Characteristics of Thermal Maturity of Graptolite-Bearing Shales in Wufeng-Longmaxi Formations on Northern Margin of Xuefeng Mountain
-
摘要: 五峰组-龙马溪组含笔石富有机质页岩是中国目前最成功和最重要的页岩气勘探目标.由于缺乏镜质体,该地层的成熟度一直存在争议.以雪峰山西侧北缘富含笔石的五峰组-龙马溪组页岩为例,采用笔石表皮体反射率来表征其成熟度特征.该套页岩笔石含量丰富,以非粒状笔石表皮体为主,其具有二轴晶光性特征,最大反射率(GRmax)和双反射率之间表现出正相关关系,成熟度越高的笔石表皮体表现出更强的各向异性.同时,该套地层中也含有丰富的沥青颗粒,其随机反射率与笔石表皮体的最大和随机反射率也呈现了正相关性,其各向异性更弱,但其成因复杂,且颗粒细小,测定较困难,因此,相对而言,作为热成熟指标,笔石表皮体反射率更占优势.雪峰山西侧北缘五峰组-龙马溪组含笔石页岩的成熟度较高,EqVRo值均为3.10%以上,达到了过成熟阶段,是页岩气勘探的有利区.Abstract: The maturity of the Wufeng-Longmaxi Formation organic-rich shales with graptolites, which is now one of the most successful and important shale gas exploration targets in China, has been controversial due to the lack of vitrinite. In this paper, taking this formation shale located on the northern margin of Xuefeng Mountain as an example, the graptolite reflectance is used to represent the maturity characteristics. It is concluded that this shale is rich in graptolite, mainly composed of non-granular graptolites which have biaxial optical characteristics, and its maximum reflectance (GRmax) and bireflectance are positive. In addition, the higher the maturity of the graptolites, the greater the anisotropy of graptolite reflectance. At the same time, this formation is also rich in asphalt particles, and its random reflectance value is also positively correlated with the maximum and random reflectance of the graptolites, and its anisotropy is weaker than the former. However, the reflectance of asphalt particles is difficult to measure because of its complicated formation factor and smaller size. Relatively speaking, the graptolite reflectance is more dominant as a thermal maturity indicator. The Wufeng-Longmaxi Formation shales located on the northern margin of Xuefeng Mountain is a favorable area for shale gas exploration because of its high maturity. The equivalent vitrinite reflectance values (EqVRo) of this shale has reached more than 3.10%, reaching the over-mature stage.
-
Key words:
- shale gas /
- graptolite reflectance /
- Wufeng-Longmaxi Formations /
- thermal evolution /
- petroleum geology
-
0. 引言
华南地区广泛分布有奥陶系-志留系含笔石页岩(Chen et al., 2000, 2004; 金之钧等, 2016),并具有全球可对比性(Chen et al., 2004; Agapitov, 2014).华南上奥陶统五峰组-下志留统龙马溪组页岩不仅是重要的海相烃源岩层系(梁狄刚等,2008),还是页岩气勘探与开发的重点目标层系(邹才能等,2010;郭彤楼和刘若冰,2013).近年的勘探结果显示,五峰组-龙马溪组富有机质页岩含气性差异悬殊(邹才能等,2010),这极大地限制了页岩气勘探与开发的进行.前人的研究也已证实,热演化程度与页岩含气性具有明显的相关性(Curtis, 2002;邹才能等,2010;Jarvie, 2012;马永生等,2018),是影响富有机质页岩含气性的最关键因素之一(Curtis, 2002;Jarvie, 2012;Borjigin et al., 2017),因此,如何准确地评估此类页岩的热演化程度,是进行页岩气勘探必须要解决的重要问题.
热成熟度参数指标很多,镜质体反射率(Ro)是公认的最可靠的热成熟度指标,然而,对于前泥盆系,因为缺失高等植物来源的镜质体无法进行镜质体反射率的测量.因此,其他的热演化参数,如沥青反射率(BRo)、生物标志物参数、牙形石颜色变化指数(CAI)、热变化指数(TAI)、干酪根氢碳原子比(H/C)、Rock-Eval热解峰温(Tmax)和流体包裹体均一化温度等被用来评价前泥盆系烃源岩有机质成熟度(Tissot and Welte, 1984;Petersen et al., 2013).然而,这些参数受各种因素制约,往往仅在一定范围内有效,而且在使用时通常需要换算成等效镜质体反射率(EqVRo)(Petersen et al., 2013).现今华南地区五峰组-龙马溪组页岩往往达到了高-过成熟阶段(Dai et al., 2014, 2016),前述的传统方法大都失效,仅能作为定性或半定量结果来参考.相对而言,沥青反射率(BRo)与热成熟度之间具有良好的相关关系,而且成熟度表征范围广,早期被很多研究者用来表征热成熟度(Jacob, 1989;肖贤明等,1991;Goodarzi et al., 1992).但固体沥青成因复杂,经常出现多期不同成因沥青的混合,且在较高演化阶段时,由于纳米孔引起沥青表面质量的不均一(Bernard et al., 2012),导致沥青反射率波动范围较大,因而存在很大的争议(Suárez-Ruiz et al., 2012).
