• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    藏南马扎拉金-锑矿床:成矿流体性质和成矿物质来源

    谢玉玲 杨科君 李应栩 李光明 曲云伟 董磊

    谢玉玲, 杨科君, 李应栩, 李光明, 曲云伟, 董磊, 2019. 藏南马扎拉金-锑矿床:成矿流体性质和成矿物质来源. 地球科学, 44(6): 1998-2016. doi: 10.3799/dqkx.2019.122
    引用本文: 谢玉玲, 杨科君, 李应栩, 李光明, 曲云伟, 董磊, 2019. 藏南马扎拉金-锑矿床:成矿流体性质和成矿物质来源. 地球科学, 44(6): 1998-2016. doi: 10.3799/dqkx.2019.122
    Xie Yuling, Yang Kejun, Li Yingxu, Li Guangming, Qu Yunwei, Dong Lei, 2019. Mazhala Gold-Antimony Deposit in Southern Tibet: The Characteristics of OreForming Fluids and The Origin of Gold and Antimony. Earth Science, 44(6): 1998-2016. doi: 10.3799/dqkx.2019.122
    Citation: Xie Yuling, Yang Kejun, Li Yingxu, Li Guangming, Qu Yunwei, Dong Lei, 2019. Mazhala Gold-Antimony Deposit in Southern Tibet: The Characteristics of OreForming Fluids and The Origin of Gold and Antimony. Earth Science, 44(6): 1998-2016. doi: 10.3799/dqkx.2019.122

    藏南马扎拉金-锑矿床:成矿流体性质和成矿物质来源

    doi: 10.3799/dqkx.2019.122
    基金项目: 

    国家重大基础研究项目 2011CB403100

    中国地质调查局地质调查项目 DD20190147

    国家重点研发计划项目 2016YFC0600308

    详细信息
      作者简介:

      谢玉玲(1963-), 女, 博士, 教授, 主要从事矿床学和矿床地球化学方面的研究

    • 中图分类号: P611

    Mazhala Gold-Antimony Deposit in Southern Tibet: The Characteristics of OreForming Fluids and The Origin of Gold and Antimony

    • 摘要: 马扎拉金-锑矿床是藏南巨型金-锑成矿带的重要组成部分,其矿床成因目前仍存在不同认识.通过主要矿石和蚀变围岩的岩相学、矿相学、流体包裹体和稳定同位素分析,探讨了马扎拉金-锑矿床的成矿流体性质、矿质迁移和沉淀机制.结果表明,马扎拉金-锑矿床成矿流体主要来自岩浆水,主成矿期流体为中温(约255℃)、低盐度(2.8%~3.5% NaCleqv)、富CO2流体,成矿压力约150 MPa,流体演化过程中的CO2与水的不混溶是造成矿质沉淀的主要原因,成矿金属主要来源于地层,特别是区域广泛分布的海相火山岩地层.

       

    • 图  1  喜马拉雅造山带构造简图及藏南淡色花岗岩分布

      据Zhang et al.(2012)修改

      Fig.  1.  Sketch geological map of Himalaya orogeny and the distribution of leucogranites

      图  2  区域地质图及矿床(点)分布

      李应栩等(2018)修改;1.第四系;2.下白垩统拉康组;3.下侏罗统日当组、陆热组;4.中侏罗统遮拉组;5.上侏罗统桑秀组、唯美组;6.三叠统聂如组;7.二叠统曲德贡组;8.淡色花岗岩;9.花岗岩脉;10.断层;11.W-Sn矿点;12. Au-Sb矿点;13.Pb-Zn矿点;14.闪长岩;15.辉绿岩脉;16.遥感解译推测的环形构造;THS:特提斯喜马拉雅;GHS:高喜马拉雅;LHS:低喜马拉雅;SG:北印度沉积岩系;IYS:雅鲁藏布江缝合带;STDS:藏南拆离系;MCT.主中央逆冲断裂;MBT.边界逆冲断裂;MFT.前锋逆冲断裂

