• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    珠江口盆地西部陆缘伸展-减薄机制

    毛云华 赵中贤 孙珍

    毛云华, 赵中贤, 孙珍, 2020. 珠江口盆地西部陆缘伸展-减薄机制. 地球科学, 45(5): 1622-1635. doi: 10.3799/dqkx.2019.160
    引用本文: 毛云华, 赵中贤, 孙珍, 2020. 珠江口盆地西部陆缘伸展-减薄机制. 地球科学, 45(5): 1622-1635. doi: 10.3799/dqkx.2019.160
    Mao Yunhua, Zhao Zhongxian, Sun Zhen, 2020. Extensional Thinning Mechanism of the Western Continental Margin of the Pearl River Mouth Basin. Earth Science, 45(5): 1622-1635. doi: 10.3799/dqkx.2019.160
    Citation: Mao Yunhua, Zhao Zhongxian, Sun Zhen, 2020. Extensional Thinning Mechanism of the Western Continental Margin of the Pearl River Mouth Basin. Earth Science, 45(5): 1622-1635. doi: 10.3799/dqkx.2019.160

    珠江口盆地西部陆缘伸展-减薄机制

    doi: 10.3799/dqkx.2019.160
    基金项目: 

    青岛海洋科学与技术试点国家实验室海洋矿产资源评价与探测技术功能实验室开放基金资助项目 MMRKF201805

    中国科学院南海生态环境工程创新研究院创新发展基金培育项目 ISEE2018PY02

    广东省自然科学基金研究团队项目 2017A030312002

    王宽诚教育基金项目 GJTD-2018-13

    国家自然科学基金面上项目 41576070

    详细信息
      作者简介:

      毛云华(1993-), 男, 在读硕士研究生, 主要从事海洋沉积与构造方向研究.ORCID:0000-0002-9231-6808.E-mail:maoyunhua@scsio.ac.cn

      通讯作者:

      赵中贤, ORCID:0000-0002-5096-4743.E-mail:zxzhao@scsio.ac.cn

    • 中图分类号: P736

    Extensional Thinning Mechanism of the Western Continental Margin of the Pearl River Mouth Basin

    • 摘要: 为揭示珠江口盆地西部陆缘伸展-减薄过程,进行盆地断裂构造样式识别、断层活动速率和一维空盆构造沉降定量计算和综合分析.珠江口盆地西部以铲式断层和拆离断层为主并继承性发育.张裂一幕断层活动和构造沉降集中于开平凹陷,最大速率分别达到239 m/myr和108.6 m/myr.张裂二幕断层活动和构造沉降向洋盆迁移,最大速率分别达到192 m/myr和210.7 m/myr.张裂一幕岩石圈减薄集中在开平凹陷,以地壳脆性薄化为主.张裂二幕减薄中心向洋盆迁移,岩石圈地幔可能发生了局部薄化和软流圈上涌,导致陆架和上陆坡区凹陷内部构造沉降减弱;洋陆过渡带处上地壳快速减薄,且薄化速度比下地壳快.对比西北次海盆南侧上地壳较厚及下地壳较薄或缺失的情况,推测西北次海盆在破裂前发生了不对称的单剪薄化.

       

    • 图  1  珠江口盆地构造单元、测线位置和井位分布

      Fig.  1.  The basemap of the Pearl River Mouth basin indicating the structural units, well locations, 2D seismic (black line) and OBS(red line) profiles

      图  2  珠江口盆地地层划分及构造演化阶段

      地层界面年龄据中国海洋石油公司和Sun et al.(2014);构造运动据李平鲁(1993)Pang et al. (2018)

      Fig.  2.  Stratigraphic sequences and tectonic evolution of the PRMB

      图  3  1410反射地震剖面(a)及解释(b)

      a.原始地震剖面及钻井,大写字母标的实线方框为构造样式的发育位置,数字标识的是长剖面的拼接部分,小写字母标识的虚线框是主要凹陷的断裂结构图;b.地震解释剖面、岩石圈结构及断层编号

      Fig.  3.  The 1410 reflection seismic section (a) and its interpretation (b)

      图  4  珠江口盆地西部断层构造样式

      A~I的位置见图 3

      Fig.  4.  The fault structures developed in the western PRMB

      图  5  盆地西部陆架-陆坡断裂结构图

      红色实线为铲式断层;红色虚线为板式断层;黑色虚线为气烟囱.a.恩平凹陷;b.开平凹陷;c.南部隆起;d.鹤山凹陷(位置见3)