以往,五峰组-龙马溪组地层热演化成熟度通常采用沥青或类镜质组颗粒反射率来确定(肖贤明等, 1991, 1997;曾凡刚等,1998;Suárez-Ruiz et al., 2012),然而,也有研究者认为:由于对笔石表皮体光学特征认识不足,以往测定的沥青或类镜质组颗粒很可能是对笔石表皮体的误识(Luo et al., 2018).近年来,不断有学者探讨使用笔石表皮体的反射率来评估含笔石的烃源岩有机质成熟度(Goodarzi and Norford, 1989;Bertrand, 1990;Goodarzi et al., 1992;Liang et al., 2012; Petersen et al., 2013;Luo et al., 2016, 2017, 2018;仰云峰,2016;王晔等,2019).
高-过成熟的笔石表皮体具有各向异性(Goodarzi and Norford, 1989;Goodarzi et al., 1992;Luo et al., 2016, 2017, 2018),和镜质体类似,实际制样过程中很难获得完全平行或垂直光性长轴切面,因此,也很少能测得真正的最大反射率Rmax、随机反射率Rran和最小反射率Rmin(Malinconico,1993;Luo et al., 2016, 2017, 2018).前人借鉴镜质体提出了笔石表皮体反射率十字图解法,以获得Rmax、Rint和Rmin的值,绘制三参数的三角图(GRmax、GRint和GRmin值),来确定笔石反射指示图GRIS形状(GRIS是笔石反射测量的椭圆体模型),从而确定GRIS图解的结构(Kilby, 1988, 1991;Goodarzi et al., 1992;Luo et al., 2016, 2017, 2018),进而来评价含笔石地层的热成熟度.仰云峰(2016)报道了四川盆地周缘川东南地区几口井笔石表皮体反射率特征,Luo et al.(2016, 2017, 2018)采用笔石表皮体反射率评价了重庆地区的五峰组-龙马溪组含笔石页岩热成熟度,王晔等(2019)采用笔石表皮体反射率评价了四川盆地及周缘笔石样品热成熟度情况.然而对于更远离四川盆地的雪峰山西侧北缘尤其是黄陵背斜以东地区尚未见诸报道.
本文采集了雪峰山西侧北缘地区富含笔石的五峰组-龙马溪组页岩(图 1),通过测定笔石表皮体反射率,以期对本地区的热成熟度进行详细的评价.
1. 地质背景
早寒武世-早奥陶世,研究区总体以碳酸盐岩台地沉积体系为主,中奥陶世-志留纪,研究区发生重大地理变革,黔中隆起、雪峰山隆起、华夏隆起等相继隆升,晚奥陶世末期发生一次快速海侵(马永生等,2018),形成了以晚奥陶世五峰期为代表的浅海局限台地沉积,总体表现为低能量补偿缺氧环境(李艳芳等,2015;Wang et al., 2016),早志留世龙马溪期是在观音桥段奥陶系冰期事件(腾格尔等,2017)之后发生的一期快速海侵过程(王玉满等,2015),形成了底部厚达30~120 m富有机质的黑色碳质页岩(邹才能等,2010;Dai et al., 2014),其后发生海退,形成了灰黄绿色页岩和砂岩页岩与粉砂岩和泥灰岩互层沉积(王玉满等,2015).在Chen et al.(2004)的笔石带划分工作基础上,许多学者对五峰组-龙马溪组开展了详细的层序划分与地层对比工作(图 2).本文页岩层位归属参考了其划带标准(Chen et al., 2004;郭彤楼和刘若冰, 2013;陈旭等,2017;郭旭升,2017).
2. 样品与实验
2.1 样品信息
本文共选取了来自雪峰山西侧北缘3口井和一个剖面的富含笔石的五峰组-龙马溪组页岩样品9件.样品信息如表 1所示.
表 1 样品信息Table Supplementary Table Sample information序号 样品编号 地点 深度(m) 层位 岩性 TOC(%) 1 TB-18 田坝剖面 -- S1l 黑色页岩 5.11 2 TB-20 田坝剖面 -- S1l 黑色页岩 2.81 3 XLD-48 湖南龙山 1 488.8 S1l-LM5段 硅质页岩 1.09 4 XLD-56 湖南龙山 1 493.2 S1l-LM5段 硅质页岩 0.86 5 XLD-74 湖南龙山 1 502.7 S1l-WF2段 硅质页岩 3.67 6 J101-4079 湖北远安 4 079 龙一段3小层 黑色页岩 2.63 7 J101-4083-V* 湖北远安 4 083 龙一段2小层 黄灰色硅质页岩 1.06 8 J101-4083-H** 湖北远安 4 083 龙一段2小层 黄灰色硅质页岩 1.06 9 J102-3114 湖北远安 3 114 龙一段2小层 灰黑色泥页岩 2.53 10 J102-3124-V* 湖北远安 3 124 O3w 灰黑色页岩 3.72 11 J102-3124-H** 湖北远安 3 124 O3w 灰黑色页岩 3.72 注:V*为垂直层理方向的切片,H**为平行层理方向的切片. 2.2 样品处理
将岩石样品(图 3)沿垂直层理方向切割出长、宽各为2 cm左右的块样,用环氧树脂对样品进行固结,制作成块光片,在Buehler自动研磨和抛光机上抛光,磨成用于显微镜检查的光滑表面.另外,挑选了J101-4083和J102-3124两个样品沿平行层理方向切样,并制作光片(处理方法同上).