      Fig.  2.  Regional geological map and the distribution of deposits

      图  3  马扎拉金锑矿区地质简图

      李应栩等(2018)修改

      Fig.  3.  Sketch geological map of Mazhala gold-antimony deposit

      图  4  马扎拉矿区两期石英脉的显微镜下照片

      a.早期石英脉的重结晶;b.石英碳酸盐脉切穿早期石英脉,并造成早期石英脉的重结晶;c.石英-碳酸盐-辉锑矿脉;d.石英-碳酸盐-辉锑矿脉中的粘土矿物和铁白云石;Ank.铁白云石;Q.石英;Cly.粘土矿物;Sb.辉锑矿;透射光,正交偏光

      Fig.  4.  The microscopic photos of two stage' s quartz vein in Mazhala deposit

      图  5  辉锑矿和自然金的反射光下照片

      a.辉锑矿中不规则状自然金;b.辉锑矿与铁白云石粒间的自然金;Au.自然金;Sb.辉锑矿;Ank.铁白云石;Q.石英;Cly.粘土矿物

      Fig.  5.  Microscopic photos of stibnite and gold by reflected light

      图  6  马扎拉金矿主要金属矿物BSE图像

      a.辉锑矿中包裹自然金和辉砷镍矿;b.辉砷镍矿与铁白云石产于黄铁矿粒间;Au.自然金;Py.黄铁矿;Ank.铁白云石;Ges.辉砷镍矿;Sb.辉锑矿

      Fig.  6.  BSE photos of typical metal minerals in Mahala deposit

      图  7  矿区主要蚀变的显微镜下照片

      a.蚀变围岩中的石英-铁白云石脉及边部的碳酸盐化蚀变;b.石英-绢云母化蚀变;c.围岩中的浸染状绢云母和铁白云石;d.围岩中浸染状绢云母、石墨和铁白云石;e.图 7d的透射光下照片;f.围岩中石英-粘土矿物团块;a~c、e为透射光正交偏光,d为反射光单偏光,f为透射光单偏光;Q.石英;Ser.绢云母;Ank.铁白云石;Gph.石墨;Cly.粘土矿物;Slt.板岩

      Fig.  7.  Microscopic photos of typical alterations in Mazhala deposits

      图  8  石英-铁白云石脉中和蚀变围岩中的草霉状黄铁矿显微镜下照片

      a.产于石英-铁白云石脉边部的草霉状黄铁矿(透射光,正交偏光);b.图 8a的局部放大照片;c.图 8b反射光下照片;d.图 8c的局部放大照片

      Fig.  8.  Microscopic photos of framboid-pyrites from altered country rock and quartz-ankerite vein

      图  9  围岩中黄铁矿和毒砂的显微镜下照片

      a.蚀变围岩中具环带的自形黄铁矿和自形毒砂;b.葵花状黄铁矿,中部为草霉状黄铁矿群;c.图 9b的局部放大照片;d.黄铁矿中包裹自形毒砂;Py.黄铁矿;Apy.毒砂;反射光,单偏光

      Fig.  9.  Microscopic photos of pyrite and arsenopyrite in altered country rock

      图  10  石英-铁白云石脉中和蚀变围岩中的草霉状黄铁矿显微镜下照片

      a.铁白云石中的草霉状黄铁矿;b.图a的反射光下照片;c.图b的局部放大照片;d.蚀变地层中的草霉状黄铁矿群(反射光,单偏光);e.图d的局部放大照片(透射光,正交偏光);f.图e反射光下照片

      Fig.  10.  Microscopic photos of framboid-pyrite inside quartz-ankerite vein and altered country rock

      图  11  草霉状黄铁矿(a)和葵花状黄铁矿(b)的BSE图像

      Fig.  11.  BSE photos of framboid-pyrites and sunflower-like pyrite

      图  12  草霉状黄铁矿中Sb与As随元素总量的变化

      a.As随总含量的变化;b.Sb随总含量的变化

      Fig.  12.  Correlation diagram between Sb and As contents in framboid-pyrite

      图  13  马扎拉矿区石英中流体包裹体室温下的显微镜下照片

      a、b.AC类包裹体;c.不同CO2相充填度的AC类包裹体;d.含针状子晶的AC类包裹体;e.AV类包裹体;f.不同CO2相充填度的AC类包裹体与C类包裹体共存;LCO2.液相CO2;VCO2.气相CO2;LH2O.液相H2O;S.针状子矿物;Q.石英

      Fig.  13.  Photomicrographs of fluid inclusions in quartz of the Mazhala Au-Sb deposit at room temperature

