• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    莺-琼盆地新型高温高压水基钻井液技术

    刘智勤 余意 徐一龙 郑浩鹏 杨玉豪

    刘智勤, 余意, 徐一龙, 郑浩鹏, 杨玉豪, 2019. 莺-琼盆地新型高温高压水基钻井液技术. 地球科学, 44(8): 2729-2735. doi: 10.3799/dqkx.2019.102
    引用本文: 刘智勤, 余意, 徐一龙, 郑浩鹏, 杨玉豪, 2019. 莺-琼盆地新型高温高压水基钻井液技术. 地球科学, 44(8): 2729-2735. doi: 10.3799/dqkx.2019.102
    Liu Zhiqin, Yu Yi, Xu Yilong, Zheng Haopeng, Yang Yuhao, 2019. The Development and Application of High Performance Water Base Muds for HTHP Wells in Yingqiong Basin. Earth Science, 44(8): 2729-2735. doi: 10.3799/dqkx.2019.102
    Citation: Liu Zhiqin, Yu Yi, Xu Yilong, Zheng Haopeng, Yang Yuhao, 2019. The Development and Application of High Performance Water Base Muds for HTHP Wells in Yingqiong Basin. Earth Science, 44(8): 2729-2735. doi: 10.3799/dqkx.2019.102

    莺-琼盆地新型高温高压水基钻井液技术

    doi: 10.3799/dqkx.2019.102
    基金项目: 

    国家重大专项“大型油气田及煤层气开发” 2016ZX05026-002

    详细信息
      作者简介:

      刘智勤(1989-), 男, 硕士, 钻井工程师, 现从事海洋油气钻完井的研究和管理工作

    • 中图分类号: P588

    The Development and Application of High Performance Water Base Muds for HTHP Wells in Yingqiong Basin

    • 摘要: 位于南海西部的莺歌海-琼东南盆地(下称:莺-琼盆地)具有井底压力与温度双高、安全作业密度窗口极窄等特点,在高温高压工况下引发钻井液流变性难以控制、井下恶性漏失、电测仪器阻卡和储层保护难度大等情况.因此,基于此区块复杂的地质条件,经过多次的室内试验研究,在常规聚磺高温高压水基钻井液的基础上,通过引入甲酸钾作为配方抑制剂,同时优选抗高温聚合物以及磺化钻井液材料,在提高了体系的抑制性同时,有效地降低了钻井液的活度,并且通过加重材料的优选,钻井液的流变性得到了改善,使得体系具有较低的高温高压滤失量,密度2.5 g/cm3的体系可以抗高温达240℃.现场实践表明,新型高温高压水基钻井液体系具有良好的抗高温性和流变性,较低的高温高压滤失量,优良的滤饼质量,同时根据电缆测井井壁取心结果,此新型水基钻井液体系的储层保护效果良好.

       

    • 图  1  高温高压钻井液体系滤失速率统计

      Fig.  1.  Filtration statistics of HTHP drilling fluid

      表  1  不同密度下的基本配方钻井液性能

      Table  1.   Property of drilling fluid under different density

      ρ(g/cm3) 表观黏度
      (mPa·s)
      塑性黏度
      (mPa·s)
      动切力
      (Pa)
      静切力
      Φ6/Φ3
      高温高压滤失量
      (mL)
      pH
      2.1 50 45 6.5 3/7 6.0 10.0
      2.3 56 48 9.0 3/8 6.3 10.0
      2.5 59 51 13.0 3/13 7.1 10.0
      注:实验条件为240 ℃老化16 h.
      下载: 导出CSV

      表  2  饱和状态下的盐溶液的活度值

      Table  2.   Activity index of saturated salinity

      编号 溶液名称 平均吸附量(%) 活度值
      1 饱和甲酸钾HCOOK 3.307 0.145
      2 饱和甲酸钠HCOONa 5.250 0.236
      3 饱和有机盐KLS-1 6.101 0.290
      4 饱和有机盐KLS-2 6.705 0.325
      5 饱和氯化钠Nacl 7.045 0.368
      6 饱和氯化钙CaCl2 7.525 0.420
      下载: 导出CSV