2.3 实验过程
测试过程在Leica DM4500P光学显微镜上完成,该显微镜配备CRAIC光学显微镜光度计.在反射光50倍物镜下进行全岩光片显微组分观察和反射率的测定.反射率的测定主要包括:在偏振光条件下通过旋转物台测量笔石表皮体最大反射率(GRmax)和最小反射率(GRmin),在非偏振光条件下测定笔石表皮体的随机反射率(GRran).在每次测量之前,用标样(Saphir 0.589%Ro,Gadolinium- gallium-garnet 1.725%Ro,Cubic zirconia 3.08%Ro和Titonate Titanate 5.36%Ro)进行校准.详细的设备条件和测量过程参见文献Luo et al.(2016, 2017, 2018).每个样品的笔石表皮体随机反射率(GRran)均测得了约30个测点,笔石表皮体最大(GRmax)和最小(GRmin)反射率测点约20对.另外对于样品光片中的沥青也进行了测试,每个样品约30个测点.制样和分析测试均在中国石油大学(北京)油气资源与探测国家重点实验室完成.
3. 实验与讨论
3.1 笔石表皮体有机质的光性特征
本文对全部样品进行了有机显微组分的观察,可发现笔石表皮体、几丁虫体和固体沥青,其中笔石表皮体和固体沥青含量最多.相对而言,笔石表皮体往往呈层片状产出,形态包括非粒状和粒状两种,以非粒状笔石表皮体为主,经常断裂为分节的片段,断面整齐,各节呈断续线状分布(图 4a,4d,4e), 部分呈现出纺锤层结构(图 4f,4h)(Goodarzi et al., 1992).总体来讲,笔石表皮体颗粒尺寸较大,基本大于5 μm,部分笔石表皮体厚可达20 μm以上(图 4d,4h).有时可见到部分笔石表皮体颗粒呈现出一大一小近平行状分布(图 3c,3f),其间空腔部分常被黄铁矿充填(图 4f).在平行层理切片方向上,可见笔石表皮体颗粒尺寸更大(图 4e,4f,4g,4h),而且可见在垂直层理切片方向上相对较少见的纺锤层结构(图 4f,4h),其中4e和4g中笔石表皮体为垂直层理方向切片,这主要与笔石死亡时的埋藏状态有关.在单偏光下,旋转物台可发现非粒状笔石表皮体具有明暗交替的消光现象,具有强烈的各向异性,表现出明显的二轴晶光性特征(Goodarzi et al., 1992).
图 4 雪峰山西侧北缘五峰组-龙马溪组页岩典型显微组分照片(油浸,反射白光,×50)a.断续状分布笔石表皮体与固体沥青(TB18);b.断续线状分布笔石表皮体,可见黄铁矿充填几丁虫体(XLD-48); c.笔石表皮体(XLD-56); d.分段笔石表皮体(XLD-74); e.笔石表皮体与固体沥青(J101-4083-V); f.纺锤层结构的笔石表皮体,局部沥青浸染(J101-4083-H); g.断续线状笔石表皮体(J102-3124-V); h.含纺锤层结构的笔石表皮体(J102-3124-H)Fig. 4. Graptolite fragments in Wufeng-Longmaxi shales (oil immersion, polarized light, ×50)3.2 笔石表皮体反射率特征及反射率十字图解法
3.2.1 笔石表皮体实测最小反射率(GRmin)特征
本文对全部9件样品进行了深入细致的反射率测量,从测量结果来看(表 2),在垂直层理的切片方向上,笔石表皮体最小反射率(GRmin)为0.45%~0.92%,其中黄陵背斜东侧J101井和J102井五峰组-龙马溪组笔石表皮体最小反射率为0.45%~0.73%;湘西北龙山地区GRmin为0.48%~0.76%;而露头田坝剖面笔石表皮体GRmin相对较高, 介于0.68%~0.92%.
