• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    阿拉善地块东缘新生代中新世挤压变形及动力学背景

    赵衡 张进 曲军峰 张北航 牛鹏飞 惠洁 云龙 李岩峰 王艳楠 张义平

    赵衡, 张进, 曲军峰, 张北航, 牛鹏飞, 惠洁, 云龙, 李岩峰, 王艳楠, 张义平, 2020. 阿拉善地块东缘新生代中新世挤压变形及动力学背景. 地球科学, 45(4): 1337-1361. doi: 10.3799/dqkx.2019.126
    引用本文: 赵衡, 张进, 曲军峰, 张北航, 牛鹏飞, 惠洁, 云龙, 李岩峰, 王艳楠, 张义平, 2020. 阿拉善地块东缘新生代中新世挤压变形及动力学背景. 地球科学, 45(4): 1337-1361. doi: 10.3799/dqkx.2019.126
    Zhao Heng, Zhang Jin, Qu Junfeng, Zhang Beihang, Niu Pengfei, Hui Jie, Yun Long, Li Yanfeng, Wang Yannan, Zhang Yiping, 2020. Characteristics and Dynamic Background of Cenozoic Compressive Structures in Eastern Margin of Alxa Block. Earth Science, 45(4): 1337-1361. doi: 10.3799/dqkx.2019.126
    Citation: Zhao Heng, Zhang Jin, Qu Junfeng, Zhang Beihang, Niu Pengfei, Hui Jie, Yun Long, Li Yanfeng, Wang Yannan, Zhang Yiping, 2020. Characteristics and Dynamic Background of Cenozoic Compressive Structures in Eastern Margin of Alxa Block. Earth Science, 45(4): 1337-1361. doi: 10.3799/dqkx.2019.126

    阿拉善地块东缘新生代中新世挤压变形及动力学背景

    doi: 10.3799/dqkx.2019.126
    基金项目: 

    国家重点研究开发项目 2017YFC0601301

    国家自然科学基金项目 41572190

    中国地质调查局项目 12120115069601

    详细信息
      作者简介:

      赵衡(1990-), 男, 博士研究生, 研究方向为构造变形

      通讯作者:

      张进

    • 中图分类号: P54

    Characteristics and Dynamic Background of Cenozoic Compressive Structures in Eastern Margin of Alxa Block

    • 摘要: 在阿拉善地块东缘发现新生代中新世挤压构造,形成近SN或NE-SW走向的逆冲断层及卷入新生代地层的褶皱.其形成背景关系到阿拉善地块新生代的变形特征以及与青藏高原扩展的关系.为了进一步探讨阿拉善地块东缘的挤压构造是否受青藏高原扩展控制,为青藏高原北缘新生代扩展过程的研究提供资料,通过详细地质填图、区域地质调查与对比方法,确定了这些挤压构造的几何样式以及运动学特征,结合断层滑动矢量,恢复出变形时的古应力场.室内外的分析表明,形成这些挤压构造的最大主应力方位为NW-SE或近EW向,结合盆地地震反射资料、卷入构造的地层,推测变形的时代是中新世中晚期.这期变形的动力可能是阿拉善地块受到青藏高原北缘的挤压向东运动所致.同时在阿拉善地块向东运动的过程中,其内部发育的早期东西向构造带发生右行走滑,和阿拉善东缘的挤压构造一同调节地块的变形.晚中新世之后,高原东北缘最大主应力方位发生顺时针旋转,阿拉善东缘挤压构造被后期构造叠加.

       

    • 图  1  阿拉善及邻区地质图

      Fig.  1.  Geological map of the Alxa block and its vicinity

      图  2  阿拉善东缘地质图

      Fig.  2.  Geological map of the eastern margin of the Alxa block

      图  3  狼山地区地质图(位置见图 2

      Fig.  3.  Geological map of Langshan region(see locations in Fig.2)

      图  4  狼山山顶乌兰布拉格组沉积特征及地层柱状图

      a.含砾粗砂岩中的大型板状斜层理; b.砾岩中的叠瓦状排列砾石; c.超覆不整合面(虚线)

      Fig.  4.  Photographs and stratigraphic column of the Wulanbulage Formation on the top of Langshan bedrocks

      图  5  乌兰塔它勒地区逆冲断层平面、剖面图

      a.乌兰塔它勒地区地质图; b.剖面图(位置见图a); c.乌兰塔它勒地区逆冲断层照片

      Fig.  5.  The planar and profile map of thrusts faults in Wulantatale region

      图  6  乌兰塔它勒地区指示NW-SE向挤压的构造

      a.狼山山前双冲构造;b.断层带断层角砾岩及次级破裂面P面指示逆冲性质;c.沿狼山山前沿逆冲断层带分布的断层角砾岩,逆冲上盘受后期正断层切割消失;d.渐新世乌兰布拉格组砾岩宽缓褶皱,褶皱枢纽走向38°,指示最大主应力方位为NW-SE向

      Fig.  6.  Photographs showing NW-SE compressive in Wulantatale region

      图  7  叠布斯格盆地、骆驼瀑以及带日根高勒沟口处新生代逆冲断层露头(位置见图 3)

      叠布斯格盆地新生代逆冲断层,赤平投影为断层产状; b.叠布斯格盆地新生代逆冲断层及其断层面解; c.骆驼瀑南侧石炭纪花岗岩向西逆冲于渐新统乌兰布拉格组之上,断层下盘地层发生倒转; d.骆驼瀑南侧逆冲断层带内石英脉被逆冲断层剪断; e.代日根高勒沟口处花岗岩逆冲到渐新统乌兰布拉格组之上

      Fig.  7.  Cenozoic thrust fault in Diebusige basin, Luotuopu and the mouth of Dairigengaole gully(see locations in Fig.3)

      图  8  狼山地区新生代逆冲断层古应力反演

      a.狼山地区逆冲断层P轴极密图; b.断层滑动矢量反演得出最大主压应力方位为NW-SE向

      Fig.  8.  Paleostress inversion of Cenozoic thrust faults in Langshan region

      图  9  苏木图地区NNE向背斜

      a.背斜卫星影像,两翼产状和褶皱枢纽走向,指示NWW-SEE向的挤压(产状数据雷启云等,2017); b.清水营组砖红色砾岩; c.巴彦浩特北侧白垩系倾斜地层

      Fig.  9.  NNE trending anticline in Sumutu region

      图  10  贺兰山南部吉井子盆地西缘逆冲断层

      a.吉井子盆地地质简图;b.红柳沟组地层受逆冲地层影响形成近南北走向褶皱;c, d, e分别为剖面AB, CD, EF上的逆冲断层,古生代奥陶系白云质灰岩逆冲到红柳沟组之上