      表  3  抑制性能评价

      Table  3.   Inhibition evaluation

      配方 线性膨胀率(%) 滚动回收率(%)
      基础配方 22.23 68.5
      基础配方+10%NaCl 17.23 89.2
      基础配方+10%HCOOK 15.02 96.4
      注:实验条件为240℃老化16 h.
      下载: 导出CSV

      表  4  钻井液润滑性测试结果

      Table  4.   Lubrication test result of drilling fluid

      配方 润滑系数
      基础配方 0.201 3
      基础配方+1.5%PF-BLA B(小球) 0.164 2
      基础配方+1.5%PF-LUBE(油性润滑材料) 0.158 9
      基础配方+1.5%GRA(石墨) 0.151 0
      下载: 导出CSV

      表  5  新型高温高压水基钻井液A与常规聚磺高温高压水基钻井液B的高温工况下的稳定性能评价结果

      Table  5.   High temperature stability evaluation of type A novel HTHP drilling fluid and type B conventional HTHP drilling fluid

      配方 实验条件 ρ
      (g/cm3)
      塑性黏度
      (mPa·s)
      动切力
      (Pa)
      静切力
      Φ6/Φ3
      高温高压滤失量
      (mL)
      A 室温 2.5 41 8 2/7 5.5
      热滚 2.5 48 10 3/10 6.2
      静置老化 2.5 51 13 3/13 7.1
      B 室温 2.3 44 9 7.0/12.5 7.2
      热滚 2.3 49 16 8.0/14.5 8.5
      静置老化 2.3 55 21 9.0/16.5 9.6
      注:A配方热滚的实验条件是240 ℃、16 h,静止老化实验条件是240 ℃、静置7 d; B配方热滚的实验条件是180 ℃、16 h,老化实验条件是180 ℃、静置7 d; A、B配方室内评价显示均无重晶石沉淀
      下载: 导出CSV

      表  6  抗钻屑污染实验结果

      Table  6.   Anti-cutting pollution test result

      测试对象 ρ
      (g/cm3)
      表观黏度
      (mPa·s)
      塑性黏度
      (mPa·s)
      动切力
      (Pa)
      静切力
      Φ6/Φ3
      高温高压滤失量(mL)
      未污染钻井液 2.5 59 51 13 3/13 7.1
      10%岩屑污染 2.5 61 53 14 4/15 7.5
      下载: 导出CSV

      表  7  储层保护评价结果

      Table  7.   Evaluation result of reservoir protection

      岩心号 K1(mD) K2(mD) 渗透率恢复值(%)
      10 # 1.496 1.376 92
      13 # 4.435 4.124 93
      下载: 导出CSV

      表  8  沉降稳定性评价结果(热滚后)

      Table  8.   Evaluation of sag stability

      试验温度(℃) 上部钻井液密度(g/cm3) 下部钻井液密度(g/cm3) 密度差
      (g/cm3)
      沉降因子
      70 2.2 2.31 0.11 0.512
      240 2.4 2.53 0.13 0.513
      下载: 导出CSV

      表  9  新型高温高压水基钻井液高温工况下的稳定性

      Table  9.   Stability of novel HTHP drilling fluid

      井名 备注 井深
      (m)
      ρ(g/cm3) FV
      (s)
      塑性黏度
      (mPa·s)
      动切力
      (Pa)
      静切力
      (Pa/Pa)
      高温高压滤失量
      (mL)
      X1 钻进 368 2 2.06 43 27 8.0 3.5/7.0 7.5
      钻进 373 6 2.17 45 30 8.5 4.0/8.0 7.4
      钻进 377 3 2.24 52 34 9.5 4.0/8.5 6.9
      室温 381 1 2.24 56 44 9.0 7.0/16.5 7.5
      180 ℃静止120 h 2.24 59 55 21.0 9.0/16.5 9.4
      井底静置100 h后返出 2.24 61 56 20.5 9.0/17.0 9.3
      X2 钻进 399 1 2.11 41 20 8.5 3.0/7.0 7.4
      钻进 402 5 2.16 44 22 8.0 3.0/6.5 7.0
      钻进 410 2 2.22 47 26 9.5 4.0/7.5 7.1
      X3 钻进 379 6 2.03 39 21 8.0 3.0/6.0 7.5
      钻进 388 1 2.15 41 24 8.0 3.0/6.5 7.4
      钻进 396 3 2.39 48 31 8.5 3.5/7.0 7.0
      室温 2.39 45 24 8.5 4.0/7.0 6.7
      200 ℃静止120 h 2.39 57 54 13.0 8.5/14.0 8.4
      井底静置100 h后返出 2.39 59 56 13.0 9.0/15.0 8.5
      下载: 导出CSV