表 2 样品成熟度的校正Table Supplementary Table The calibration of sample maturity样品编号 GRran
(%)GRmin
(%)GRmax
(%)GRmax-GRmin(%) GRmax平均值
(%)测点 EqVRo* TB-18 3.50 0.92 6.88 5.96 5.70 20 3.64 TB-20 3.34 0.68 6.34 5.66 5.44 20 3.47 XLD-48 2.99 0.48 5.62 5.14 4.93 20 3.10 XLD-56 3.03 0.56 5.88 5.32 4.92 20 3.14 XLD-74 3.05 0.76 6.01 5.25 5.28 20 3.16 J101-4079 3.50 0.73 6.66 5.93 5.41 20 3.64 J101-4083-V 3.89 0.55 7.84 7.29 6.29 22 4.05 J102-3114 3.52 0.60 6.09 5.49 5.38 20 3.66 J102-3124-V 3.35 0.45 6.69 6.24 5.75 21 3.48 注:*EqVRo=1.055×GRran-0.053 (GRran为随机反射率,%)( Luo et al., 2018 ).同时为了对比不同切片方向对反射率测值的影响,本文对两块平行层理的切片方向与垂直层理的切片方向光片进行了对比.在平行层理的切片方向上,J101-4083样品和J102-3124样品的笔石表皮体GRmin分别为1.12%和2.22%,均明显高于垂直层理的切片方向的GRmin.这也从另一方面说明笔石表皮体的二轴晶光性特征,与前人的论述情况相符(Goodarzi et al., 1992;Luo et al., 2016, 2017, 2018).
3.2.2 笔石表皮体实测最大反射率(GRmax)特征
笔石表皮体最大反射率(GRmax)为5.62%~7.84%(表 2),其中黄陵背斜东侧J101井和J102井五峰组-龙马溪组笔石表皮体最大反射率为5.91%~7.84%;湘西北龙山地区GRmax相对略低,为5.62%~6.01%;而露头TB剖面笔石表皮体GRmax为6.34%~6.88%.
3.2.3 笔石表皮体双反射率(GRmax-GRmin)特征
三地区笔石表皮体双反射率值(GRmax-GRmin)均较高,除J102-3124水平切片因成对测点数量较少可能代表性不足外,其他各样品双反射率普遍达到5%以上(表 2),表明笔石表皮体具有强烈的各向异性,类似于二轴光性椭球体,这与Luo et al.(2017)论述的重庆地区笔石表皮体的反射率特征类似.笔石表皮体最大反射率与双反射率呈强烈正相关性(图 5),表明有机质成熟度越高,笔石的各向异性更强烈.
3.2.4 笔石表皮体反射率十字图解法
类似于镜质体反射率,同一样品中的单个笔石表皮体视最大和最小反射率(GR'max和GR'min即文中出现的测得的GRmax、GRmin数据),可以用于确定笔石表皮体的真正的GRmax、GRint和GRmin值.根据不同有机质成熟度,选取了几个样品绘制笔石表皮体反射率十字图解(图 6).当所有点在十字图解法中绘制时,可以观察到两个梯形.最大和最小数据的交汇处的反射率值是GRint,单个最高或最低值分别记录为GRmax或GRmin.在大多数样品中,均显示出类似V字形的形状,表明所研究的笔石表皮体的二轴晶光性特征.
图 6 研究区五峰组-龙马溪组页岩笔石表皮体双反射率十字图解据Kilby(1988); a=Rmax; b=Rint; c=RminFig. 6. Reflectance crossplots and relevant cross-sections across GRISKilby(1988, 1991)提出了以3个参数(GRmax、GRint和GRmin值)绘制的三角图,以确定GRIS形状.GRIS可分为长圆形(雪茄形)或扁圆形(薄饼形),前者是由构造活动产生的,而后者是由垂直荷载引起的.从远安地区两口井样品情况来看,主要是二轴中性(Rmax-Rint ≈ Rint-Rmin)和二轴负光性(0 < Rmax-Rint < Rint-Rmin)(图 6).
3.2.5 笔石表皮体切片方向对反射率测值的影响
不同的切片方向,对笔石表皮体的反射率会产生一定的影响.在同一样品中,垂直层理切片方向的视GRmax略微大于平行层理切片方向的样品;而视GRmin则明显小于平行层理切片方向的样品;同一样品,相对于垂直切片而言,平行层理切片方向的样品所测得的反射率更加分散,而垂直层理切片方向的样品测得的反射率则相对集中,这可能与笔石表皮体在埋藏过程中不同方向受到的应力大小有关(图 6).
3.3 沥青反射率(BRo)与笔石表皮体最大反射率(GRmax),随机反射率(GRran)的关系
本文对11块光片测定了沥青随机反射率(BRo),测试对象主要为尺寸略大的焦沥青类(图 7).笔石表皮体的平均最大反射率和平均随机反射率呈强烈正相关关系(图 8),沥青随机反射率数据和笔石表皮体的平均最大反射率与平均随机反射率均呈正相关关系(图 9),这与Luo et al.(2018)的研究结果一致.值得注意的是,在同一样品中,沥青随机反射率值相对于笔石表皮体随机反射率更加分散(图 10),表明在含笔石页岩中,笔石表皮体反射率更适合作为有机质成熟度指标.