      Fig.  10.  Thrust faults located in western Jijingzi basin to the south of Helanshan

      图  11  吉井子盆地EF剖面地层柱状图及不同层位岩性照片

      Fig.  11.  The stratigraphic section EF in Jijingzi basin and related photographs

      图  12  中卫四眼井沟红柳沟组内发育的逆冲断层

      a.断层照片; b.被石膏充填的共轭节理

      Fig.  12.  Thrust fault cut through the Hongliugou Formation in Siyanjing gully, Zhongwei region

      图  13  银川盆地西缘深地震反射剖面及解释

      a.银川盆地内部地震反射剖面(地震剖面图引自Huang et al., 2016); b.新生代地层内部逆冲断层及断层相关褶皱,后期被高角度正断层错断.底图引自Huang et al.(2016)

      Fig.  13.  Deep seismic reflection profile of east Yinchuan basin and its interpretation

      图  14  贺兰山及邻区深地震剖面解释图及新生代断裂分布

      修改自Liu et al.(2017a). F1.巴彦浩特断裂; F2.贺兰山西缘断裂; F3.贺兰山东麓断裂; F4.芦花台断裂; F5.银川断裂; F6.黄河断裂

      Fig.  14.  Interpretation of the deep seismic reflection profile

      图  15  横跨河套盆地剖面

      杨俊杰等(1992)

      Fig.  15.  Cross section of the Hetao depression

      图  16  河套盆地西缘新生代逆冲构造形成圈闭

      据中国石油天然气集团华北油田内部资料

      Fig.  16.  Thrust fault controlled trap in the east margin of the Hetao depression

      图  17  莱菔山右行走滑断裂

      a.莱菔山地质图; b.断层露头; c.断层面擦痕及断层机制解指示右行斜滑.区域位置见图 1

      Fig.  17.  Dextral slip fault in Laifushan

      图  18  中新世以来青藏高原扩展对阿拉善块体和鄂尔多斯块体作用示意图

      修改自郑文俊等(2016);Lei et al.(2016); Duvall et al.(2013);王伟涛等(2014);Bovet et al.(2009); Yuan et al.(2013)

      Fig.  18.  Schematic maps show how northern or northeastern Tibetan plateau exerts influence on the Ordos/ Alxa block from Miocene to present

