• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    岩浆岩中石英晶体的对称性连生

    赵珊茸 宋岳庭 徐畅

    赵珊茸, 宋岳庭, 徐畅, 2020. 岩浆岩中石英晶体的对称性连生. 地球科学, 45(5): 1481-1489. doi: 10.3799/dqkx.2019.158
    引用本文: 赵珊茸, 宋岳庭, 徐畅, 2020. 岩浆岩中石英晶体的对称性连生. 地球科学, 45(5): 1481-1489. doi: 10.3799/dqkx.2019.158
    Zhao Shanrong, Song Yueting, Xu Chang, 2020. Symmetric Intergrowth of Quartz in Igneous Rocks. Earth Science, 45(5): 1481-1489. doi: 10.3799/dqkx.2019.158
    Citation: Zhao Shanrong, Song Yueting, Xu Chang, 2020. Symmetric Intergrowth of Quartz in Igneous Rocks. Earth Science, 45(5): 1481-1489. doi: 10.3799/dqkx.2019.158

    岩浆岩中石英晶体的对称性连生

    doi: 10.3799/dqkx.2019.158
    基金项目: 

    国家自然科学基金项目 41872037

    详细信息
      作者简介:

      赵珊茸(1962-), 女, 教授, 博士生导师, 从事晶体对称、晶体形貌、矿物晶体化学的研究

    • 中图分类号: P572;P583

    Symmetric Intergrowth of Quartz in Igneous Rocks

    • 摘要: 矿物晶体连生是岩浆岩中晶体生长及岩石结构形成过程中的一个重要现象,可以提供岩浆演化过程信息.用电子背散射衍射技术(EBSD)分析了天堂寨花岗岩和梅川花岗闪长岩中石英晶体的结晶学取向关系.这2种岩石中石英的道芬双晶和交生(两晶体以某个相同的面重合连生)出现概率非常高.除了道芬双晶和交生外,还发现了一种特殊的石英晶体对称性连生现象.在这种特殊的对称性连生体中,考虑石英的劳埃群3 2/m(而不是石英的点群32),两晶体形成的道芬双晶的双晶面(0001)或(1010)与第3个晶体的对称面(1120)重合.这样的重合使得这3个晶体的连生体保留了道芬双晶的某些对称性.这种双晶面与第3个晶体的对称面重合的现象在我们以前报道的NH4Cl晶体聚集体和透辉石枝晶聚集体中也出现过.这种现象说明晶体的连生受控于对称性,即:晶体连生会选择对称性高的形式.由于劳埃群是与晶体空间格子的对称性相关而并不是与晶体结构的对称性相关的,所以,空间格子的对称性可能是控制晶体对称性连生的主要因素.

       

    • 图  1  梅川花岗闪长岩中石英晶体的取向扫描图

      扫描范围大约为1.5 cm × 3.5 cm;其中圈定了92个颗粒.颗粒中石英晶体之间的黑线是由EBSD系统软件自动生成的道芬双晶界,其定义为: < 0001 > /60°

      Fig.  1.  Quartz orientation map of the scanning area (about 1.5 cm × 3.5 cm) of the section of Meichuan granodiorite, with the delineated circles and numbers for each grain

      图  2  G30号颗粒中石英晶体的极图分析(右上角是G30号颗粒的取向扫描图)

      Fig.  2.  Pole figures of Grain G30 (the upper-right-hand corner shows the orientation map of Grain G30)

      图  3  D7号颗粒中石英晶体的极图分析(右上角是D7号颗粒的取向扫描图)

      Fig.  3.  Pole figures of Grain D7 (the upper-right-hand corner shows the orientation map of Grain D7)

      图  4  D54号颗粒中石英晶体的极图分析(右上角是D54号颗粒的取向扫面图)

      Fig.  4.  Pole figures of Grain D54 (the upper-right-hand corner shows the orientation map of Grain D54)

      图  5  G50号颗粒中石英晶体的极图分析(右上角是G50号颗粒的取向扫面图)

      Fig.  5.  Pole figures of Grain G50 (the upper-right-hand corner shows the orientation map of Grain G50)