      Fig.  5.  The faults and structures formed in the shelf- slope of the western PRMB

      图  6  珠江口盆地西部不同时期断层活动速率图

      Fig.  6.  Rate of fault activity in different periods of the western PRMB

      图  7  珠江口盆地西部不同时期空盆构造沉降速率图

      Fig.  7.  Unloaded tectonic subsidence rate in different periods of the western PRMB

      图  8  断陷期断层活动速率与沉降速率对比图

      Fig.  8.  Comparison of fault activity rate and subsidence rate during the rift stage

      图  9  断层活动速率与沉降速率相关关系

      Fig.  9.  Correlation between fault growth rate and subsidence rate

      图  10  珠江口盆地西部陆缘伸展-破裂过程模式

      a.陆缘张裂一幕(Tg-T80);b.陆缘张裂二幕(T80-T70)

      Fig.  10.  The evolution model of the western PRMB margin from rift-break-up

      表  1  岩性参数

      Table  1.   Lithologic parameters

      岩性 砂岩 粉砂岩 泥岩
      初始孔隙度 0.45 0.55 0.60
      压实系数(1/km) 0.27 0.41 0.51
      基质密度(g/cm3 2.64 2.64 2.60
      下载: 导出CSV

      表  2  沉积相反映的古水深

      Table  2.   The paleowater depth estimated from the sedimentary facies

      沉积相 沉积亚相 水深(m)
      剥蚀区 隆起 -5
      陆相 河流-平原相 0~5
      滨湖-浅湖相 0~30
      中深湖相 30~100
      深湖相 > 100
      河流三角洲相 0~20
      海陆过渡相 三角洲平原 0
      三角洲前缘 0~10
      前三角洲 10~20
      海相 潮坪相 0~10
      滨海相 20~50
      浅海相 50~200
      半深海相 200~2 000
      深海相 > 2 000
      陆架边缘三角洲 200~500
      下载: 导出CSV
    • Chen, M., Shi, X. B., Liu, K., et al., 2017. Cenozoic Tectonic Subsidence of the Zhu Ⅲ Depression in the Pearl River Mouth Basin, Northern South China Sea. Marine Geology & Quaternary Geology, 37(6):256-1492 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201706005
      Clerc, C., Ringenbach, J. C., Jolivet, L., et al., 2017. Rifted Margins:Ductile Deformation, Boudinage, Continentward-Dipping Normal Faults and the Role of the Weak Lower Crust. Gondwana Research, 53:20-40. http://cn.bing.com/academic/profile?id=9a6d6b7512eef38c6c985ec3f7dadacf&encoded=0&v=paper_preview&mkt=zh-cn
      Clift, P., Lin, J., Barckhausen, U., 2002. Evidence of Low Flexural Rigidity and Low Viscosity Lower Continental Crust during Continental Break-up in the South China Sea. Marine and Petroleum Geology, 19(8):951-970. doi: 10.1016/S0264-8172(02)00108-3
      Ding, W. W., Michael, S., Dieter, F., et al., 2012. Crustal Structure across the Northwestern Margin of South China Sea:Evidence for Magma-Poor Rifting from a Wide-Angle Seismic Profile. Acta Geologica Sinica, 86:854-866. doi: 10.1111/j.1755-6724.2012.00711.x
      Du, W. B., Sun, G. H., Shu, Y., 2015. Seismic Sedimentology of Paleogene Enping Formation in Enping Sag, Pearl River Mouth Basin. Geological Science & Technology Information, 34(3):220-229 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201503032
      Franke, D., Savva, D., Pubellier, M., et al., 2014. The Final Rifting Evolution in the South China Sea. Marine Petroleum Geology, 58:704-720. doi: 10.1016/j.marpetgeo.2013.11.020
      He, M., Zhong, G., Liu, X., et al., 2017. Rapid Post-Rift Tectonic Subsidence Events in the Pearl River Mouth Basin, Northern South China Sea Margin. Journal of Asian Earth Sciences, 147:271-283. doi: 10.1016/j.jseaes.2017.07.024
      Huismans, R. S., Beaumont, C., 2014. Rifted Continental Margins:The Case for Depth-Dependent Extension. Earth and Planetary Science Letters, 407:148-162. doi: 10.1016/j.epsl.2014.09.032
