene Dengtong Volcanic-Plutonic Complex in Central Lhasa Terrane and Evolution of Crustal High-Silica Magma

    • 摘要: 花岗岩-流纹岩的成因研究是认识地壳演化机制的重要途径.通过岩石学、地球化学和同位素地质学方法,对拉萨地体中部措麦地区灯垌破火山机构的火山-侵入杂岩进行了成因研究.灯垌火山-侵入杂岩主要由花岗斑岩、流纹岩和流纹质熔结凝灰岩组成,锆石SHRIMP U-Pb年龄分别为64.1±0.8 Ma、62.9±0.7 Ma和63.2±0.7 Ma,形成时代一致.他们同属高钾钙碱性准铝质-过铝质岩浆岩,亏损高场强元素、富集大离子亲石元素,轻稀土元素富集、重稀土元素平坦,具有一致的锆石δ18O值(6.15‰~7.34‰),为同源岩浆演化的产物.流纹岩与花岗斑岩亏损Ba、Sr、P和Ti元素,具显著的负Eu异常,是岩浆发生不同程度分异演化的产物,前者代表晶粥体分离的熔体相,而后者是晶粥体富矿物相部分的产物.流纹质熔结凝灰岩轻重稀土元素分异程度相对较弱,具中等-弱的Eu负异常,是晶粥体自身被活化喷发的产物.结合前人研究成果,认为灯垌火山-侵入杂岩可能形成于古新世新特提斯洋北向俯冲于拉萨地体之下的过程中,俯冲带流体进入地幔楔并使其部分熔融,形成的幔源物质上涌,使地壳部分熔融形成的中酸性岩浆侵入或喷发而形成侵入岩或火山岩.

       

    • 图  1  青藏高原构造单元划分(a)据和拉萨地体林子宗群火山岩分布(b)

      图a据Zhang and Zhang (2017);图b据莫宣学等(2003)修改,BNS.班公湖-怒江缝合带,YZS.雅鲁藏布江缝合带

      Fig.  1.  Tectonic framework of the Tibet Plateau (a) and distribution of the Linzizong Group volcanic rocks at the Lhasa Terrane(b)

      图  2  灯垌破火山机构地质简图

      据中华人民共和国1∶25万区域地质调查报告措麦区幅,地质出版社,2002

      Fig.  2.  Simplified geological map of the Dengtong caldera

      图  3  灯垌火山-侵入杂岩的主要岩石类型和显微照片

      Pl.斜长石; Kfs.钾长石;Q.石英;Bt.黑云母

      Fig.  3.  The main rock types and microphotographs of the Dengtong volcanic-plutonic complex

      图  4  锆石SHRIMP U-Pb谐和图解

      Fig.  4.  Zircon SHRIMP U-Pb concordia diagrams

      图  5  锆石δ18O值频数分布

      幔源锆石δ18O平均值据Valley et al.(1998);正常岩浆锆石δ18O值据Blum et al.(2016)

      Fig.  5.  Histograms of zircon δ18O values

      图  6  地球化学分类图解

      图a据Irvine and Baragar (1971);图b据Peccerillo and Taylor (1976);图c据Maniar and Piccoli (1989);图d据Frost et al. (2001)

      Fig.  6.  Geochemical classification diagrams

      图  7  稀土元素球粒陨石标准化图解(a、c)和微量元素原始地幔标准化图解(b、d) (标准化值据Sun and McDonough, 1989)

      Fig.  7.  Chondrite-normalized REE patterns (a, c) and primitive mantle-normalized trace elements spider diagrams (b, d) (normalized values after Sun and McDonough, 1989)

      图  8  灯垌火山-侵入岩的元素相关图解

      Fig.  8.  Elemental co-variation diagrams of the Dengtong volcanic-plutonic rocks

      图  9  灯垌火山-侵入岩稀土、微量元素的相关图解

      Fig.  9.  Diagrams of REE and trace elements for the Dengtong volcanic-plutonic rocks

      图  10  构造判别图解(据Pearce et al., 1984)

      Fig.  10.  Tectonic discrimination diagrams (after Pearce et al., 1984)