      图  6  D68号颗粒中石英晶体的极图分析(右上角是D68号颗粒的取向扫面图)

      Fig.  6.  Pole figures of Grain D68 (the upper-right-hand corner shows the orientation map of Grain D68)

      图  7  NH4Cl晶体聚集体中晶体A, B, A’, B’之间的双晶关系示意(a)和透辉石枝晶聚集体中晶体1, 3, 5之间的双晶关系示意(b)

      a.详细分析见Zhao et al.(2007); b.详细分析见Zhao et al.(2010)

      Fig.  7.  A sketch of the twin relationship among Crystals A, B, A' and B' in NH4Cl crystallite aggregation (a) and a sketch of the twin relationship among Crystals 1, 3 and 5 in diopside dendrites (b)

      图  8  各种石英对称性连生体的理想立体图(Shape V7.1.2)

      对于G30, D7,D68:第2个图是表示另外一种方位的立体图;对于D54和G50:第2个图是将晶体3或晶体3-4与晶体1-2分离后的立体图

      Fig.  8.  Ideal stereogram of the quartz symmetric intergrowths (by Shape V7.1.2)

      表  1  石英各种双晶律、交生及无关取向连生的概率

      Table  1.   The frequency of quartz twin laws, intergrowths and no-relationships

      岩石 道芬双晶律 其他双晶律 交生 无关取向连生
      天堂寨花岗岩 71 3.2 19.3 6.5
      梅川花岗闪长岩 70.7 5.2 21 3.1
      注:(1)表中双晶律概率为:(某双晶数×2)/所有石英单晶数,因为双晶是由两个单体组成的,所以具有双晶关系的单体数为:双晶数×2;(2)表中无关取向连生概率为:与别的晶体没有双晶和交生关系的单体数/所有石英单晶数;(3)表中交生的概率为:100 -(各种双晶概率+无关取向连生概率),因为交生概率如果按照某个交生面统计的话,会有重复计数,不太好统计, 但是,本文不报道这些道芬双晶与交生的具体情况,本文着重研究在这些石英双晶与交生中所发现的对称性连生现象.
      下载: 导出CSV

      表  2  晶体连生体的对称性(点群)