      Lei, C., Alves, T. M., Ren, J.Y., et al., 2019. Depositional Architecture and Structural Evolution of a Region Immediately Inboard of the Locus of Continental Breakup (Liwan Sub-Basin, South China Sea). Geological Society of America Bulletin, 131(7-8):1059-1074. doi: 10.1130/B35001.1
      Lei, C., Ren, J.Y., Pang, X., et al., 2018. Continental Rifting and Sediment Infill in the Distal Part of the Northern South China Sea in the Western Pacific Region:Challenge on the Present-Day Models for the Passive Margins. Marine and Petroleum Geology, 93:166-181. doi: 10.1016/j.marpetgeo.2018.02.020
      Li, H., Zhang, Y. C., Gan, J., et al., 2014. The Style Distribution and Hydrocarbon Accumulation of Inverted Structures in Zhu-3 Depression. Journal of Oil and Gas Technology, 36(4):1-6 (in Chinese).
      Li, P. L., 1993. Cenozoic Tectonic Movement in the Pearl River Mouth Basin. China Offshore Oil and Gas (Geology), 7(6):11-17 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hyxb-e201909009
      Li, Q.Y., Luo, F.Z., 2000. Research on Fault Activity Ratio andIts Application. Fault Block Oil & Gas Field, 7(2):15-17 (in Chinese).
      Li, W. Z., Wang, P. J., Zhang, G. C., 2011. Researches on Time-Depth Conversion of Deep-Seated Basal Strata of Pearl River Mouth Basin. Chinese Journal of Geophysics, 54(2):449-456 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201102024
      Lin, C.S., Shi, H.S., Li, H., et al., 2018. Sequence Architecture, Depositional Evolution and Controlling Processes of Continental Slope in Pearl River Mouth Basin, Northern South China Sea. Earth Science, 43(10):77-92 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201810007
      Liu, J., 2013. Depositional Filling Characteristics of Paleogene in Heshan Sag of Ultra Deepwater Area in the Northern South China Sea. Journal of Oil and Gas Technology, 35:15-18 (in Chinese).
      Liu, Z. F., Liu, Z. P., Xiao, L. L., et al., 2013. Facies Evolution and Reservoir-Seal Assemblages in the Zhuhai and Hanjiang Formations, North of Zhu-3 Depression, Pearl River Mouth Basin. Marine Geology Frontiers, 29:25-31 (in Chinese).
      Nie, G. Q., 2011. Tectonic Numerical Modeling and Genetic Mechanism for the Continent-Ocean Transition Zone of the Passive Continental Margin: A Case Study of Kaiping Sag(Dissertation). China University of Geosciences, Beijing (in Chinese).
      Pang, X., He, M., Zhu, J. Z., et al., 2009. A Study on Development Conditions of Lacustrine Source Rocks in Zhu II Depression, Pearl River Mouth Basin. China Offshore Oil and Gas(Geology), 21:86-90 (in Chinese).
      Pang, X., Ren, J. Y., Zheng, J. Y., et al., 2018. Petroleum Geology Controlled by Extensive Detachment Thinning of Continental Margin Crust:A Case Study of Baiyun Sag in the Deep-Water Area of Northern South China Sea. Petroleum Exploration and Development, 45(1):33-46.
      Sclater, J. G., Christie, P. A. F., 1980. Continental Stretching:An Explanation of the Post-Mid-Cretaceous Subsidence of the Central North Sea Basin. Journal of Geophysical Research Solid Earth, 85:3711-3739. doi: 10.1029/JB085iB07p03711
      Sun, Z., Jian, Z., Stock, J.M., et al., 2018. South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368: College Station, TX.