      表  1  狼山地区逆冲断层观测点及古应力场方位

      Table  1.   Faults measured in Langshan region and their paleo-stress field

      编号 纬度 经度 断层两盘岩性 数目 σ1 σ2 σ3
      NC1 40°34′13.4″ 106°19′50.2″ 白垩纪砾岩与石炭纪花岗岩 3 302/13 35/16 174/70
      NC2 40°34′21.6″ 106°19′55.3″ 白垩纪砾岩与石炭纪花岗岩 6 292/9 7月23日 149/79
      NC3 40°34′55.4″ 106°20′14.2″ 白垩纪砾岩与石炭纪花岗岩 3 121/27 216/10 325/61
      NC4 40°34′44.4″ 106°19′47.3″ 白垩纪砾岩与石炭纪花岗岩 3 306/10 41/31 200/58
      NC5 40°34′49.1″ 106°19′45.1″ 白垩纪砾岩与石炭纪花岗岩 5 121/0 31/19 211/71
      NC6 40°35′27.9″ 106°20′09.6″ 渐新世乌兰布拉格组砾岩 4 317/6 227/2 120/83
      NC7 40°33′42.7″ 106°15′52.1″ 渐新世乌兰布拉格组砾岩 3 137/16 233/19 9/64
      NC8 40°30′34.7″ 106°15′47.8″ 渐新世乌兰布拉格组砾岩与花岗岩 5 304/17 211/9 96/71
      NC9 40°28′57.3″ 106°14′44.7″ 渐新世乌兰布拉格组砾岩与花岗岩 4 319/11 Apr-50 159/78
      NC10 40°33′01.7″ 106°13′11.1″ 叠布斯格岩群斜长角闪片麻岩和渐新世乌兰布拉格组砾岩 3 303/17 210/9 94/71
      下载: 导出CSV
    • Angelier, J., 1979. Determination of the Mean Principal Directions of Stresses for a Given Fault Population. Tectonophysics, 56(3-4):T17-T26. https://doi.org/10.1016/0040-1951(79)90081-7
      Bovet, P.M., Ritts, B.D., Gehrels, G., et al., 2009. Evidence of Miocene Crustal Shortening in the North Qilian Shan from Cenozoic Stratigraphy of the Western Hexi Corridor, Gansu Province, China. American Journal of Science, 309(4):290-329. https://doi.org/10.2475/00.4009.02 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=20a7a77d09f74e13f78e87e2cad1d1a9
      Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea:Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research:Solid Earth, 98(B4):6299-6328. https://doi.org/10.1029/92jb02280 doi: 10.1029/92JB02280
      Chen, Z.L., Gong, H.L., Li, L., et al., 2006.Cenozoic Uplifting and Exhumation Process of the Altyn Tagh Mountains. Earth Science Frontiers, 13(4):91-102(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200604008
      Chung, S.L., Chu, M.F., Zhang, Y., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3-4):173-196. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=edd81f21a4b046d1678a4727beb6f78a
      Clark, M.K., Farley, K.A., Zheng, D.W., et al., 2010. Early Cenozoic Faulting of the Northern Tibetan Plateau Margin from Apatite (U-Th)/He Ages. Earth and Planetary Science Letters, 296(1-2):78-88. https://doi.org/10.1016/j.epsl.2010.04.051
      Cunningham, D., 2005. Active Intracontinental Transpressional Mountain Building in the Mongolian Altai:Defining a New Class of Orogen. Earth and Planetary Science Letters, 240(2):436-444. https://doi.org/10.1016/j.epsl.2005.09.013
      Cunningham, D., 2013. Mountain Building Processes in Intracontinental Oblique Deformation Belts:Lessons from the Gobi Corridor, Central Asia. Journal of Structural Geology, 46:255-282. https://doi.org/10.1016/j.jsg.2012.08.010
      Cunningham, D., 2017. Folded Basinal Compartments of the Southern Mongolian Borderland:A Structural Archive of the Final Consolidation of the Central Asian Orogenic Belt. Geosciences, 7(1):1-23. https://doi.org/10.3390/geosciences7010002
      Cunningham, D., Zhang, J., Li, Y.F., 2016. Late Cenozoic Transpressional Mountain Building Directly North of the Altyn Tagh Fault in the Sanweishan and Nanjieshan, North Tibetan Foreland, China. Tectonophysics, 687:111-128.http://doi.org/10.1016/j.techo.2016.09.010 doi: 10.1016/j.tecto.2016.09.010
      Dai, S., Fang, X.M, Song, C.H., et al., 2005. Early Tectonic Uplift of the Northern Tibetan Plateau. Chinese Science Bulletin, 50(15):1642. https://doi.org/10.1360/03wd0255
      Dan, W., Li, X.H., Guo, J.H., et al., 2012. Paleoproterozoic Evolution of the Eastern Alxa Block, Westernmost North China:Evidence from in Situ Zircon U-Pb Dating and Hf-O Isotopes. Gondwana Research, 21(4):838-864. https://doi.org/10.1016/j.gr.2011.09.004
      Dan, W., Li, X.H., Wang, Q., et al., 2014. Neoproterozoic S-Type Granites in the Alxa Block, Westernmost North China and Tectonic Implications:In Situ Zircon U-Pb-Hf-O Isotopic and Geochemical Constraints. American Journal of Science, 314(1):110-153. https://doi.org/10.2475/01.2014.04
      Dan, W., Li, X.H., Wang, Q., et al., 2016. Phanerozoic Amalgamation of the Alxa Block and North China Craton:Evidence from Paleozoic Granitoids, U-Pb Geochronology and Sr-Nd-Pb-Hf-O Isotope Geochemistry. Gondwana Research, 32:105-121. doi: 10.1016/j.gr.2015.02.011
      Darby, B.J., Ritts, B. D., 2002. Mesozoic Contractional Deformation in the Middle of the Asian Tectonic Collage:The Intraplate Western Ordos Fold-Thrust Belt, China. Earth and Planetary Science Letters, 205(1-2):13-24. https://doi.org/10.1016/s0012-821x(02)01026-9 doi: 10.1016/S0012-821X(02)01026-9
      Darby, B.J., Ritts, B.D., 2007. Mesozoic Structural Architecture of the Lang Shan, North-Central China:Intraplate Contraction, Extension, and Synorogenic Sedimentation. Journal of Structural Geology, 29(12):2006-2016. https://doi.org/10.1016/j.jsg.2007.06.011
      Darby, B., Ritts, B., Yue, Y., et al., 2005. Did the Altyn Tagh Fault Extend beyond the Tibetan Plateau?. Earth and Planetary Science Letters, 240(2):425-435. https://doi.org/10.1016/j.epsl.2005.09.011
      De Grave, J., Buslov, M.M., van den haute, P., 2007. Distant Effects of India-Eurasia Convergence and Mesozoic Intracontinental Deformation in Central Asia:Constraints from Apatite Fission-Track Thermochronology. Journal of Asian Earth Sciences, 29(2-3):188-204. https://doi.org/10.1016/j.jseaes.2006.03.001
      Deng, Q.D., Sung, F., Zhu, S.L., et al., 1984. Active Faulting and Tectonics of the Ningxia-Hui Autonomous Region, China. Journal of Geophysical Research:Solid Earth, 89(B6):4427-4445. https://doi.org/10.1029/jb089ib06p04427 doi: 10.1029/JB089iB06p04427