3.4 五峰组-龙马溪组含笔石页岩成熟度的确定
沥青反射率常被用来表征下古生界海相烃源岩的热成熟度,但沥青生源复杂,尤其是次生沥青的存在使得烃源岩热成熟度的判断可能存在极大的偏差.如王晔等(2019)在研究四川盆地周缘古生界烃源岩热成熟度时,认为至少有2期不同反射率的沥青存在,这对认识烃源岩地层热成熟度带来很大的困扰.相对而言,笔石表皮体为原生组分,具有成因单一的特点,其反射率在表征成熟度方面具有明显的优势(Luo et al., 2017).
笔石表皮体的最大反射率随深度增加而增加, 可以作为评价有机质成熟度的参数.Luo et al.(2018)以低成熟度含笔石样品开展热压模拟实验获得相对完整成熟度系列笔石样品,分别建立了笔石表皮体随机反射率和最大反射率与镜质体反射率之间的关系:
EqVRo=1.055×GRran−0.053, (1) EqVRo=0.756×GRmax+0.313, (2) EqVRo为等效镜质体反射率,GRran为笔石随机反射率,GRmax为笔石最大反射率, 单位是%.本文以Luo et al. (2018)的公式(1)和(2)分别校正了雪峰山地区五峰组-龙马溪组含笔石页岩的等效镜质体反射率,由这2个公式校正后得到的等效镜质体反射率值比较接近,达到了3.1%以上(表 2),表明该套页岩的热演化程度较高,达到了过成熟阶段.热演化程度与页岩含气性具有明显的相关性,是影响富有机质页岩含气性的最关键因素之一,是页岩气勘探的有利区.
4. 结论
(1)显微镜下笔石表皮体主要以非粒状为主,在高-过成熟阶段其光学性质体现出强烈的各向异性特征,具有二轴晶光性的特点;
(2)笔石表皮体最大反射率和双反射率具有良好的正相关关系,表明随着热演化程度的增高,笔石表皮体的各向异性特征越来越强烈;
(3)沥青成因复杂,作为生源明确的原生显微组分——笔石表皮体反射率更适合用于表征有机质成熟度;
(4)雪峰山西侧北缘地区五峰组-龙马溪组页岩的等效镜质体反射率值为3.10%~4.05%,属过成熟阶段.
致谢: 核工业北京地质研究院和中石油杭州地质所提供了部分研究样品,审稿专家提出了宝贵意见,在此,本文作者一并表示特别感谢! -
图 2 JY1井龙马溪组综合柱状图中TOC等指数变化与笔石带的对照
Fig. 2. Composite column chart of Longmaxi Formation with a correlation between TOC index and graptolite biozones in the Well JY1
图 4 雪峰山西侧北缘五峰组-龙马溪组页岩典型显微组分照片(油浸,反射白光,×50)
a.断续状分布笔石表皮体与固体沥青(TB18);b.断续线状分布笔石表皮体,可见黄铁矿充填几丁虫体(XLD-48); c.笔石表皮体(XLD-56); d.分段笔石表皮体(XLD-74); e.笔石表皮体与固体沥青(J101-4083-V); f.纺锤层结构的笔石表皮体,局部沥青浸染(J101-4083-H); g.断续线状笔石表皮体(J102-3124-V); h.含纺锤层结构的笔石表皮体(J102-3124-H)
Fig. 4. Graptolite fragments in Wufeng-Longmaxi shales (oil immersion, polarized light, ×50)
图 6 研究区五峰组-龙马溪组页岩笔石表皮体双反射率十字图解
据Kilby(1988); a=Rmax; b=Rint; c=Rmin
Fig. 6. Reflectance crossplots and relevant cross-sections across GRIS
表 1 样品信息
Table 1. Sample information
序号 样品编号 地点 深度(m) 层位 岩性 TOC(%) 1 TB-18 田坝剖面 -- S1l 黑色页岩 5.11 2 TB-20 田坝剖面 -- S1l 黑色页岩 2.81 3 XLD-48 湖南龙山 1 488.8 S1l-LM5段 硅质页岩 1.09 4 XLD-56 湖南龙山 1 493.2 S1l-LM5段 硅质页岩 0.86 5 XLD-74 湖南龙山 1 502.7 S1l-WF2段 硅质页岩 3.67 6 J101-4079 湖北远安 4 079 龙一段3小层 黑色页岩 2.63 7 J101-4083-V* 湖北远安 4 083 龙一段2小层 黄灰色硅质页岩 1.06 8 J101-4083-H** 湖北远安 4 083 龙一段2小层 黄灰色硅质页岩 1.06 9 J102-3114 湖北远安 3 114 龙一段2小层 灰黑色泥页岩 2.53 10 J102-3124-V* 湖北远安 3 124 O3w 灰黑色页岩 3.72 11 J102-3124-H** 湖北远安 3 124 O3w 灰黑色页岩 3.72 注:V*为垂直层理方向的切片,H**为平行层理方向的切片. 表 2 样品成熟度的校正
Table 2. The calibration of sample maturity
样品编号 GRran
(%)GRmin
(%)GRmax
(%)GRmax-GRmin(%) GRmax平均值
(%)测点 EqVRo* TB-18 3.50 0.92 6.88 5.96 5.70 20 3.64 TB-20 3.34 0.68 6.34 5.66 5.44 20 3.47 XLD-48 2.99 0.48 5.62 5.14 4.93 20 3.10 XLD-56 3.03 0.56 5.88 5.32 4.92 20 3.14 XLD-74 3.05 0.76 6.01 5.25 5.28 20 3.16 J101-4079 3.50 0.73 6.66 5.93 5.41 20 3.64 J101-4083-V 3.89 0.55 7.84 7.29 6.29 22 4.05 J102-3114 3.52 0.60 6.09 5.49 5.38 20 3.66 J102-3124-V 3.35 0.45 6.69 6.24 5.75 21 3.48 注:*EqVRo=1.055×GRran-0.053 (GRran为随机反射率,%)( Luo et al., 2018 ). -
Agapitov, I., 2014. Graptolite Shale—Worldwide Distributed Ordovician and Silurian Source Rock. Society of Petroleum Engineers, SPE-173477-STU. https://doi.org/10.2118/173477-STU Bernard, S., Wirth, R., Schreiber, A., et al., 2012. Formation of Nanoporous Pyrobitumen Residues during Maturation of the Barnett Shale (Fort Worth Basin). International Journal of Coal Geology, 103: 3-11. https://doi.org/10.1016/j.coal.2012.04.010 Bertrand, R., 1990. Correlations among the Reflectances of Vitrinite, Chitinozoans, Graptolites and Scolecodonts. Organic Geochemistry, 15(6): 565-574. https://doi.org/10.1016/0146-6380(90)90102-6 Borjigin, T., Shen, B.J., Yu, L.J., et al., 2017. Mechanisms of Shale Gas Generation and Accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China. Petroleum Exploration and Development, 