      Sun, Z., Xu, Z., Sun, L., et al., 2014. The Mechanism of Post-Rift Fault Activities in Baiyun Sag, Pearl River Mouth Basin. Journal of Asian Earth Sciences, 89:76-87. doi: 10.1016/j.jseaes.2014.02.018
      Sun, Z., Zhong, Z., Zhou, D., et al., 2008. Dynamics Analysis of the Baiyun Sag in the Pearl River Mouth Basin, North of the South China Sea. Acta Geologica Sinica, 82:73-83. http://cn.bing.com/academic/profile?id=e0efb51e8e6c40b079817d8af92689bc&encoded=0&v=paper_preview&mkt=zh-cn
      Tang, X. Y., Huang, S., Yang, S., et al., 2018. Tectono-Thermal Evolution of the Liwan Sag, Deepwater Area in the Zhujiang River Mouth Basin, Northern South China Sea. Acta Oceanologica Sinica, 37:66-75. doi: 10.1007/s13131-017-1125-9
      Taylor, B., Hayes, D. E., 2013. Origin and History of the South China Sea Basin. American Geophysical Union, Washington, D.C..
      Wang, S. L., Liu, H., Amp, O., et al., 2014. Seismic Reflection and Depositional System of the Enping Formation in the Kaiping Depression of the Zhujiangkou Basin. Science & Technology Review, 32(Z2):64-69 (in Chinese).
      Xu, Y., Chen, G. J., Ma, M., et al., 2016. Sedimentary Characteristic and Evolution of Late Oligocene to Early Miocene in Baiyun Depression, Pearl River Mouth Basin. Coal Geology & Exploration, 44:1-9 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtdzykt201603001
      Yan, P., Zhou, D., Liu, Z. S., 2001. A Crustal Structure Profile across the Northern Continental Margin of the South China Sea. Tectonophysics, 338:1-21. doi: 10.1016/S0040-1951(01)00062-2
      Yang, L. L., 2018. The Large-Scale Detachment Fault System and Its Control on the Development of the Deepwater Basins in the Northern South China Sea(Dissertation). China University of Geosciences, Wuhan (in Chinese).
      Yao, B. C., 1998. The Tectonic Evolution and Sedimentary Basins of South China Sea in Cenozoic. Geological Reaserch of South China Sea, 10:1-17 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201804013
      Zhang, Y. Z., Qi, J.F., Wu, J.F., 2019. Cenozoic Fault System and Its Geodynamics of Continental Margin Basins in the Northern of South China Sea. Earth Science, 44(2):603-625 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201902020
      Zhang, Z. Y., He, D. F., Li, Z., et al., 2018. 3D Geometry and Kinematics of the Boundary Fault in the Kaiping Depression, Pearl River Mouth Basin. Chinese Journal of Geophysics, 61(10):4296-4307 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201810031
      Zhao, Z.X., Sun, Z., Wang, Z., et al., 2013. The Dynamic Mechanism of Post-Rift Accelerated Subsidence in Qiongdongnan Basin, Northern South China Sea. Marine Geophysical Research, 34:295-308 (in Chinese). doi: 10.1007/s11001-013-9188-2
      Zhao, Z. X., Sun, Z., Xie, H., et al., 2011. Baiyun Deepwater Cenozoic Subsidence and Lithosperic Stretching Deformation.Chinese Journal of Geophysics, 54(12):3336-3343 (in Chinese).
      Zhong, Z.H., Shi, H.S., Zhu, M., et al., 2014. A Discussion on the Tectonic-Stratigraphic Framework and Its Origin Mechanism in Pearl River Mouth Basin. China Offshore Oil and Gas (Geology), 26(5):20-29 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201405004
      Zhou, D., Hu, D. K., He, M., 2008. The Selection of Fitting Curve in Time-Depth Transformation of Deep-Seated Strata and Crust. Earth Science, 33(4):531-537 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200804010