      图  14  马扎拉金锑矿床主成矿阶段流体包裹体温度-盐度图解

      错那洞和扎西康数据引自Xie et al.(2017)

      Fig.  14.  The temperature-salinity diagram of fluid inclusions for main ore-forming stage in Mazhala Au-Sb deposit

      图  15  马扎拉Au-Sb矿床流体包裹体的LRM谱图及显微照片

      a.AC类包裹体中CO2相;b.Ac类包裹体中水溶液相;c.AV类包裹体中的气相;d.Av类包裹体中的液相

      Fig.  15.  LRM spectrum of fluid inclusions in quartz from the Mazhala Au-Sb deposit

      图  16  马扎拉矿区H-O同位素图解

      底图据Taylor(1974)修绘

      Fig.  16.  H-O isotope diagram of Mazhala Au-Sb deposit

      图  17  马扎拉金矿铁白云石和石英流体包裹体中CO2的C-O同位素图解

      沉积碳酸盐C-O同位素范围引自Baker and Fallick(1989);原生碳酸岩的C-O同位素范围引自Deines and Gold(1973);沉积有机碳的C-O同位素范围引自Anderson and Arthur(1983)

      Fig.  17.  C-O isotopic diagram of ankerite and CO2 in fluid inclusions hosted in quartz

      图  18  石英AC、AV类流体包裹体均一温度与CO2相充填度关系

      红色虚线为趋势线

      Fig.  18.  The correlation diagram between homogenization temperature and CO2 bubble volume percentage in AC and AV fluid inclusions

      表  1  藏南马扎拉金锑矿床碳酸盐矿物和石英中流体包裹体中CO2碳同位素测试结果

      Table  1.   Carbon isotope results of CO2 in fluid inclusion hosted in quartz for Mazhala Au-Sb deposit

      样品号 矿物 样品描述 δ13CV-PDB
      (‰)
      δ18OV-SMOW
      (‰)
      MZL-2025 石英 石英碳酸盐 -5.0 20.1
      MZL-1039-2 石英 石英碳酸盐脉 -3.7 19.6
      MZL-1008 石英 石英脉 -7.1 19.6
      MZL-B127 石英 石英晶簇 -13.8 22.5
      下载: 导出CSV

      表  2  藏南马扎拉金锑矿床铁白云石的碳同位素测试结果

      Table  2.   Carbon isotope results of ankerite in Mazhala Au-Sb deposit

      样品号 矿物 样品描述 δ13CV-PDB
      (‰)
      δ18OV-SMOW
      (‰)
      MZL-2025 铁白云石 石英碳酸盐脉 -7.7 18.3
      MZL-1039 铁白云石 石英碳酸盐脉 -3.5 20
      MZL-1008 铁白云石 石英碳酸盐脉 -5.0 19.5
      下载: 导出CSV