44(1):69-78. https://doi.org/10.1016/s1876-3804(17)30009-5 Chen, X., Fan, J.X., Wang, W.H., et al., 2017. Stage-Progressive Distribution Pattern of the Lungmachi Black Graptolitic Shales from Guizhou to Chongqing, Central China. Science in China (Series D: Earth Sciences), 47(6): 720-732 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201706009.htm Chen, X., Rong, J.Y., Li, Y., et al., 2004. Facies Patterns and Geography of the Yangtze Region, South China, through the Ordovician and Silurian Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 204(3-4): 353-372. https://doi.org/10.1016/s0031-0182(03)00736-3 Chen, X., Rong, J.Y., Mitchell, C. E., et al., 2000. Late Ordovician to Earliest Silurian Graptolite and Brachiopod Biozonation from the Yangtze Region, South China, with a Global Correlation. Geological Magazine, 137(6):623-650. https://doi.org/10.1017/s0016756800004702 Curtis, J.B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86:1921-1938. https://doi.org/10.1306/61eeddbe-173e-11d7-8645000102c1865d Dai, J.X., Zou, C.N., Dong, D.Z., et al., 2016. Geochemical Characteristics of Marine and Terrestrial Shale Gas in China. Marine and Petroleum Geology, 76: 444-463. https://doi.org/10.1016/j.marpetgeo.2016.04.027 Dai, J.X., Zou, C.N., Liao, S.M., et al., 2014. Geochemistry of the Extremely High Thermal Maturity Longmaxi Shale Gas, Southern Sichuan Basin. Organic Geochemistry, 74: 3-12. https://doi.org/10.1016/j.orggeochem.2014.01.018 Goodarzi, F., Eckstrand, O.R., Snowdon, L., et al., 1992. Thermal Metamorphism of Bitumen in Archean Rocks by Ultramafic Volcanic Flows. International Journal of Coal Geology, 20(1-2): 165-178. https://doi.org/10.1016/0166-5162(92)90009-l Goodarzi, F., Gentzis, T., Harrison, C., et al., 1992.The Significance of Graptolite Reflectance in Regional Thermal Maturity Studies, Queen Elizabeth Islands, Arctic Canada. Organic Geochemistry, 18(3):347-357. https://doi.org/10.1016/0146-6380(92)90075-9 Goodarzi, F., Norford, B.S., 1989. Variation of Graptolite Reflectance with Depth of Burial. International Journal of Coal Geology, 11(2): 127-141. https://doi.org/10.1016/0166-5162(89)90002-5 Guo, T.L., Liu, R.B., 2013. Implications from Marine Shale Gas Exploration Breakthrough in Complicated Structural Area at High Thermal Stage: Taking Longmaxi Formation in Well JY1 as an Example. Natural Gas Geoscience, 24(4):643-651 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201304000.htm Guo, X.S., 2017. Sequence Stratigraphy and Evolution Model of the Wufeng-Longmaxi Shale in the Upper Yangtze Area.Earth Science, 42(7):1069-1082 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.086 Jacob, H., 1989.Classification, Structure, Genesis and Practical Importance of Natural Solid Oil Bitumen ("Migrabitumen"). International Journal of Coal Geology, 11(1):65-79. https://doi.org/10.1016/0166-5162(89)90113-4 Jarvie, D. M., 2012. Shale Resource Systems for Oil and Gas: Part 2—Shale-Oil Resource Systems. AAPG Memoir, 97: 89-119. https://doi.org/10.1306/13321447M973489 Jin, Z.J., Hu, Z.Q., Gao, B., et al., 2016. Controlling Factors on the Enrichment and High Productivity of Shale Gas in the Wufeng-Longmaxi Formations, Southeastern Sichuan Basin. Earth Science Frontiers, 23(1): 1-10(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201601001 Kilby, W.E., 1988. Recognition of Vitrinite with Non-Uniaxial Negative Reflectance Characteristics. International Journal of Coal Geology, 9(3): 267-285. https://doi.org/10.1016/0166-5162(88)90017-1 Kilby, W.E., 1991. Vitrinite Reflectance