      Zhu, J.J., Qiu, X.L., Kopp, H., et al., 2012. Shallow Anatomy of a Continent-Ocean Transition Zone in the Northern South China Sea from Multichannel Seismic Data.Tectonophysics, 554-557:18-29. doi: 10.1016/j.tecto.2012.05.027
      Zhu, J.J., Xu, H.L., Qiu, X.L., et al., 2018. Crustal Structure and Rifting of the Northern South China Sea Margin:Evidence from Shoreline-Crossing Seismic Investigations. Geological Journal, 53:2065-2083. doi: 10.1002/gj.3034
      Zhu, X. M., Ge, J. W., Zhao, H. C., et al., 2017. Development of Shelf-Edge Delta Researches and Typical Case Analyses. Acta Sedimentologica Sinica, 35:945-957 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201705007
      陈梅, 施小斌, 刘凯, 等, 2017.南海北缘珠三坳陷新生代构造沉降特征.海洋地质与第四纪地质, 37(6): 1256-1492. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201706005
      杜文波, 孙桂华, 舒誉, 等, 2015.珠江口盆地恩平凹陷古近系恩平组地震沉积学研究.地质科技情报, 34(3):220-229. http://d.old.wanfangdata.com.cn/Thesis/Y2435826
      李辉, 张迎朝, 甘军, 等, 2014.珠三坳陷反转构造样式与分布及其油气成藏.石油天然气学报, 36:1-5. http://d.old.wanfangdata.com.cn/Periodical/jhsyxyxb201404001
      李平鲁, 1993.珠江口盆地新生代构造运动.中国海上油气, 6:11-17. http://www.cnki.com.cn/Article/CJFDTotal-ZHSD199306003.htm
      李勤英, 罗凤芝, 2000.断层活动速率研究方法及应用探讨.断块油气田, 7(2):15-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkyqt200002004
      李伍志, 王璞珺, 张功成, 等, 2011.珠江口盆地深部基底地层的地震时深转换研究.地球物理学报, 54(2):449-456. doi: 10.3969/j.issn.0001-5733.2011.02.023
      林畅松, 施和生, 李浩, 等, 2018.南海北部珠江口盆地陆架边缘斜坡带层序结构和沉积演化及控制作用.地球科学, 43(10):77-92. http://d.old.wanfangdata.com.cn/Periodical/dqkx201810007
      刘军, 2013.南海北部超深水区鹤山凹陷古近系沉积充填特征分析.石油天然气学报, 35:15-18. http://d.old.wanfangdata.com.cn/Periodical/jhsyxyxb201307004
      刘志峰, 刘志鹏, 肖伶俐, 等, 2013.珠三坳陷北部珠海组-韩江组沉积演化及储盖组合.海洋地质前沿, 29:25-31. http://www.cnki.com.cn/Article/CJFDTotal-HYDT201309006.htm
      聂国权, 2017.被动大陆边缘洋陆过渡带构造数值模拟及成因机制: 开平凹陷例析(硕士学位论文).北京: 中国地质大学.
      庞雄, 何敏, 朱俊章, 等, 2009.珠二坳陷湖相烃源岩形成条件分析.中国海上油气, 21:86-90. doi: 10.3969/j.issn.1673-1506.2009.02.003
      王升兰, 刘晖, 2014.珠江口盆地开平凹陷恩平组地震反射特征与沉积体系展布.科技导报, 32(Z2):64-69. http://www.cqvip.com/QK/90455X/201428/662614485.html
      徐勇, 陈国俊, 马明, 等, 2016.珠江口盆地白云凹陷晚渐新统-早中新统沉积特征及演化规律.煤田地质与勘探, 44:1-9. http://d.old.wanfangdata.com.cn/Periodical/mtdzykt201603001
      杨林龙, 2018.南海北部陆缘大型拆离断层系的发育演化机制及其对深水盆地群的控制作用(博士学位论文).武汉: 中国地质大学.
      姚伯初, 1998.南海新生代的构造演化与沉积盆地.南海地质研究, 10:1-17. http://d.old.wanfangdata.com.cn/Periodical/dqkx200405007
      张远泽, 漆家福, 吴景富, 2019.南海北部新生代盆地断裂系统及构造动力学影响因素.地球科学, 44(2):253-275. http://d.old.wanfangdata.com.cn/Periodical/dqkx201902020
      张志业, 何登发, 李智, 等, 2018.珠江口盆地开平凹陷边界断层三维几何学与运动学.地球物理学报, 61(10):4296-4307. doi: 10.6038/cjg2018L0560
      赵中贤, 孙珍, 谢辉, 等, 2011.白云深水区新生代沉降及岩石圈伸展变形.地球物理学报, 54(12):3336-3343. doi: 10.3969/j.issn.0001-5733.2011.12.031
      钟志洪, 施和生, 朱明, 等, 2011.珠江口盆地构造-地层格架及成因机制探讨.中国海上油气, 26(5):20-29. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201405004
      周蒂, 胡登科, 何敏, 等, 2008.深部地层时深转换中的拟合式选择问题.地球科学, 33(4):531-537. doi: 10.3321/j.issn:1000-2383.2008.04.010
      朱筱敏, 葛家旺, 赵宏超, 等, 2017.陆架边缘三角洲研究进展及实例分析.沉积学报, 35:945-957. http://d.old.wanfangdata.com.cn/Periodical/cjxb201705007
    • 加载中
    图(10) / 表(2)
    计量
    • 文章访问数:  1725
    • HTML全文浏览量:  460
    • PDF下载量:  101
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-07-04
    • 刊出日期:  2020-05-15

    目录

      /

      返回文章
      返回