      Deng, J.F., Xiao, Q.H., Qiu, R.Z., et al., 2006.Cenozoic Lithospheric Extension and Thinning of North China:Mechanism and Process.Geology in China, 33(4):751-761(in Chinese with English abstract).
      Deng, Q.D., Cheng, S.P., Min, W., et al., 1999.Discussion on Cenozoic Tectonics and Dynamics of Ordos Block. Journal of Geomechanics, 5(3):13-21(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb199903003
      Duvall, A.R., Clark, M.K., Kirby, E., et al., 2013. Low-Temperature Thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau:Evidence for Kinematic Change during Late-Stage Orogenesis. Tectonics, 32(5):1190-1211. https://doi.org/10.1002/tect.20072
      Fan, L.G., Meng, Q.R., Wu, G.L., et al., 2019. Paleogene Crustal Extension in the Eastern Segment of the NE Tibetan Plateau. Earth and Planetary Science Letters, 514:62-74. https://doi.org/10.1016/j.epsl.2019.02.036
      Fang, X.M., Zhang, W.L., Meng, Q.Q., et al., 2007. High-Resolution Magnetostratigraphy of the Neogene Huaitoutala Section in the Eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and Its Implication on Tectonic Uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters, 258(1-2):293-306. https://doi.org/10.1016/j.epsl.2007.03.042
      Faure, M., Lin, W., Chen, Y., 2012. Is the Jurassic (Yanshanian) Intraplate Tectonics of North China Due to Westward Indentation of the North China Block?. Terra Nova, 24(6):456-466. https://doi.org/10.1111/ter.12002
      Fu, S.T., Fu, J.H., Yu, J., et al., 2018. Petroleum Geological Features and Exploration Prospect of Linhe Depression in Hetao Basin, China. Petroleum Exploration and Development, 45(5):803-817. https://doi.org/10.1016/s1876-3804(18)30084-3 doi: 10.1016/S1876-3804(18)30084-3
      Geng, Y.S., Zhou, X.W., 2010.Early Neoproterozoic Granite Events in Alax Area of Inner Mongolia and Their Geological Significance:Evidence from Geochronology. Acta Petrologica et Mineralogica, 29(6):779-795(in Chinese with English abstract).
      George, A.D., Marshallsea, S.J., Wyrwoll, K. H., et al., 2001. Miocene Cooling in the Northern Qilian Shan, Northeastern Margin of the Tibetan Plateau, Revealed by Apatite Fission-Track and Vitrinite-Reflectance Analysis. Geology, 29(10):939-942. https://doi.org/10.1130/0091-7613(2001)029<0939:mcitnq>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0939:MCITNQ>2.0.CO;2
      Gong, J.H., Zhang, J.X., Yu, S.Y., et al., 2012. Ca. 2.5 Ga TTG Rocks in the Western Alxa Block and Their Implications. Chinese Science Bulletin, 57(31):4064-4076. https://doi.org/10.1007/s11434-012-5315-8
      He, J.K., Cai, D.S., Li, Y.X., et al., 2004. Active Extension of the Shanxi Rift, North China:Does It Result from Anticlockwise Block Rotations?. Terra Nova, 16(1):38-42. https://doi.org/10.1046/j.1365-3121.2003.00523.x
      He, J.K., Liu, M., Li, Y.X., 2003. Is the Shanxi Rift of Northern China Extending?. Geophysical Research Letters, 30(23):2213. https://doi.org/10.1029/2003gl018764
      Hendrix, M.S., Dumitru, T.A., Graham, S.A., 1994. Late Oligocene-Early Miocene Unroofing in the Chinese Tian Shan:An Early Effect of the India-Asia Collision. Geology, 22(6):487-490. https://doi.org/10.1130/0091-7613(1994)022<0487:loemui>2.3.co;2 doi: 10.1130/0091-7613(1994)022<0487:LOEMUI>2.3.CO;2
      Heumann, M.J., Johnson, C.L., Webb, L.E., 2018. Plate Interior Polyphase Fault Systems and Sedimentary Basin Evolution:A Case Study of the East Gobi Basin and East Gobi Fault Zone, Southeastern Mongolia. Journal of Asian Earth Sciences, 151:343-358. https://doi.org/10.1016/j.jseaes.2017.05.017
      Houseman, G., England, P.H., 1996. A Lithospheric-Thickening Model for the Indo-Asian Collision. World and Regional Geology, 1(8), 1-17.
      Hu, J.M., Gong, W.B., Wu, S.J., et al., 2014. LA-ICP-MS Zircon U-Pb Dating of the Langshan Group in the Northeast Margin of the Alxa Block, with Tectonic Implications. Precambrian Research, 255:756-770. https://doi.org/10.1016/j.precamres.2014.08.013
      Huang, B.C., Piper, J., Peng, S., et al., 2006. Magnetostratigraphic Study of the Kuche Depression, Tarim Basin, and Cenozoic Uplift of the Tian Shan Range, Western China. Earth and Planetary Science Letters, 251(3-4):346-364. https://doi.org/10.1016/j.epsl.2006.09.020
      Huang, X.F., Feng, S.Y., Gao, R., et al., 2016. High-Resolution Crustal Structure of the Yinchuan Basin Revealed by Deep Seismic Reflection Profiling:Implications for Deep Processes of Basin. Earthquake Science, 29(2):83-92. https://doi.org/10.1007/s11589-016-0148-1
      Huang, T.K., 1945. On Major Tectonic Forms of China. The Journal of Geology, 55(1):59-60. https://doi.org/10.1086/625397
      Jolivet, L., Tamaki, K., Fournier, M., 1994. Japan Sea, Opening History and Mechanism:A Synthesis. Journal of Geophysical Research:Solid Earth, 99(B11):22237-22259. https://doi.org/10.1029/93jb03463 doi: 10.1029/93JB03463
      Jolivet, M., Brunel, M., Seward, D., et al., 2001. Mesozoic and Cenozoic Tectonics of the Northern Edge of the Tibetan Plateau:Fission-Track Constraints. Tectonophysics, 343(1-2):111-134. https://doi.org/10.1016/s0040-1951(01)00196-2 doi: 10.1016/S0040-1951(01)00196-2
      Kusky, T.M., Li, J.H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4):383-397. https://doi.org/10.1016/s1367-9120(03)00071-3 doi: 10.1016/S1367-9120(03)00071-3
      Lease, R.O., Burbank, D.W., Clark, M.K., et al., 2011. Middle Miocene Reorganization of Deformation along the Northeastern Tibetan Plateau. Geology, 39(4):359-362. https://doi.org/10.1130/g31356.1 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d4c5a920fa5e95115a8ee8c61bb11076
      Lei, Q., Zhang, P., Zheng, W., et al., 2016. Dextral Strike-Slip of Sanguankou-Niushoushan Fault Zone and Extension of Arc Tectonic Belt in the Northeastern Margin of the Tibet Plateau. Science China Earth Sciences, 59(5):1025-1040. doi: 10.1007/s11430-016-5272-1