      表  3  藏南马扎拉金锑矿床硫同位素测试值

      Table  3.   Result of sulfur isotope assay in Mazhala Au-Sb deposit

      样品号 矿物 样品描述 δ34SV-CDT(%)
      MZL-B124 黄铁矿 地层 -26.9
      MZL-B112 黄铁矿 地层 -34.4
      MZL-1008 辉锑矿 石英辉锑矿脉 0.7
      MZL-B127 辉锑矿 石英辉锑矿脉 1.9
      下载: 导出CSV
    • Aikman, A.B., Harrison, T.M., Lin, D., 2008.Preliminary Results from the Yala-Xiangbo Leucogranite Dome, SE Tibet.Himalayan Journal of Sciences, 2(4):91. doi: 10.3126/hjs.v2i4.809
      Anderson, T.F., Arthur, M.A., 1983.Stable Isotopes of Oxygen and Carbon and Their Application to Sedimentologic and Paleoenvironmental Problems. In: Anderson, T. F., Arthur, M.A., eds., Stable Isotopes in Sedimentary Geology.Society for Sedimentary Geology, Tulsa, Oklahoma.
      Baker, A.J., Fallick, A.E., 1989.Evidence from Lewisian Limestones for Isotopically Heavy Carbon in Two-Thousand-Million-Year-Old Sea Water.Nature, 337:352-354. doi: 10.1038/337352a0
      Boyle, R.W., Jonasson, I.R., 1984. The Geochemistry of Antimony and Its Use as an Indicator Element in Geochemical Prospecting.Journal of Geochemical Exploration, 20(3):223-302. doi: 10.1016/0375-6742(84)90071-2
      Burg, J.P., Chen, G.M., 1984.Tectonics and Structural Zonation of Southern Tibet, China.Nature, 311:219-223. doi: 10.1038/311219a0
      Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465):1702-1703. doi: 10.1126/science.133.3465.1702
      Deines, P., Gold, D. P., 1973. The Isotopic Composition of Carbonatite and Kimberlite Carbonates and Their Bearing on the Isotopic Composition of Deep-Seated Carbon.Geochimica et Cosmochimica Acta, 37(7):1709-1733. doi: 10.1016/0016-7037(73)90158-0
      Diedesch, T. F., Jessup, M. J., Cottle, J. M., et al., 2016. Tectonic Evolution of the Middle Crust in Southern Tibet from Structural and Kinematic Studies in the Lhagoi Kangri Gneiss Dome.Lithosphere, 8(5):480-504. doi: 10.1130/L506.1
      Dong, L., Li, G. M., Li, Y. X., et al., 2016. Basalts from the Mazhala Area in Southern Xizang:Geochemistry, Petrogenesis and Geological Implications.Sedimentary Geology and Tethyan Geology, 36(3):16-24(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TTSD201603003.htm
      Fu, J.G., Li, G.M., Wang, G.H., et al., 2017.First Field Identification of the Cuonadong Dome in Southern Tibet:Implications for EW Extension of the North Himalayan Gneiss Dome. International Journal of Earth Sciences, 106(5):1581-1596. doi: 10.1007/s00531-016-1368-2
      Gehrels, G.E., Yin, A., Wang, X.F., 2003.Magmatic History of the Northeastern Tibetan Plateau.Journal of Geophysical Research:Solid Earth, 108(B9). https://doi.org/10.1029/2002jb001876
      Guo, Z. F., Wilson, M., 2012. The Himalayan Leucogranites:Constraints on the Nature of Their Crustal Source Region and Geodynamic Setting. Gondwana Research, 22(2):360-376. doi: 10.1016/j.gr.2011.07.027
      Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988.Freezing Point Depression of NaCl-KCl-H2O Solutions.Economic Geology, 83(1):197-202.
      Harris, N., Massey, J., 1994. Decompression and Anatexis of Himalayan Metapelites.Tectonics, 13(6):1537-1546. doi: 10.1029/94TC01611
      Harris, N., Massey, J., Inger, S., 1993. The Role of Fluids in the Formation of High Himalayan Leucogranites.Geological Society, London, Special Publications, 74(1):391-400. https://doi.org/10.1144/gsl.sp.1993.074.01.26
      Harrison, M.T., Grove, M., Mckeegan, K.D., et al., 1999.Origin and Episodic Emplacement of the Manaslu Intrusive Complex, Central Himalaya.Journal of Petrology, 40(1):3-19. doi: 10.1093/petroj/40.1.3
      Hou, Z. Q., Cook, N. J., Zaw, K., 2009. Metallogenesis of the Tibetan Collisional Orogen. Ore Geology Reviews, 36(1-3):1. doi: 10.1016/j.oregeorev.2009.07.002