Measurement—Some Technique Enhancements and Relationships. International Journal of Coal Geology, 19(1-4):201-218. https://doi.org/10.1016/0166-5162(91)90021-A Li, Y.F., Lü, H.G., Zhang, Y., et al., 2015. U-Mo Covariation in Marine Shales of Wufeng-Longmaxi Formations in Sichuan Basin, China and Its Implication for Identification of Watermass Restriction. Geochimica, 44(2):109-116 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201502002 Liang, C., Jiang, Z. X., Yang, Y. T., et al., 2012. Shale Lithofacies and Reservoir Space of the Wufeng–Longmaxi Formation, Sichuan Basin, China. Petroleum Exploration and Development, 39(6): 736-743. https://doi.org/10.1016/s1876-3804(12)60098-6 Liang, D.G., Guo, T.L., Chen, J.P., et al., 2008.Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 1) :Distribution of Four Suits of Regional Marine Source Rocks. Marine Origin Petroleum Geology, 13(2):1-16 (in Chinese with English abstract). Luo, Q.Y., Hao, J.Y., Skovsted, C. B., et al., 2017.The Organic Petrology of Graptolites and Maturity Assessment of the Wufeng–Longmaxi Formations from Chongqing, China: Insights from Reflectance Cross-Plot Analysis. International Journal of Coal Geology, 183:161-173. https://doi.org/10.1016/j.coal.2017.09.006 Luo, Q.Y., Hao, J.Y., Skovsted, C. B., et al., 2018.Optical Characteristics of Graptolite-Bearing Sediments and Its Implication for Thermal Maturity Assessment. International Journal of Coal Geology, 195:386-401. https://doi.org/10.1016/j.coal.2018.06.019 Luo, Q.Y., Zhong, N.N., Dai, N., et al., 2016. Graptolite-Derived Organic Matter in the Wufeng–Longmaxi Formations (Upper Ordovician–Lower Silurian) of Southeastern Chongqing, China: Implications for Gas Shale Evaluation. International Journal of Coal Geology, 153: 87-98. https://doi.org/10.1016/j.coal.2015.11.014 Ma, Y.S., Cai, X.Y., Zhao, P.R., 2018.China's Shale Gas Exploration and Development: Understanding and Practice. Petroleum Exploration and Development, 45(4):561-574 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syktykf201804003 Malinconico, M.A.L., 1993. Reflectance Cross-Plot Analysis of Graptolites from the Anchi-Metamorphic Region of Northern Maine, U.S.A.. Organic Geochemistry, 20(2): 197-207. https://doi.org/10.1016/0146-6380(93)90038-D Petersen, H. I., Schovsbo, N.H., Nielsen, A.T., 2013. Reflectance Measurements of Zooclasts and Solid Bitumen in Lower Paleozoic Shales, Southern Scandinavia: Correlation to Vitrinite Reflectance.International Journal of Coal Geology, 114:1-18. https://doi.org/10.1016/j.coal.2013.03.013 Suárez-Ruiz, I., Flores, D., Mendonça Filho, J.G., et al., 2012. Review and Update of the Applications of Organic Petrology: Part 1, Geological Applications. International Journal of Coal Geology, 99: 54-112. https://doi.org/10.1016/j.coal.2012.02.004 Teng, G.E., Shen, B.J., Yu, L.J., et al., 2017. Mechanisms of Shale Gas Generation and Accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China. Petroleum Exploration and Development, 44(1):69-78 (in Chinese with English abstract). doi: 10.1016/S1876-3804(17)30009-5 Tissot, B.P., Welte, D.H., 1984. Petroleum Formation and Occurrence (Second Revised and Enlarged Edition). Springer-Verlag, Berlin Heidelberg, NewYork, 699. https://doi.org/10.1007/978-3-642-87813-8 Wang, G. X., Zhan, R. B., Percival, I. G., 2016. New Data on Hirnantian (Latest Ordovician) Postglacial Carbonate Rocks and Fossils in Northern Guizhou, Southwest China. Canadian Journal of Earth Sciences, 