      Lei, Q.Y., Zhang, P.Z., Zheng, W.J., et al., 2017.Geological and Geomorphic Evidence for Dextral Strike Slip of the Helan Shan West-Piedmont Fault and Its Tectonic Implications. Seismology and Geology, 39(6):1297-1315(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201706014
      Leloup, P.H., Arnaud, N., Lacassin, R., et al., 2001. New Constraints on the Structure, Thermochronology, and Timing of the Ailao Shan-Red River Shear Zone, SE Asia. Journal of Geophysical Research:Solid Earth, 106(B4):6683-6732. https://doi.org/10.1029/2000jb900322 doi: 10.1029/2000JB900322
      Li, T., Xie, G, A., Zhang, J., et al., 2020. Characteristics of the Tectonic Stress Field of the South-North Oriented Fault of the Langshan Mountain Region of Inner Mongolia and Its Relationship with Regional Tectonic Evolution. Earth Science, 45(1):211-225(in Chinese with English abstract).
      Li, B., Chen, X.H., Zuza, A.V., et al., 2019. Cenozoic Cooling History of the North Qilian Shan, Northern Tibetan Plateau, and the Initiation of the Haiyuan Fault:Constraints from Apatite- and Zircon-Fission Track Thermochronology. Tectonophysics, 751:109-124. https://doi.org/10.1016/j.tecto.2018.12.005
      Lin, X.B., Chen, H.L., Wyrwoll, K.H., et al., 2011.The Uplift History of the Haiyuan-Liupan Shan Region Northeast of the Present Tibetan Plateau:Integrated Constraint from Stratigraphy and Thermochronology. The Journal of Geology, 119(4):372-393. https://doi.org/10.1086/660190
      Liu, B.J., Feng, S.Y., Ji, J.F., et al., 2017a. Lithospheric Structure and Faulting Characteristics of the Helan Mountains and Yinchuan Basin:Results of Deep Seismic Reflection Profiling. Science China Earth Sciences, 60(3):589-601. https://doi.org/10.1007/s11430-016-5069-4
      Liu, D.L., Fang, X.M., Gao, J.P., et al., 2009. Cenozoic Stratigraphy Deformation History in the Central and Eastern of Qaidam Basin by the Balance Section Restoration and Its Implication. Acta Geologica Sinica, 83(2):359-371. https://doi.org/10.1111/j.1755-6724.2009.00024.x
      Liu, D.L., Li, H.B., Sun, Z.M., et al., 2017b. AFT Dating Constrains the Cenozoic Uplift of the Qimen Tagh Mountains, Northeast Tibetan Plateau, Comparison with LA-ICPMS Zircon U-Pb Ages. Gondwana Research, 41:438-450. https://doi.org/10.1016/j.gr.2015.10.008
      Liu, M., Cui, X.J., Liu, F.T., 2004. Cenozoic Rifting and Volcanism in Eastern China:A Mantle Dynamic Link to the Indo-Asian Collision?. Tectonophysics, 393(1-4):29-42. https://doi.org/10.1016/j.tecto.2004.07.029
      Liu, S.F., 1998. The Coupling Mechanism of Basin and Orogen in the Western Ordos Basin and Adjacent Regions of China. Journal of Asian Earth Sciences, 16(4):369-383. https://doi.org/10.1016/s0743-9547(98)00020-8 doi: 10.1016/S0743-9547(98)00020-8
      Liu, X.B., Hu, J.M., Shi, W., et al., 2019b. Palaeogene-Neogene Sedimentary and Tectonic Evolution of the Yinchuan Basin, Western North China Craton. International Geology Review, 62(1):53-71. https://doi.org/10.1080/00206814.2019.1591309
      Liu, X.B., Shi, W., Hu, J.M., et al., 2019a. Magnetostratigraphy and Tectonic Implications of Paleogene-Neogene Sediments in the Yinchuan Basin, Western North China Craton. Journal of Asian Earth Sciences, 173:61-69. https://doi.org/10.1016/j.jseaes.2019.01.016
      Lu, H.J., Fu, B.H., Shi, P.L., et al., 2016. Constraints on the Uplift Mechanism of Northern Tibet. Earth and Planetary Science Letters, 453:108-118. https://doi.org/10.1016/j.epsl.2016.08.010
      Ma, X.Y., Wu, D.N., 1987. Cenozoic Extensional Tectonics in China. Tectonophysics, 133(3-4):243-255. https://doi.org/10.1016/0040-1951(87)90268-x doi: 10.1016/0040-1951(87)90268-X
      Meyer, B., Tapponnier, P., Bourjot, L., et al., 1998. Crustal Thickening in Gansu-Qinghai, Lithospheric Mantle Subduction, and Oblique, Strike-Slip Controlled Growth of the Tibet Plateau. Geophysical Journal International, 135(1):1-47. https://doi.org/10.1046/j.1365-246x.1998.00567.x doi: 10.1046/j.1365-246X.1998.00567.x
      Molnar, P., England, P., Martinod, J., 1993. Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics, 31(4):357-396. https://doi.org/10.1029/93rg02030 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/93RG02030
      Molnar, P., Stock, J.M., 2009. Slowing of India's Convergence with Eurasia since 20 Ma and Its Implications for Tibetan Mantle Dynamics. Tectonics, 28(3):1-11. https://doi.org/10.1029/2008tc002271 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2008TC002271
      Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia:Effects of a Continental Collision:Features of Recent Continental Tectonics in Asia can be Interpreted as Results of the India-Eurasia Collision. Science, 189(4201):419-426. https://doi.org/10.1126/science.189.4201.419
      Peltzer, G., Tapponnier, P., 1988. Formation and Evolution of Strike-Slip Faults, Rifts, and Basins during the India-Asia Collision:An Experimental Approach. Journal of Geophysical Research:Solid Earth, 93(B12):15085-15117. https://doi.org/10.1029/jb093ib12p15085 doi: 10.1029/JB093iB12p15085
      Peng, R.M., Zhai, Y.S., Wang, J.P., et al., 2010. Discovery of Neoproterozoic Acid Volcanic Rock in the Western Section of Langshan, Inner Mongolia, and Its Geological Significance. Chinese Science Bulletin, 55:2611-2620(in Chinese). doi: 10.1360/972010-266
      Rao, G., Chen, P., Hu, J.M., et al., 2016. Timing of Holocene Paleo-Earthquakes along the Langshan Piedmont Fault in the Western Hetao Graben, North China:Implications for Seismic Risk. Tectonophysics, 677-678:115-124. https://doi.org/10.1016/j.tecto.2016.03.035
      Research Group of Active Fault System around the Ordos Massif, 1988. Active Fault System around Ordos Massif. Seismological Press, Beijing, 39-65(in Chinese).