      表  10  钻井液摩阻数据对比表

      Table  10.   Drag and friction comparison of drilling fluid

      井名 井深(m) Φ上层套管(mm) Φ井鞋(mm) ρ(g/cm3) 循环排量(L/min) ρ摩阻当量(g/cm3)
      X1 3 811 244.475 212.73 2.24 1 300~1 800 0.10~0.13
      X2 4 102 177.800(尾管) 149.22 2.22 700~1 200 0.05~0.08
      X3 3 963 244.475 212.73 2.39 1 300~1 800 0.05~0.08
      下载: 导出CSV
    • Annis, M. R., 1967. High-Temperature Flow Properties of Water Base Drilling Fluids. Journal of Petroleum Technology, 19(8): 1074-1080. https://doi.org/10.2118/1698 pa doi: 10.2118/1698pa
      Cui, Y.H., Liu, H.B., Yang, H.P., et al., 2016. Mechanisms of Sidewall Stability Loss in Horizontal Wells Drilled for Shale Gas Development in Jiaoshiba Block. Oil Drilling & Production Technology, 38(5):545-552(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syzcgy201605002
      Guo, Y.B., Guan, S., Liu, Z.Q., et al., 2017. Solid-Free Organic Salt Drilling Fluid for Horizontal Wells in the Weizhou 12-1 Oilfield. Petroleum Drilling Techniques, 45(6):31-36(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syztjs201706006
      Huang, B.J., Xiao, X. M., Zhu, W. L., 2004. Geochemistry, Origin, and Accumulation of CO2 in Natural Gases of the Yinggehai Basin, Offshore South China Sea. AAPG Bulletin, 88(9): 1277-1293. https://doi.org/10.1306/04120403045
      He, S.l., Zhang, H.R., Yang, D., et al., 2016. Logging Evaluation Technology of CO2 HTHP Reservoir in Western South China Sea Basin. Natural Gas Science, 27(12):2200-2206(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201612012
      Li, Y.J., Wu, J., Huang, Y., et al., 2015. Key Technology and Application of HTHP Drilling in Mid-Deep Formation in Yinggehai Basin. China Offshore Oil and Gas, 27(4):102-106(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201504014.htm
      Ma, Y.X., Xiao, Q.H., Mi, H.G., et al., 2017. Influence of Water-Soluble Gas Releasing on Gas-Water Interface for Yinggehai Basin High Temperature and Overpressured Gas Field. Earth Science, 42(8):1340-1347(in Chinese with English abstract).
      Pei, J.X., Tong, C.X., Zhu, Y., 2014. HTHP Natural Gas Accumulation Theory and Great Discovery in Yinggehai Basin. Management and Research on Scientific & Technological Achievements, 6:70-73(in Chinese with English abstract).
      Tian, D.M., Jiang, T., Zhang, D.J., et al., 2017. Genesis Mechanism and Characteristics of Submarine Channel: A Case Study of the First Member of Yinggehai Formation in Ledong Area of Yinggehai Basin. Earth Science, 42(1):130-141(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201701011.htm
      Xie, Y.H., Li, X.S., Tong, C.X., 2015. High Temperature and Overpressure of Yingqiong Basin and Gas Accumulation Exploration Theory and Practice. Petroleum Industry Press Gas Press, Beijing, 45-46(in Chinese with English abstract).
      Xie, Y.H., 2016. The Mechanism and Resource Prospect of Natural Gas Accumulation Under High Temperature and High Pressure in the Western Part of the South China Sea——Taking Yingqiong Basin as an Example. Petroleum Drilling Technology, 38(6):713-722(in Chinese with English abstract).