      Hou, Z.Q., Mo, X.X., Yang, Z.M., et al., 2006a.Metallogeneses in the Collisional Orogen of the Qinghai-Tibet Plateau:Tectonic Setting, Tempo-Spatial Distribution and Ore Deposit Types. Geology in China, 33(2):340-351(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200602013.htm
      Hou, Z.Q., Yang, Z.S., Xu, W.Y., et al., 2006b.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅰ. Mineralization in Main Collisional Orogenic Setting.Mineral Deposits, 25(4):337-358 (in Chinese with English abstract).
      Hou, Z.Q, Qu, X.M, Yang, Z.S, et al., 2006c.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅲ. Mineralization in Post-Collisional Extension Setting.Mineral Deposits, 25(6):629-651 (in Chinese with English abstract).
      Hou, Z.Q., Zhang, H.R., 2015.Geodynamics and Metallogeny of the Eastern Tethyan Metallogenic Domain.Ore Geology Reviews, 70:346-384. doi: 10.1016/j.oregeorev.2014.10.026
      Hou, Z.Q., Zheng, Y.C., Zeng, L.S., et al., 2012.Eocene-Oligocene Granitoids in Southern Tibet:Constraints on Crustal Anatexis and Tectonic Evolution of the Himalayan Orogen.Earth and Planetary Science Letters, 349-350:38-52. doi: 10.1016/j.epsl.2012.06.030
      Jeffrey, L., Hacker, B.R., Dinklage, W.S., et al., 2000.Evolution of the Kangmar Dome, Southern Tibet:Structural, Petrologic, and Thermochronologic Constraints.Tectonics, 19(5):872-895. https://doi.org/10.1029/1999tc001147
      Jiang, S.H., Nie, F.J., Hu, P., et al., 2009.Mayum:An Orogenic Gold Deposit in Tibet, China.Ore Geology Reviews, 36(1-3):160-173. doi: 10.1016/j.oregeorev.2009.03.006
      Jochum, K. P., Hofmann, A. W., 1997. Constraints on Earth Evolution from Antimony in Mantle-Derived Rocks. Chemical Geology, 139(1-4):39-49. doi: 10.1016/S0009-2541(97)00032-6
      Jochum, K.P., Verma, S.P., 1996.Extreme Enrichment of Sb, Tl and Other Trace Elements in Altered MORB.Chemical Geology, 130(3-4):289-299. doi: 10.1016/0009-2541(96)00014-9
      Kali, E., Leloup, P. H., Arnaud, N., et al., 2010. Exhumation History of the Deepest Central Himalayan Rocks, Ama Drime Range:Key Pressure-Temperature-Deformation-Time Constraints on Orogenic Models.Tectonics, 29(2): https://doi.org/10.1029/2009tc002551
      Li, G.M., Rui, Z.Y., 2004.Diagenetic and Mineralization Ages for the Porphyry Copper Deposits in the Gangdise Metallogenic Belt, Southern Xizang.Geotectonica et Metallogenia, 28(2):165-170(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200402008
      Li, G.M., Zeng, Q.G., Yong, Y.Y., et al., 2005.Discovery of Epithermal Au-Sb Deposits in Gangdese Metallogenic Belt of Tibet and Its Significance:Case Study of Longruri Au-Sb Deposit. Mineral Deposits, 24(6):595-602(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200506002.htm
      Li, G.M., Zhang, L.K., Jiao, Y.J., et al., 2017.First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet. Mineral Deposits, 36(4):1003-1008(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704014
      Li, J.G., Wang, Q.H., Chen, J.K., et al., 2002.Study of Metallogenic and Prospecting Models for the Shalagang Antimony Deposit, Gyangze, Tibet.Journal of Chengdu Universityof Technology, 29(5):533-538(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200205011
      Li, Y.X., Li, G.M., Dong, L., et al., 2018.Geology and Exploration Potential of the Mazhala Gold Deposit, Cuomei, Xizang:An Approach. Sedimentary Geology and Tethyan Geology, 38(3):90-100(in Chinese with English abstract).