53(7):660-665. https://doi.org/10.1139/cjes-2015-0197 Wang, Y., Qiu, N.S., Yang, Y.F., et al., 2019. Thermal Maturity of Wufeng-Longmaxi Shale in Sichuan Basin. Earth Science, 44(3):953-971 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201903022 Wang, Y.M., Dong, D.Z., Li, X.J., et al., 2015.Stratigraphic Sequence and Sedimentary Characteristics of Lower Silurian Longmaxi Formation in Sichuan Basin and Its Peripheral Areas. Natural Gas Industry, 35(3):12-21 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S235285401500042X Xiao, X.M., Liu, D.H., Fu, J.M., 1991.The Significance of Bitumen Reflectance as a Mature Parameter of Source Rocks. Acta Sedimentologica Sinica, 9(Suppl.1):138-146 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB1991S1018.htm Xiao, X.M., Liu, D.H., Fu, J.M., et al., 1997. Marine Vitrinite—An Important Hydrocarbon Source Matter in Marine Source Rocks. Acta Petrolei Sinica, 18(1):44-48 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB701.007.htm Yang, Y.F., 2016. Application of Bitumen and Graptolite Reflectance in the Silurian Longmaxi Shale, Southeastern Sichuan Basin. Petroleum Geology & Experiment, 38(4):466-472 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201604008 Zeng, F.G., Cheng, K.M., Wu, C.D., 1998. Maturity of the Lower Palaeozoic in North China in Terms of Reflectivity of Marine Vitrinites.Earth Geochemistry, 26(3):21-24 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800067388 Zou, C.N., Dong, D.Z., Wang, S.J., et al., 2010. Geological Characteristics, Formation Mechanism and Resource Potential of Shale Gas in China. Petroleum Exploration and Development, 37(6): 641-653 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60001-3 陈旭, 樊隽轩, 王文卉, 等, 2017.黔渝地区志留系龙马溪组黑色笔石页岩的阶段性渐进展布模式.中国科学(D辑:地球科学), 47(6): 720-732. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201706005 郭彤楼, 刘若冰, 2013.复杂构造区高演化程度海相页岩气勘探突破的启示:以四川盆地东部盆缘JY1井为例.天然气地球科学, 24(4): 643-651. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201304001 郭旭升, 2017.上扬子地区五峰组-龙马溪组页岩层序地层及演化模式.地球科学, 42(7): 1069-1082. doi: 10.3799/dqkx.2017.086 金之钧, 胡宗全, 高波, 等, 2016.川东南地区五峰组-龙马溪组页岩气富集与高产控制因素.地学前缘, 23(1): 1-10. http://d.old.wanfangdata.com.cn/Periodical/dxqy201601001 李艳芳, 吕海刚, 张瑜, 等, 2015.四川盆地五峰组-龙马溪组页岩U-Mo协变模式与古海盆水体滞留程度的判识.地球化学, 44(2): 109-116. http://d.old.wanfangdata.com.cn/Periodical/dqhx201502002 梁狄刚, 郭彤楼, 陈建平, 等, 2008.中国南方海相生烃成藏研究的若干新进展(一):南方四套区域性海相烃源岩的分布.海相油气地质, 13(2): 1-16. doi: 10.3969/j.issn.1672-9854.2008.02.001 马永生, 蔡勋育, 赵培荣, 2018.中国页岩气勘探开发理论认识与实践.石油勘探与开发, 45(4):561-574. http://d.old.wanfangdata.com.cn/Periodical/syktykf201804003 腾格尔, 申宝剑, 俞凌杰, 等, 2017.四川盆地五峰组-龙马溪组页岩气形成与聚集机理.石油勘探与开发, 44(1): 69-78. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201701009.htm 王晔, 邱楠生, 仰云峰, 等, 2019.四川盆地五峰-龙马溪组页岩成熟度研究.地球科学, 44(3): 953-971. doi: 10.3799/dqkx.2018.125 王玉满, 董大忠, 李新景, 等, 2015.四川盆地及其周缘下志留统龙马溪组层序与沉积特征.天然气工业, 35(3): 12-21. doi: 10.3787/j.issn.1000-0976.2015.03.002 肖贤明, 刘德汉, 傅家谟, 1991.沥青反射率作为烃源岩成熟度指标的意义.沉积学报, 9(增刊):138-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000030119 肖贤明, 刘德汉, 傅家谟, 等, 1997.海相镜质体——海相烃源岩中一种重要生烃母质.石油学报, 18(1):44-48. doi: 10.3321/j.issn:0253-2697.1997.01.008 仰云峰, 2016.川东南志留系龙马溪组页岩沥青反射率和笔石反射率的应用.石油实验地质, 38(4): 466-472. http://d.old.wanfangdata.com.cn/Periodical/sysydz201604008 曾凡刚, 程克明, 吴朝东, 1998.应用海相镜质组反射率研究华北地区下古生界成熟度.地质地球化学, 26(3): 21-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800067388 邹才能, 董大忠, 王社教, 等, 2010.中国页岩气形成机理、地质特征及资源潜力.石油勘探与开发, 37(6): 641-653. http://d.old.wanfangdata.com.cn/Periodical/syktykf201006001 期刊类型引用(0)
其他类型引用(2)
-