      Table  2.   The symmetry (point group) of the crystal intergrowths

      NH4Cl晶体聚集体*透辉石枝晶聚集体 石英对称性连生体
      G30 D7 D54 G50 D68
      点群 6/m 2/m 2/m 2/m m m 6/m 2/m 2/m 6/m 2/m 2/m m
      注:*如果在图 7a中有更多的NH4Cl晶体,它们会形成一个六方环.
      下载: 导出CSV
    • Beane, R., Wiebe, R. A., 2012. Origin of Quartz Clusters in Vinalhaven Granite and Porphyry, Coastal Maine. Contrib. Mineral Petrol., 163:1069-1082. doi: 10.1007/s00410-011-0717-1
      Frondel, C., 1962. Silica Minerals. John Wiley & Sons, Inc., New York.
      Gault, H.R., 1949. The Frequency of Twin Types in Quartz Crystals. American Mineralogist, 34:142-162.
      Grimmer, H., Kunze, K., 2004. Twinning by Reticular Pseudo-Merohedry in Trigonal, Tetragonal and Hexagonal Crystals. Acta Cryst., A60: 220-232.
      Hahn, T., Klapper, H., 2003. Twinning of Crystals. In: Authier, A., ed., Physical Properties of Crystals. Kluwer Academic Publishers, Dordrecht, 393-448.
      Hammer, J., Sharp, T.G., Wessel, P., 2010. Heterogeneous Nucleation and Epitaxial Crystal Growth of Magmatic Minerals. Geology, 38(4):367-370. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b2bfa0febef7edae0df3c40ce98d3ee8
      Li, D.W., Wang, M., Liu, P., et al., 2003. Spontaneous Correlation of Crystallographic Orientations in Crystallite Aggregation:Physical Origin and Its Influence on Pattern Formation. J. Phys. Chem. B, 107:96-101. doi: 10.1021/jp026615v
      Liu, X.Y., Strom, C.S., 2000. Self-Epitaxial Nucleation Origin of Fractal Aggregation. J. Chemical Physics B, 113(10):4408-4411. doi: 10.1063/1.1288030
      Liu, X.Y., Wang, M., Li, D.W., et al., 2000. Nucleation-Limited Aggregation of Crystallites in Fractal Growth. Journal of Crystal Growth, 208:687-695. doi: 10.1016/S0022-0248(99)00488-1
      Nespolo, M., Ferraris, G., 2004. The Orientated Attachment Mechanism in the Formation of Twins-A Survey. Europe Journal of Mineralogy, 16:401-406. doi: 10.1127/0935-1221/2004/0016-0401
      Page, Y. L., 2002. Mallard's Law Recast as Diophantine System: Fast and Complete Enumeration of Possible Twin Laws by[Reticular] [Pseudo] Merohedry. Journal of Appllied Crystallography, 35: 175-181.
      Schwindinger, K.R., 1999. Particle Dynamics and Aggregation of Crystals in a Magma Chamber with Application to Kilauea Iki Olivines. Journal of Vocanology and Geothermal Research, 88:209-238. doi: 10.1016/S0377-0273(99)00009-8
      Vance, J.A., 1969. On Synneusis. Contributions to Mineralogy and Petrology, 24:7-29. doi: 10.1007/BF00398750
      Vogt, J.H.L., 1921. The Physical Chemistry of the Crystallization and Magmatic Differentiation of Igneous Rocks. J. Geol., 29:318-350. doi: 10.1086/622785
      Wang, M., Liu, X.Y., Strom, C.S., et al., 1998. Fractal Aggregations at Low Driving Force with Strong Anisotropy. Physical Review Letters, 80 (14):3089-3092. doi: 10.1103/PhysRevLett.80.3089
      Xu, C., Zhao, S.R., Li, C., et al., 2016. Plagioclase Twins in a Basalt:An Electron Backscatter Diffraction Study. Journal of Applied Crystallography, 49:2145-2154. doi: 10.1107/S1600576716015739
      Xu, H.J., Ma, C.Q., Zhang, J.F., 2012a. Generation of Early Cretaceous High-Mg Adakitic Host and Enclaves by Magma Mixing, Dabie Orogen, Eastern China. Lithos, 142-143:182-200. doi: 10.1016/j.lithos.2012.03.004
      Xu, H.J., Ma, C.Q., Zhang, J.F., et al., 2012b. Early Cretaceous Low-Mg Adakitic Granites from the Dabie Orogen, Eastern China:Petrogenesis and Implications for Destruction of the Over-Thickened Lower Continental Crust. Gondwana Research, 23:190-207.
      Xu, H.J., Zhang, J.F., Yu, T., et al., 2015. Crystallographic Evidence for Simultaneous Growth in Graphic Granite. Gondwana Research, 27:1550-1559. doi: 10.1016/j.gr.2014.01.013
      Zhao, S.R., Wang, Q.Y., Liu, R., et al., 2007. Twin Structure in the Crystallite Aggregation Pattern. Journal of Applied Crystallography, 40:277-281. doi: 10.1107/S0021889807005122
      Zhao, S.R., Xu, H.J., Liu, H.W., et al., 2010. Determination of Twinning Relationships between Diopside Dendrites. Journal of Applied Crystallography, 43:1393-1399. doi: 10.1107/S0021889810033832
      Zhao, S.R., Xu, H.J., Wang, Q.Y., et al., 2013. Electron Backscatter Diffraction Study of Twins and Intergrowths among Quartz Crystals in Granite. Journal of Applied Crystallography, 46:1414-1424. doi: 10.1107/S0021889813017913
    • 加载中
    图(8) / 表(2)
    计量
    • 文章访问数:  1594
    • HTML全文浏览量:  573
    • PDF下载量:  132
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-07-13
    • 刊出日期:  2020-05-15

    目录

      /

      返回文章
      返回