      Ritts, B.D., Yue, Y., Graham, S.A., et al., 2008. From Sea Level to High Elevation in 15 Million Years:Uplift History of the Northern Tibetan Plateau Margin in the Altun Shan. American Journal of Science, 308(5):657-678. https://doi.org/10.2475/05.2008.01
      Sengör, A.M.C., Natal'in, B.A., 1996. Turkic-Type Orogeny and Its Role in the Making of the Continental Crust. Annual Review of Earth and Planetary Sciences, 24(1):263-337. https://doi.org/10.1146/annurev.earth.24.1.263
      Seno, T., Maruyama, S., 1984. Paleogeographic Reconstruction and Origin of the Philippine Sea. Tectonophysics, 102(1-4):53-84. https://doi.org/10.1016/0040-1951(84)90008-8
      Shi, W., Dong, S.W., Liu, Y., et al., 2015. Cenozoic Tectonic Evolution of the South Ningxia Region, Northeastern Tibetan Plateau Inferred from New Structural Investigations and Fault Kinematic Analyses. Tectonophysics, 649:139-164. https://doi.org/10.1016/j.tecto.2015.02.024
      Shi, W., Liu, Y., Liu, Y., et al., 2013.Cenozoic Evolution of the Haiyuan Fault Zone in the Northeast Margin of the Tibetan Plateau. Earth Science Frontiers, 20(4):1-17(in Chinese with English abstract).
      Shi, W.B., Wang, F., Yang, L., et al., 2018. Diachronous Growth of the Altyn Tagh Mountains:Constraints on Propagation of the Northern Tibetan Margin from (U-Th)/He Dating. Journal of Geophysical Research:Solid Earth, 123(7):6000-6018. https://doi.org/10.1029/2017jb014844 doi: 10.1029/2017JB014844
      Sobel, E., Chen, J., Heermance, R., 2006. Late Oligocene-Early Miocene Initiation of Shortening in the Southwestern Chinese Tian Shan:Implications for Neogene Shortening Rate Variations. Earth and Planetary Science Letters, 247(1-2):70-81. https://doi.org/10.1016/j.epsl.2006.03.048
      Sobel, E.R., Arnaud, N., Jolivet, M., et al., 2001. Jurassic to Cenozoic Exhumation History of the Altyn Tagh Range, Northwest China, Constrained by 40Ar/39Ar and Apatite Fission Track Thermochronology. In: Hendrix, M.S., Davis, G.A., eds., Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia. Geological Society of America, 194: 247-267.
      Sun, J.M., Zhu, R.X., An, Z.S., 2005. Tectonic Uplift in the Northern Tibetan Plateau since 13.7 Ma Ago Inferred from Molasse Deposits along the Altyn Tagh Fault. Earth and Planetary Science Letters, 235(3-4):641-653. https://doi.org/10.1016/j.epsl.2005.04.034
      Sun, L.Y., Pu, R.H., Ma.Z.R., et al., 2018. Source Rock Distribution and Exploration Prospect of Jilantai Sag in Hetao Basin, China. Journal of Earth Sciences and Environment, 40(5):612-626(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201805009
      Tapponnier, P., Peltzer, G., Le Dain, A.Y., et al., 1982. Propagating Extrusion Tectonics in Asia:New Insights from Simple Experiments with Plasticine. Geology, 10(12):611. https://doi.org/10.1130/0091-7613(1982)10<611:petian>2.0.co;2 doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
      Tapponnier, P., Xu, Z.Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547):1671-1677. https://doi.org/10.1126/science.105978
      Tian, R.S., Xie, G.A., Zhang, J., et al., 2017.Deformation Characteristics of the Neoproterozoic Langshan Group in Langshan Region and Their Tectonic Implications. Geological Review, 63(5):1180-1192(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201705005
      Wang, C.S., Dai, J.G., Zhao, X.X., et al., 2014. Outward-Growth of the Tibetan Plateau during the Cenozoic:A Review. Tectonophysics, 621:1-43. https://doi.org/10.1016/j.tecto.2014.01.036
      Wang, C.S., Zhao, X.X., Liu, Z.F., et al., 2008. Constraints on the Early Uplift History of the Tibetan Plateau. Proceedings of the National Academy of Sciences, 105(13):4987-4992. https://doi.org/10.1073/pnas.0703595105
      Wang, J.P., Kusky, T., Polat, A., et al., 2013. A Late Archean Tectonic Mélange in the Central Orogenic Belt, North China Craton. Tectonophysics, 608:929-946. https://doi.org/10.1016/j.tecto.2013.07.025
      Wang, J.P., Kusky, T., Wang, L., et al., 2017. Structural Relationships along a Neoarchean Arc-Continent Collision Zone, North China Craton. Geological Society of America Bulletin, 129(1-2):59-75. https://doi.org/10.1130/b31479.1 doi: 10.1130/B31479.1
      Wang, T. Y., Zhang, Wang, J. R.M. J., et al., 1998. The Characteristics and Tectonic Implications of the Thrust Belt in Eu Gerwusu, China. Chinese Journal of Geology, 33(4):385-394(in Chinese with English abstract).
      Wang, W.T., Zhang, P.Z., Kirby, E., et al., 2011. A Revised Chronology for Tertiary Sedimentation in the Sikouzi Basin:Implications for the Tectonic Evolution of the Northeastern Corner of the Tibetan Plateau. Tectonophysics, 505(1-4):100-114. https://doi.org/10.1016/j.tecto.2011.04.006
      Wang, W.T., Zhang, P.Z., Yu, J.X., et al., 2016a. Constraints on Mountain Building in the Northeastern Tibet:Detrital Zircon Records from Synorogenic Deposits in the Yumen Basin. Scientific Reports, 6(1):27604. https://doi.org/10.1038/srep27604
      Wang, X.X., Song, C.H., Zattin, M., et al., 2016b. Cenozoic Pulsed Deformation History of Northeastern Tibetan Plateau Reconstructed from Fission-Track Thermochronology. Tectonophysics, 672-673:212-227. https://doi.org/10.1016/j.tecto.2016.02.006
      Wang, W.T., Zhang, P.Z., Zheng, D.W., et al., 2014.Late Cenozoic Tectonic Deformation of the Haiyuan Fault Zone in the Northeastern Margin of the Tibetan Plateau.Earth Science Frontiers, 21(4):266-274(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201404027
      Webb, L.E., Johnson, C.L., 2006. Tertiary Strike-Slip Faulting in Southeastern Mongolia and Implications for Asian Tectonics. Earth and Planetary Science Letters, 241(1-2):323-335. https://doi.org/10.1016/j.epsl.2005.10.033