    • Bachmann, O., Bergantz, G. W., 2004. On the Origin of Crystal-Poor Rhyolites: Extracted from Batholithic Crystal Mushes. Journal of Petrology, 45(8): 1565-1582. https://doi.org/10.1093/petrology/egh019
      Bachmann, O., Huber, C., 2016. Silicic Magma Reservoirs in the Earth's Crust. American Mineralogist, 101(11): 2377-2404. https://doi.org/10.2138/am-2016-5675
      Bindeman, I. N., Ponomareva, V. V., Bailey, J. C., et al., 2004. Volcanic Arc of Kamchatka: A Province with High-δ18O Magma Sources and Large-Scale 18O/16O Depletion of the Upper Crust. Geochimica et Cosmochimica Acta, 68(4): 841-865. https://doi.org/10.1016/j.gca.2003.07.009
      Blum, T. B., Kitajima, K., Nakashima, D., et al., 2016. Oxygen Isotope Evolution of the Lake Owyhee Volcanic Field, Oregon, and Implications for the Low-δ18O Magmatism of the Snake River Plain-Yellowstone Hotspot and Other Low-δ18O Large Igneous Provinces. Contributions to Mineralogy and Petrology, 171(11): 1-23. https://doi.org/10.1007/s00410-016-1297-x
      Burgisser, A., Bergantz, G. W., 2011. A Rapid Mechanism to Remobilize and Homogenize Highly Crystalline Magma Bodies. Nature, 471(7337): 212-215. https://doi.org/10.1038/nature09799
      Chappell, B. W., White, A. J. R., Williams, I. S., et al., 1999. Discussion and Reply: Evaluation of Petrogenetic Models for Lachlan Fold Belt Granitoids: Implications for Crustal Architecture and Tectonic Models. Australian Journal of Earth Sciences, 46(5): 827-836. https://doi.org/10.1046/j.1440-0952.1999.00742.x
      Condie, K. C., 2001. Mantle Plumes and Their Record in Earth History. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511810589
      Dong, G. C., Mo, X. X., Zhao, Z. D., et al., 2005. A New Understanding of the Stratigraphic Successions of the Linzizong Volcanic Rocks in the Lhünzhub Basin, Northern Lhasa, Tibet, China. Geological Bulletin of China, 24(6): 549-557(in Chinese with English abstract). http://www.researchgate.net/publication/313201746_A_new_understanding_of_the_stratigraphic_successions_of_the_Lingzizong_volcanic_rocks_in_the_Lh_nzhub_basin_northern_Lhasa_Tibet
      Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      Gualda, G. A. R., Ghiorso, M. S., 2013. Low-Pressure Origin of High-Silica Rhyolites and Granites. The Journal of Geology, 121(5): 537-545. https://doi.org/10.1086/671395
      Guo, T. Y., Liang, D. Y., Zhang, Y. Z., 1991. Ali Geology, Tibet. Wuhan: China University of Geosciences Press (in Chinese).
      He, S. D., Kapp, P., DeCelles, P. G., et al., 2007. Cretaceous-Tertiary Geology of the Gangdese Arc in the Linzhou Area, Southern Tibet. Tectonophysics, 433(1-4): 15-37. https://doi.org/10.1016/j.tecto.2007.01.005
      Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
      Hu, X. M., Garzanti, E., Moore, T., et al., 2015. Direct Stratigraphic Dating of India-Asia Collision Onset at the Selandian (Middle Paleocene, 59±1 Ma). Geology, 43(10): 859-862. https://doi.org/10.1130/g36872.1
      Ickert, R. B., Hiess, J., Williams, I. S., et al., 2008. Determining High Precision, In Situ, Oxygen Isotope Ratios with a SHRIMP II: Analyses of MPI-DING Silicate-Glass Reference Materials and Zircon from Contrasting Granites. Chemical Geology, 257(1-2): 114-128. https://doi.org/10.2113/0530027
      Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055
      Jia, J. C., Wen, C. S., Wang, G. H., et al., 2005. Geochemical Characteristics and Geodynamic Significance of the Linzizong Group Volcanic Rocks in the Gangdise Area. Chinese Geology, 32(3): 396-404(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200503007.htm
      Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154
      Lee, C. T. A., Morton, D. M., 2015. High Silica Granites: Terminal Porosity and Crystal Settling in Shallow Magma Chambers. Earth and Planetary Science Letters, 409: 23-31. https://doi.org/10.1016/j.epsl.2014.10.040
      Lee, H. Y., Chung, S. L., Lo, C. H., et al., 2009. Eocene Neotethyan Slab Breakoff in Southern Tibet Inferred from the Linzizong Volcanic Record. Tectonophysics, 477(1-2): 20-35. https://doi.org/10.1016/j.tecto.2009.02.031