      Lin, B., Tang, J. X., Zheng, W. B., et al., 2016. Geochemical Characteristics, Age and Genesis of Cuonadong Leucogranite, Tibet. Acta Petrologica et Mineralogica, 35(3):391-406 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201603002
      Liu, H.B., Jin, G.S., Li, J.J., et al., 2013.Determination of Stable Isotope Composition in Uranium Geological Samples.World Nuclear Geoscience, 30(3):174-179(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjhdzkx201303009
      Matsuhisa, Y., Goldsmith, J.R., Clayton, R.N., 1979.Oxygen Isotopic Fractionation in the System Quartz-Albite-Anorthite-Water. Geochimica et Cosmochimica Acta, 43(7):1131-1140. doi: 10.1016/0016-7037(79)90099-1
      Mo, R. W., Sun, X. M., Zhai, W., et al., 2013. Ore-Forming Fluid Geochemistry and Metallogenic Mechanism from Mazhala Gold-Antimony Deposit in Southern Tibet, China. Acta Petrologica Sinica, 29(4):1427-1438(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201304025
      Nie, F.J., Hu, P., Jiang, S.H., et al., 2005.Type and Temporal-Spatial Distribution of Gold and Antimony Deposits(Prospects) in Southern Tibet, China.Acta Geologica Sinica, 79(3):373-385(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200503009
      Pearson, O.N., DeCelles, P.G., 2005.Structural Geology and Regional Tectonic Significance of the Ramgarh Thrust, Himalayan Fold-Thrust Belt of Nepal. Tectonics, 24(4). https://doi.org/10.1029/2003tc001617
      Qing, C.S., Ding, J., Li, Y.X., et al., 2014.Element Combination Anomalies and Prospecting Direction in Mazhala Gold-Antimony Deposit. Metal Mine, (12):134-137(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201412029
      Raymond, J., Williams-Jones, A.E., Clark, J.R., 2005.Mineralization Associated with Scale and Altered Rock and Pipe Fragments from the Berlín Geothermal Field, El Salvador; Implications for Metal Transport in Natural Systems.Journal of Volcanology and Geothermal Research, 145(1-2):81-96. doi: 10.1016/j.jvolgeores.2005.01.003
      Reyes, A.G., Trompetter, W.J., Britten, K., et al., 2003.Mineral Deposits in the Rotokawa Geothermal Pipelines, New Zealand. Journal of Volcanology and Geothermal Research, 119(1-4):215-239. doi: 10.1016/S0377-0273(02)00355-4
      Robb, L., 2007.Introduction to Ore-Forming Processes. Blackwell Publishing, England.
      Spycher, N.F., Reed, M.H., 1989.As (Ⅲ) and Sb (Ⅲ) Sulfide Complexes:An Evaluation of Stoichiometry and Stability from Existing Experimental Data.Geochimica et Cosmochimica Acta, 53(9):2185-2194. doi: 10.1016/0016-7037(89)90342-6
      Sun, X. M., Zhang, Y., Xiong, D. X., et al., 2009. Crust and Mantle Contributions to Gold-Forming Process at the Daping Deposit, Ailaoshan Gold Belt, Yunnan, China.Ore Geology Reviews, 36(1-3):235-249. doi: 10.1016/j.oregeorev.2009.05.002
      Taylor, H.P., 1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology, 69(6):843-883. doi: 10.2113/gsecongeo.69.6.843
      Visonà, D, Lombardo, B., 2002. Two-Mica and Tourmaline Leucogranites from the Everest-Makalu Region (Nepal-Tibet). Himalayan Leucogranite Genesis by Isobaric Heating? Lithos, 62(3-4):125-150. doi: 10.1016/S0024-4937(02)00112-3
      Wagner, T., Lee, J., Hacker, B.R., et al., 2010.Kinematics and Vorticity in Kangmar Dome, Southern Tibet:Testing Midcrustal Channel Flow Models for the Himalaya.Tectonics, 29(6). https://doi.org/10.1029/2010tc002746
      Wang, J.H., Yin, A., Harrison, T.M., et al., 2001.A Tectonic Model for Cenozoic Igneous Activities in the Eastern Indo-Asian Collision Zone. Earth and Planetary Science Letters, 188(1-2):123-133. https://doi.org/10.1016/s0012-821x(01)00315-6
      Wilson, N., Webster-Brown, J., Brown, K., 2007.Controls on Stibnite Precipitation at Two New Zealand Geothermal Power Stations.Geothermics, 36(4):330-347. doi: 10.1016/j.geothermics.2007.04.001