      Xie, Y.H., Zhang, Y., Huang, K.W., 2016. HTHP Drilling Technology of Yinggehai Basin. Petroleum Industry Press, Beijing, 110-113(in Chinese with English abstract).
      Wang, Z.F., Luo, X.R., 2004. National High-Tech Research and Development Program Results, Pressure Prediction and Monitoring Technology of HTHP Formation in Yinggehai Basin. Petroleum Industry Press, Beijing, 21-24(in Chinese with English abstract).
      Wang, Z.H., 2016. Present Status and Trends in Research and Development of Drilling Fluid Additives in China. Petroleum Drilling Techniques, 44(3):1-8(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syztjs201603001
      Zhang, Q., Liu, J.Q., Jiang, G.C., et al., 2015. High Temperature and High Density Drilling Fluid Technology for Yinggehai Basin. Drilling Fluid & Completion Fluid, 32(5):27-31(in Chinese with English abstract). https://www.researchgate.net/publication/283646530_High_temperature_high_density_drilling_fluid_technology_for_Yinggehai_Basin
      Zhao, K., Fan, Y.J., Yu, B., et al., 2016. Research Progress of Wellbore Stability in Hard Brittle Shale. Oil Drilling & Production Technology, 38(3):277-285(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syzcgy201603002
      崔云海, 刘厚彬, 杨海平, 等, 2016.焦石坝页岩气储层水平井井壁失稳机理.石油钻采工艺, 38(5):545-552. http://d.old.wanfangdata.com.cn/Periodical/syzcgy201605002
      郭永宾, 管申, 刘智勤, 等, 2017.涠洲12-1油田水平井无固相有机盐钻井液技术.石油钻探技术, 45(6):31-36. http://d.old.wanfangdata.com.cn/Periodical/syztjs201706006
      何胜林, 张海荣, 杨冬, 等, 2016.南海西部盆地高温超压储层CO2气层测井评价技术.天然气地球科学, 27(12):2200-2206. doi: 10.11764/j.issn.1672-1926.2016.12.2200
      李炎军, 吴江, 黄熠, 等, 2015.莺歌海盆地中深层高温高压钻井关键技术及其实践效果.中国海上油气, 27(4):102-106. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201504014
      马勇新, 肖前华, 米洪刚, 等, 2017.莺歌海盆地高温高压气藏水溶气释放对气水界面的影响.地球科学, 42(8):1340-1347. http://earth-science.net/WebPage/Article.aspx?id=3624
      裴健翔, 童传新, 朱颖, 2014.莺歌海盆地高温高压天然气成藏规律与重大发现.科技成果管理与研究, 6:70-73. http://d.old.wanfangdata.com.cn/Periodical/kjcgglyyj201406028
      田冬梅, 姜涛, 张道军, 等, 2017.海底水道特征及其成因机制:以莺歌海盆地乐东区莺歌海组一段为例.地球科学, 42(1):130-141. http://earth-science.net/WebPage/Article.aspx?id=3420
      谢玉洪, 李绪深, 童传新, 2015.莺琼盆地高温超压天然气成藏理论与勘探实践.北京:石油工业出版社, 45-46.
      谢玉洪, 2016.南海西部海域高温高压天然气成藏机理与资源前景——以莺-琼盆地为例.石油钻采工艺, 38(6):713-722. http://d.old.wanfangdata.com.cn/Periodical/syzcgy201606001
      谢玉洪, 张勇, 黄凯文, 2016.莺歌海盆地高温高压钻井技术.北京:石油工业出版社, 110-130.
      王振峰, 罗晓容, 2004.国家高技术研究发展计划成果, 莺歌海盆地高温高压地层钻井压力预监测技术研究.北京:石油工业出版社, 21-24.
      王中华, 2016.国内钻井液处理剂研发现状与发展趋势.石油钻探技术, 44(3):1-8. http://d.old.wanfangdata.com.cn/Periodical/syztjs201603001
      张群, 刘建全, 蒋官澄, 等, 2015.莺歌海盆地抗高温高密度钻井液技术.钻井液与完井液, 32(5):27-31. http://d.old.wanfangdata.com.cn/Periodical/zjyywjy201505007
      赵凯, 樊勇杰, 于波, 等, 2016.硬脆性泥页岩井壁稳定研究进展.石油钻采工艺, 38(3):277-285. http://d.old.wanfangdata.com.cn/Periodical/syzcgy201603002
    • 加载中
    图(1) / 表(10)
    计量
    • 文章访问数:  5053
    • HTML全文浏览量:  2431
    • PDF下载量:  39
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-01-22
    • 刊出日期:  2019-08-15

    目录

      /

      返回文章
      返回