      Lee, H. Y., Chung, S. L., Wang, Y. B., et al., 2007. Age, Petrogenesis and Geological Significance of the Linzizong Volcanic Successions in the Linzhou Basin, Southern Tibet: Evidence from Zircon U-Pb Dates and Hf Isotopes. Acta Petrologica Sinica, 23(2): 493-500(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702026.htm
      Li, Y., Zhang, S. Z., Li, F. Q., et al., 2018. Zircon U-Pb Ages and Implications of the Dianzhong Formation in Chazi Area, Middle Lhasa Block, Tibet. Earth Science, 43(8): 2755-2766(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201808017.htm
      Li, Z. H., Zheng, L. L., Li, J. M., et al., 2009. 40Ar-39Ar Dating of Linzizong Volcanic Rocks in the Central Gangdise Area and Its Geological Implication. Bulletin of Mineralogy, Petrology and Geochemistry, 28(3): 223-227(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200903002.htm
      Liang, Y. P., Zhu, J., Ci, Q., et al., 2010. Zircon U-Pb Ages and Geochemistry of Volcanic Rock from Linzizong Group in Zhunuo Area in Middle Gangdise Belt, Tibet Plateau. Earth Science, 35(2): 211-223(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201002004.htm
      Linnen, R. L., Samson, I. M., Williams-Jones, A. E., et al., 2014. Geochemistry of the Rare-Earth Element, Nb, Ta, Hf, and Zr Deposits. In: Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-08-095975-7.01124-4
      Liu, A. L., Zhu, D. C., Wang, Q., et al., 2015. LA-ICP-MS Zircon U-Pb Age and Origin of the Linzizong Volcanic Rocks from Milashan, Southern Tibet. Geological Bulletin of China, 34(5): 826-833(in Chinese with English abstract). http://www.researchgate.net/publication/282680271_LA-ICP-MS_zircon_U-Pb_age_and_origin_of_the_Linzizong_volcanic_rocks_from_Milashan_southern_Tibet
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
      McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      Mo, X. X., Hou, Z. Q., Niu, Y. L., et al., 2007. Mantle Contributions to Crustal Thickening during Continental Collision: Evidence from Cenozoic Igneous Rocks in Southern Tibet. Lithos, 96(1-2): 225-242. https://doi.org/10.1016/j.lithos.2006.10.005
      Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2003. Response of Volcanism to the India-Asia Collision. Earth Science Frontiers, 10(3): 135-148(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026542218
      Moyen, J. F., 2009. High Sr/Y and La/Yb Ratios: The Meaning of the "Adakitic Signature". Lithos, 112(3-4): 556-574. https://doi.org/10.1016/j.lithos.2009.04.001
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
      Ruprecht, P., Bachmann, O., 2010. Pre-Eruptive Reheating during Magma Mixing at Quizapu Volcano and the Implications for the Explosiveness of Silicic Arc Volcanoes. Geology, 38(10): 919-922. https://doi.org/10.1130/g31110.1
      Simon, L., Lécuyer, C., 2005. Continental Recycling: The Oxygen Isotope Point of View. Geochemistry, Geophysics, Geosystems, 6(8): Q08004. https://doi.org/10.1029/2005gc000958
      Streck, M. J., 2014. Evaluation of Crystal Mush Extraction Models to Explain Crystal-Poor Rhyolites. Journal of Volcanology and Geothermal Research, 284: 79-94. https://doi.org/10.1016/j.jvolgeores.2014.07.005
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Taylor, R. M., 1968. The Association of Manganese and Cobalt in Soils: Further Observations. Journal of Soil Science, 19(1): 77-80. https://doi.org/10.1111/j.1365-2389.1968.tb01522.x
      Valley, J. W., Kinny, P. D., Schulze, D. J., et al., 1998. Zircon Megacrysts from Kimberlite: Oxygen Isotope Variability among Mantle Melts. Contributions to Mineralogy and Petrology, 133(1-2): 1-11. https://doi.org/10.1007/s004100050432
      Wang, Q. L., 2011. Geochemistry and Zircon U-Pb Chronology of Linzizong Group Volcanic Rocks in Western Gangdese, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Wu, F. Y., Ji, W. Q., Wang, J. G., et al., 2014. Zircon U-Pb and Hf Isotopic Constraints on the Onset Time of India-Asia Collision. American Journal of Science, 314(2): 548-579. https://doi.org/10.2475/02.2014.04