      Wu, F.Y., Liu, Z.C., Liu, X.C., et al., 2015.Himalayan Leucogranite:Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31(1):1-36(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501001
      Wu, Z.H., Ye, P.S., Wu, Z.H., et al., 2014.LA-ICP-MS Zircon U-Pb Ages of Tectonic-Thermal Events in the Yalaxiangbo Dome of Tethys Himalayan belt. Geological Bulletin of China, 33(5):595-605. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201405001
      Xie, Y.L., Hou, Z., Goldfarb, R.J., et al., 2016.Rare Earth Element Deposits in China.Society of Economic Geologists, 18:115-136.
      Xie, Y.L., Li, L.M., Wang, B.G., et al., 2017.Genesis of the Zhaxikang Epithermal Pb-Zn-Sb Deposit in Southern Tibet, China:Evidence for a Magmatic Link. Ore Geology Reviews, 80:891-909. doi: 10.1016/j.oregeorev.2016.08.007
      Xie, Y. L., Wang, B. G., Guo, X., et al., 2014. Fluid Inclusion Study of Pegmatite in Zhaxikang Pb-Zn-Sb Polymetallic Deposit, Tibet, China. Acta Geologica Sinica(English Edition), 88(Suppl.2):1183-1185. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=WFHYXW592465
      Yang, Z. M., Cook, D. R., 2019. Porphyry Copper Deposits in China.Economic Geology, Special Publication(in press).
      Yang, Z. S., Hou, Z. Q., Gao, W., et al., 2006. Metallogenic Characteristics and Genetic Model of Antimony and Gold Deposits in South Tibetan Detachment System.Acta Geologica Sinica, 80(9):1377-1391(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200609013
      Yang, Z. S., Hou, Z. Q., Meng, X. J., et al., 2009. Post-Collisional Sb and Au Mineralization Related to the South Tibetan Detachment System, Himalayan Orogen.Ore Geology Reviews, 36(1-3):194-212. doi: 10.1016/j.oregeorev.2009.03.005
      Yin, A., 2006.Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation.Earth-Science Reviews, 76(1-2):1-131. doi: 10.1016/j.earscirev.2005.05.004
      Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211
      Zakaznova-Iakovleva, V. P., Migdisov, A. A., Zakaznova-Iakovlevaa, V. P., et al., 2001. An Experimental Study of Stibnite Solubility in Gaseous Hydrogen Sulphide from 200 to 320℃.Geochimica et Cosmochimica Acta, 65(2):289-298. doi: 10.1016/S0016-7037(00)00523-8
      Zhai, W., Sun, X.M., Yi, J.Z., et al., 2014.Geology, Geochemistry, and Genesis of Orogenic Gold-Antimony Mineralization in the Himalayan Orogen, South Tibet, China.Ore Geology Reviews, 58:68-90. doi: 10.1016/j.oregeorev.2013.11.001
      Zhai, W., Zheng, S.Q., Sun, X.M., et al., 2018.He-Ar Isotope Compositions of Orogenic Mazhala Au-Sb and Shalagang Sb Deposits in Himalayan Orogeny, Southern Tibet:Constrains to Ore-Forming Fluid Origin.Acta Petrologica Sinica, 34(12):3525-3538(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201812005.htm
      Zhang, H. F., Harris, N., Parrish, R., et al., 2005. Geochemistry of North Himalayan Leucogranites:Regional Comparison, Petrogenesis and Tectonic Implications. Earth Science, 30(3):275-288(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqkx200503003.htm
      Zhang, J.F., Zheng, Y.Y., Zhang, G.Y., et al., 2011.Geologic Characteristic and Mineralization of Mazhala Gold-Antimony Deposit in Northern Himalaya.Gold, 32(1):20-24(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=huangj201101005
      Zhang, J. Y., Liao, Q. A., Li, D. W., et al., 2003. Laguigangri Leucogranites and Its Relation with Laguigangri Metamorphic Core Complex in Sajia, South Tibet.Earth Science, 28(6):695-701 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200306018