      Wu, L., Gong, Q.L., Qin, S.H., et al., 2013.When did Cenozoic Left-Slip along the Altyn Tagh Fault Initiate? A Comprehensive Approach. Acta Petrologica Sinica, 29(8):2837-2850(in Chinese with English abstract).
      Wu, T.R., He, G.Q. 1993. Tectonic Units and There Fundamental Characteristiics on the Northern Margin of the Alxa Block. Acta Geologica Sincia, 67(2):97-108(in Chinese with English abstract).
      Xiao, W.J., Windley, B.F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia:Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1):477-507. https://doi.org/10.1146/annurev-earth-060614-105254
      Xu, J., Ji, F.J., Zhou, B.G., et al., 2012.On the Lower Chronological Boundary of the Neotectonic Period in China. Earth Science Frontiers, 19(5):284-292(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201205027
      Yang, J.J., Li, K.Q., Zhang, D.S., et al., 1992. Petroleum Geology of China, Changqing Oil Field(Vol. 12). Petroleum Geology of China. Petroleum Industry Press, Beijing, 333-340(in Chinese).
      Yang, W., Jolivet, M., Dupont-Nivet, G., et al., 2014. Mesozoic-Cenozoic Tectonic Evolution of Southwestern Tian Shan:Evidence from Detrital Zircon U/Pb and Apatite Fission Track Ages of the Ulugqat Area, Northwest China. Gondwana Research, 26(3-4):986-1008. https://doi.org/10.1016/j.gr.2013.07.020
      Yeh, Y.C., Sibuet, J. C., Hsu, S. K., et al., 2010. Tectonic Evolution of the Northeastern South China Sea from Seismic Interpretation. Journal of Geophysical Research:Solid Earth, 115(B6):B06103. https://doi.org/10.1029/2009jb006354
      Yin, A., Rumelhart, P.E., Butler, R., et al., 2002. Tectonic History of the Altyn Tagh Fault System in Northern Tibet Inferred from Cenozoic Sedimentation. Geological Society of America Bulletin, 114(10):1257-1295. https://doi.org/10.1130/0016-7606(2002)114<1257:thotat>2.0.co;2 doi: 10.1130/0016-7606(2002)114<1257:THOTAT>2.0.CO;2
      Yin, A., 2010.Cenozoic Tectonic Evolution of Asia:A Preliminary Synthesis. Tectonophysics, 488(1-4):293-325. https://doi.org/10.1016/j.tecto.2009.06.002
      Yin, A., Kapp, P.A., Murphy, M.A., et al., 1999. Significant Late Neogene East-West Extension in Northern Tibet. Geology, 27(9):787. https://doi.org/10.1130/0091-7613(1999)0270787:slnewe>2.3.co;2 doi: 10.1130/0091-7613(1999)027<0787:SLNEWE>2.3.CO;2
      Yin, A., Harrison, T. M. 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211
      Yu, J.X., Zheng, W.J., Zhang, P.Z., et al., 2017. Late Quaternary Strike-Slip along the Taohuala Shan-Ayouqi Fault Zone and Its Tectonic Implications in the Hexi Corridor and the Southern Gobi Alashan, China. Tectonophysics, 721:28-44. https://doi.org/10.1016/j.tecto.2017.09.014
      Yu, J.X., Zheng, W.J., Kirby, E., et al., 2016. Kinematics of Late Quaternary Slip along the Yabrai Fault:Implications for Cenozoic Tectonics across the Gobi Alashan Block, China. Lithosphere, 8(3):199-218. https://doi.org/10.1130/l509.1 doi: 10.1130/L509.1
      Yuan, W., Yang, Z., 2015a. The Alashan Terrane did not Amalgamate with North China Block by the Late Permian:Evidence from Carboniferous and Permian Paleomagnetic Results. Journal of Asian Earth Sciences, 104:145-159. doi: 10.1016/j.jseaes.2014.02.010
      Yuan, D.Y., Ge, W.P., Chen, Z.W., et al., 2013. The Growth of Northeastern Tibet and Its Relevance to Large-Scale Continental Geodynamics:A Review of Recent Studies. Tectonics, 32(5):1358-1370. https://doi.org/10.1002/tect.20081
      Yuan, W., Yang, Z.Y., 2015b. The Alashan Terrane was not Part of North China by the Late Devonian:Evidence from Detrital Zircon U-Pb Geochronology and Hf Isotopes. Gondwana Research, 27(3):1270-1282. https://doi.org/10.1016/j.gr.2013.12.009
      Yuan, W.M., Dong, J.Q., Wang, S.C., et al., 2006. Apatite Fission Track Evidence for Neogene Uplift in the Eastern Kunlun Mountains, Northern Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences, 27(6):847-856. https://doi.org/10.1016/j.jseaes.2005.09.002
      Yue, Y.J., Liou, J.G., 1999. Two-Stage Evolution Model for the Altyn Tagh Fault, China. Geology, 27(3):227-230. https://doi.org/10.1130/0091-7613(1999)027<0227:tsemft>2.3.co;2 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6f0134a34a264c52555924ef0f6da201
      Yue, Y.J., Ritts, B.D., Graham, S.A., et al., 2004. Slowing Extrusion Tectonics:Lowered Estimate of Post-Early Miocene Slip Rate for the Altyn Tagh Fault. Earth and Planetary Science Letters, 217(1-2):111-122. https://doi.org/10.1016/s0012-821x(03)00544-2 doi: 10.1016/S0012-821X(03)00544-2
      Yue, Y.J., Ritts, B.D., Graham, S.A., 2001. Initiation and Long-Term Slip History of the Altyn Tagh Fault. International Geology Review, 43(12):1087-1093. https://doi.org/10.1080/00206810109465062
      Zhai, M.G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton:A Synoptic Overview. Gondwana Research, 20(1):6-25. https://doi.org/10.1016/j.gr.2011.02.005
      Zhang, B. H., Zhang, J., Wang, Y. N., et al., 2017. Late Mesozoic-Cenozoic Exhumation of the Northern Hexi Corridor:Constrained by Apatite Fission Track Ages of the Longshoushan. Acta Geologica Sinica-English Edition, 91(5):1624-1643. https://doi.org/10.1111/1755-6724.13402
      Zhang, J., Cunningham, D., Cheng, H.Y., 2010. Sedimentary Characteristics of Cenozoic Strata in Central-Southern Ningxia, NW China:Implications for the Evolution of the NE Qinghai-Tibetan Plateau. Journal of Asian Earth Sciences, 39(6):740-759. https://doi.org/10.1016/j.jseaes.2010.05.008
      Zhang, J., Li, J.Y., Li, Y.F., et al., 2009. How did the Alxa Block Respond to the Indo-Eurasian Collision?. International Journal of Earth Sciences, 98(6):1511-1527. https://doi.org/10.1007/s00531-008-0404-2