      Xie, B. J., Zhou, S., Xie, G. G., et al., 2013. Zircon SHRIMP U-Pb Data and Regional Contrasts of Geochemical Characteristics of Linzizong Volcanic Rocks from Konglong and Dinrenle Region, Middle Gangdese Belt. Acta Petrologica Sinica, 29(11): 3803-3814(in Chinese with English abstract). http://www.researchgate.net/publication/286481126_Zircon_SHRIMP_U-Pb_data_and_regional_contrasts_of_geochemical_characteristics_of_Linzizong_volcanic_rocks_from_Konglong_and_Dinrenle_region_middle_Gangdese_belt
      Yang, H., Xiang, S. Y., Wang, X., et al., 2013. Age and Tectonic Setting of Dianzhong Formation in the Maxiang Area, Tibet, China. Geological Science and Technology Information, 32(4): 89-96(in Chinese with English abstract).
      Yu, F., Li, Z. G., Zhao, Z. D., et al., 2010. Geochemistry and Implication of the Linzizong Volcanic Succession in Cuomai Area, Central-Western Gangdese, Tibet. Acta Petrologica Sinica, 26(7): 2217-2225(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical_ysxb98201007022.aspx
      Zhang, K. J., Zhang, Y. X., Tang, X. C., et al., 2012. Late Mesozoic Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian Collision. Earth-Science Reviews, 114(3-4): 236-249. https://doi.org/10.1016/j.earscirev.2012.06.001
      Zhang, Y. X., Zhang, K. J., 2017. Early Permian Qiangtang Flood Basalts, Northern Tibet, China: A Mantle Plume That Disintegrated Northern Gondwana? Gondwana Research, 44: 96-108. https://doi.org/10.1016/j.gr.2016.10.019
      Zhou, S., Mo, X. X., Dong, G. C., et al., 2004. 40Ar/39Ar Ages of Linzizong Igneous Rocks in Linzhou Basin, Tibet. Chinese Science Bulletin, 49(20): 2095-2103(in Chinese). doi: 10.1360/csb2004-49-20-2095
      Zhu, D. C., Zhao, Z. D., Pan, G. T., et al., 2009. Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet: Products of Slab Melting and Subsequent Melt-Peridotite Interaction? Journal of Asian Earth Sciences, 34(3): 298-309. https://doi.org/10.1016/j.jseaes.2008.05.003
      Zou, J. Q., Yu, H. X., Wang, B. D., et al., 2018. Petrogenesis and Geological Implications of Early Jurassic Granodiorites in Renqinze Area, Central Part of Southern Lhasa Subterrane. Earth Science, 43(8): 2795-2810(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808020.htm
      董国臣, 莫宣学, 赵志丹, 等, 2005. 拉萨北部林周盆地林子宗火山岩层序新议. 地质通报, 24(6): 549-557. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200506012.htm
      郭铁鹰, 梁定益, 张宜智, 1991. 西藏阿里地质. 武汉: 中国地质大学出版社.
      贾建称, 温长顺, 王根厚, 等, 2005. 冈底斯地区林子宗群火山岩岩石地球化学特征及地球动力学意义. 中国地质, 32(3): 396-404. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200503007.htm
      李皓扬, 钟孙霖, 王彦斌, 等, 2007. 藏南林周盆地林子宗火山岩的时代、成因及其地质意义: 锆石U-Pb年龄和Hf同位素证据. 岩石学报, 23(2): 493-500. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702026.htm
      李勇, 张士贞, 李奋其, 等, 2018. 拉萨地块中段查孜地区典中组火山岩锆石U-Pb年龄及地质意义. 地球科学, 43(8): 2755-2766. doi: 10.3799/dqkx.2018.593
      李再会, 郑来林, 李军敏, 等, 2009. 冈底斯中段林子宗火山岩40Ar-39Ar年龄及其意义. 矿物岩石地球化学通报, 28(3): 223-227. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200903002.htm
      梁银平, 朱杰, 次邛, 等, 2010. 青藏高原冈底斯带中部朱诺地区林子宗群火山岩锆石U-Pb年龄和地球化学特征. 地球科学, 35(2): 211-223. doi: 10.3799/dqkx.2010.021
      刘安琳, 朱弟成, 王青, 等, 2015. 藏南米拉山地区林子宗火山岩LA-ICP-MS锆石U-Pb年龄和起源. 地质通报, 34(5): 826-833. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201505003.htm
      莫宣学, 赵志丹, 邓晋福, 等, 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303019.htm
      王乔林, 2011. 冈底斯西段林子宗群火山岩的地球化学特征及锆石年代学研究(硕士学位论文). 北京: 中国地质大学.
      谢冰晶, 周肃, 谢国刚, 等, 2013. 西藏冈底斯中段孔隆至丁仁勒地区林子宗群火山岩锆石SHRIMP年龄和地球化学特征的区域对比. 岩石学报, 29(11): 3803-3814. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311013.htm
      杨辉, 向树元, 王欣, 等, 2013. 西藏马乡地区典中组年龄厘定及其构造背景. 地质科技情报, 32(4): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201304015.htm
      于枫, 李志国, 赵志丹, 等, 2010. 西藏冈底斯带中西部措麦地区林子宗火山岩地球化学特征及意义. 岩石学报, 26(7): 2217-2225. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007023.htm
      周肃, 莫宣学, 董国臣, 等, 2004. 西藏林周盆地林子宗火山岩40Ar/39Ar年代格架. 科学通报, 49(20): 2095-2103. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200420013.htm
      邹洁琼, 余红霞, 王保弟, 等, 2018. 南拉萨地块中部早侏罗世仁钦则花岗闪长岩成因及其地质意义. 地球科学, 43(8): 2795-2810. doi: 10.3799/dqkx.2018.589
    • 加载中
    图(10)
    计量
    • 文章访问数:  1200
    • HTML全文浏览量:  756
    • PDF下载量:  65
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-09-15
    • 刊出日期:  2021-02-15

    目录

      /

      返回文章
      返回