      Zhang, L. K., Zhang, Z., Li, G. M., et al., 2018. Rock Assem-blage, Structural Characteristics and Genesis Mechanism of the Cuonadong Dome, Tethys Himalaya.Earth Science, 43(8):2664-2683(in Chinese with English abstract).
      Zheng, Y.Y., Sun, X., Tian, L.M., et al., 2014.Mineralization, Deposit Type and Metallogenic Age of the Gold Antimony Polymetallic Belt in the Eastern Part of North Himalayan. Geotectonica et Metallogenia, 38(1):108-118(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201401011
      董磊, 李光明, 李应栩, 等, 2016.藏南马扎拉地区玄武岩地球化学特征、成因及其地质意义.沉积与特提斯地质, 36(3):16-24. doi: 10.3969/j.issn.1009-3850.2016.03.003
      侯增谦, 莫宣学, 杨志明, 等, 2006a.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型.中国地质, 33(2):340-351. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200602013
      侯增谦, 曲晓明, 杨竹森, 等, 2006c.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6):629-651. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
      侯增谦, 杨竹森, 徐文艺, 等, 2006b.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用.矿床地质, 25(4):337-358. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
      李光明, 芮宗瑶, 2004.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄.大地构造与成矿学, 28(2):165-170. doi: 10.3969/j.issn.1001-1552.2004.02.008
      李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义.矿床地质, 36(4):1003-1008. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704014
      李光明, 曾庆贵, 雍永源, 等, 2005.西藏冈底斯成矿带浅成低温热液型金锑矿床的发现及其意义:以西藏弄如日金锑矿床为例.矿床地质, 24(6):595-602. doi: 10.3969/j.issn.0258-7106.2005.06.003
      李金高, 王全海, 陈健坤, 等, 2002.西藏江孜县沙拉岗锑矿床成矿与找矿模式的初步研究.成都理工学院学报, 29(5):533-538. doi: 10.3969/j.issn.1671-9727.2002.05.011
      李应栩, 李光明, 董磊, 等, 2018.西藏马扎拉金矿区外围地质特征与找矿方向.沉积与特提斯地质, 38(3):90-100. http://d.old.wanfangdata.com.cn/Periodical/yxgdl201803010
      林彬, 唐菊兴, 郑文宝, 等, 2016.西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因.岩石矿物学杂志, 35(3):391-406. doi: 10.3969/j.issn.1000-6524.2016.03.002
      刘汉彬, 金贵善, 李军杰, 等, 2013.铀矿地质样品的稳定同位素组成测试方法.世界核地质科学, 30(3):174-179. doi: 10.3969/j.issn.1672-0636.2013.03.009
      莫儒伟, 孙晓明, 翟伟, 等, 2013.藏南马扎拉金锑矿床成矿流体地球化学和成矿机制.岩石学报, 29(4):1427-1438. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201304025
      聂凤军, 胡朋, 江思宏, 等, 2005.藏南地区金和锑矿床(点)类型及其时空分布特征.地质学报, 79(3):373-385. doi: 10.3321/j.issn:0001-5717.2005.03.009
      卿成实, 丁俊, 李应栩, 等, 2014.马扎拉金锑矿元素组合异常及找矿方向.金属矿山, (12):134-137. http://d.old.wanfangdata.com.cn/Periodical/jsks201412029
      吴福元, 刘志超, 刘小驰, 等, 2015.喜马拉雅淡色花岗岩.岩石学报, 31(1):1-36. http://d.old.wanfangdata.com.cn/Periodical/dqkx200503003
      杨竹森, 侯增谦, 高伟, 等, 2006.藏南拆离系锑金成矿特征与成因模式.地质学报, 80(9):1377-1391. doi: 10.3321/j.issn:0001-5717.2006.09.013
      翟伟, 郑思琦, 孙晓明, 等, 2018.藏南喜马拉雅造山带造山型马扎拉Au-Sb矿床和沙拉岗Sb矿床流体包裹体He-Ar同位素组成:对成矿流体来源的制约.岩石学报, 34(12):3525-3538. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201812005
      张宏飞, Harris, N., Parrish, R., 等, 2005.北喜马拉雅淡色花岗岩地球化学:区域对比、岩石成因及其构造意义.地球科学, 30(3):275-288. http://earth-science.net/WebPage/Article.aspx?id=1410
      张建芳, 郑有业, 张刚阳, 等, 2011.西藏北喜马拉雅马扎拉金锑矿床地质特征及成矿作用.黄金, 32(1):20-24. doi: 10.3969/j.issn.1001-1277.2011.01.005
      张金阳, 廖群安, 李德威, 等, 2003.藏南萨迦拉轨岗日淡色花岗岩特征及与变质核杂岩的关系.地球科学, 28(6):695-701. doi: 10.3321/j.issn:1000-2383.2003.06.018
      张林奎, 张志, 李光明, 等, 2018.特提斯喜马拉雅错那洞穹隆的岩石组合、构造特征与成因.地球科学, 43(8):2664-2683. http://earth-science.net/WebPage/Article.aspx?id=3904
      郑有业, 孙祥, 田立明, 等, 2014.北喜马拉雅东段金锑多金属成矿作用、矿床类型与成矿时代.大地构造与成矿学, 38(1):108-118. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201401011
    • dqkx-44-6-1998-Table.pdf
    • 加载中
    图(18) / 表(3)
    计量
    • 文章访问数:  4996
    • HTML全文浏览量:  1595
    • PDF下载量:  85
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-04-16
    • 刊出日期:  2019-06-15

    目录

      /

      返回文章
      返回