      Zhang, J., Li, J. Y., Li, Y. F., et al., 2014. Mesozoic-Cenozoic Multi-Stage Intraplate Deformation Events in the Langshan Region and Their Tectonic Implications. Acta Geologica Sinica-English Edition, 88(1):78-102. https://doi.org/10.1111/1755-6724.12184
      Zhang, J., Li, J.Y., Liu, J.F., et al., 2011. Detrital Zircon U-Pb Ages of Middle Ordovician Flysch Sandstones in the Western Ordos Margin:New Constraints on Their Provenances, and Tectonic Implications. Journal of Asian Earth Sciences, 42(5):1030-1047. https://doi.org/10.1016/j.jseaes.2011.03.009
      Zhang, J., Li, J.Y., Xiao, W.X., et al., 2013a. Kinematics and Geochronology of Multistage Ductile Deformation along the Eastern Alxa Block, NW China:New Constraints on the Relationship between the North China Plate and the Alxa Block. Journal of Structural Geology, 57:38-57. https://doi.org/10.1016/j.jsg.2013.10.002
      Zhang, J., Wang, Y.N., Zhang, B.H., et al., 2015b. Evolution of the NE Qinghai-Tibetan Plateau, Constrained by the Apatite Fission Track Ages of the Mountain Ranges around the Xining Basin in NW China. Journal of Asian Earth Sciences, 97:10-23. https://doi.org/10.1016/j.jseaes.2014.10.002
      Zhang, J., Wang, Y.N., Zhang, B.H., et al., 2016b. Tectonics of the Xining Basin in NW China and its Implications for the Evolution of the NE Qinghai-Tibetan Plateau. Basin Research, 28(2):159-182. https://doi.org/10.1111/bre.12104
      Zhang, J., Zhang, B.H., Zhao, H., 2016a. Timing of Amalgamation of the Alxa Block and the North China Block:Constraints Based on Detrital Zircon U-Pb Ages and Sedimentologic and Structural Evidence. Tectonophysics, 668-669:65-81. https://doi.org/10.1016/j.tecto.2015.12.006
      Zhang, J., Zhang, Y.P., Xiao, W.X., et al., 2015a. Linking the Alxa Terrane to the Eastern Gondwana during the Early Paleozoic:Constraints from Detrital Zircon U-Pb Ages and Cambrian Sedimentary Records. Gondwana Research, 28(3):1168-1182. https://doi.org/10.1016/j.gr.2014.09.012
      Zhang, J. X., Gong, J, H. 2018. Revisiting the Nature and Affinity of the Alxa Block. Acta Petrologica Sinica, 34(4):940-962(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201804006
      Zhang, J.X., Gong, J.H., Yu, S.Y., et al., 2013b. Neoarchean-Paleoproterozoic Multiple Tectonothermal Events in the Western Alxa Block, North China Craton and Their Geological Implication:Evidence from Zircon U-Pb Ages and Hf Isotopic Composition. Precambrian Research, 235:36-57. https://doi.org/10.1016/j.precamres.2013.05.002
      Zhang, P.Z., Shen, Z.K., Wang, M., et al., 2004. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data. Geology, 32(9):809. https://doi.org/10.1130/g20554.1 doi: 10.1130/G20554.1
      Zhang, Y.Q., Mercier, J.L., Vergély, P., 1998. Extension in the Graben Systems around the Ordos (China), and Its Contribution to the Extrusion Tectonics of South China with Respect to Gobi-Mongolia. Tectonophysics, 285(1-2):41-75. https://doi.org/10.1016/s0040-1951(97)00170-4 doi: 10.1016/S0040-1951(97)00170-4
      Zhang, J.S., He, Z.X., Fei, A.Q., et al., 2008.Epicontinental Mega Thrust and Nappe System at North Segment of the Western Rim of the Ordos Block. Chinese Journal of Geology(Scientia Geologica Sinica), 43(2):251-281(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200802004
      Zhang, Y.Q., Liao, C.Z., Shi, W., et al., 2006.Neotectonic Evolution of the Peripheral Zones of the Ordos Basin and Geodynamic Setting. Geological Journal of China Universities, 12(3):285-297(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200603001
      Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 1998. Thermal Evolution of Archean Basement Rocks from the Eastern Part of the North China Craton and Its Bearing on Tectonic Setting. International Geology Review, 40(8):706-721. https://doi.org/10.1080/00206819809465233
      Zhao, H.G., Liu, C.Y., Wang, F., et al., 2007. Uplift and Evolution of Helan Mountain. Science in China Series D:Earth Sciences, 50(S2):217-226. https://doi.org/10.1007/s11430-007-6010-5
      Zhao, G., Sun, M., Wilde, S.A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited. Precambrian Research, 136(2):177-202. doi: 10.1016/j.precamres.2004.10.002
      Zheng, D., Zhang, P.Z., Wan, J., 2006. Rapid Exhumation at~8 Ma on the Liupanshan Thrust Fault from Apatite Fission-Track Thermochronology:Implications for Growth of the Northeastern Tibetan Plateau Margin. Earth and Planetary Science Letters, 248(1-2):198-208. doi: 10.1016/j.epsl.2006.05.023
      Zheng, D.W., Wang, W.T., Wan, J.L., et al., 2017. Progressive Northward Growth of the Northern Qilian Shan-Hexi Corridor (Northeastern Tibet) during the Cenozoic. Lithosphere, 9(3):408-416. https://doi.org/10.1130/l587.1 doi: 10.1130/L587.1
      Zheng, R., Wu, T., Zhang, W., Xu, C., et al., 2014. Late Paleozoic Subduction System in the Northern Margin of the Alxa Block, Altaids:Geochronological and Geochemical Evidences from Ophiolites. Gondwana Research, 25(2):842-858. doi: 10.1016/j.gr.2013.05.011
      Zheng, W, J., Yuan, D, Y., Zhang, P, Z., et al., 2016. Tectonic Geometry and Kinematic Dissipation of the Active Faults in the Northeastern Tibetan Plateau and Their Implications for Understanding Northeastward Growth of the Plateau. Quaternary Sciences, 36(4):775-788(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201604001
      Zhou, J., Xu, F., Wang, T., et al., 2006. Cenozoic Deformation History of the Qaidam Basin, NW China:Results from Cross-Section Restoration and Implications for Qinghai-Tibet Plateau Tectonics. Earth and Planetary Science Letters, 243(1-2):195-210. https://doi.org/10.1016/j.epsl.2005.11.033
    • 加载中
    图(18) / 表(1)
    计量
    • 文章访问数:  3422
    • HTML全文浏览量:  1064
    • PDF下载量:  126
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-05-26
    • 刊出日期:  2020-04-15

    目录

      /

      返回文章
      返回