• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    过成熟页岩在半封闭热模拟实验中孔隙结构的演化特征

    徐洁 陶辉飞 陈科 张中宁 王晓锋 李靖 郝乐伟

    徐洁, 陶辉飞, 陈科, 张中宁, 王晓锋, 李靖, 郝乐伟, 2019. 过成熟页岩在半封闭热模拟实验中孔隙结构的演化特征. 地球科学, 44(11): 3736-3748. doi: 10.3799/dqkx.2019.218
    引用本文: 徐洁, 陶辉飞, 陈科, 张中宁, 王晓锋, 李靖, 郝乐伟, 2019. 过成熟页岩在半封闭热模拟实验中孔隙结构的演化特征. 地球科学, 44(11): 3736-3748. doi: 10.3799/dqkx.2019.218
    Xu Jie, Tao Huifei, Chen Ke, Zhang Zhongning, Wang Xiaofeng, Li Jing, Hao Lewei, 2019. Evolutionary Characteristics of Pore Structure for Over-Matured Shales in Semi-Closed Thermal Simulation Experiment. Earth Science, 44(11): 3736-3748. doi: 10.3799/dqkx.2019.218
    Citation: Xu Jie, Tao Huifei, Chen Ke, Zhang Zhongning, Wang Xiaofeng, Li Jing, Hao Lewei, 2019. Evolutionary Characteristics of Pore Structure for Over-Matured Shales in Semi-Closed Thermal Simulation Experiment. Earth Science, 44(11): 3736-3748. doi: 10.3799/dqkx.2019.218

    过成熟页岩在半封闭热模拟实验中孔隙结构的演化特征

    doi: 10.3799/dqkx.2019.218
    基金项目: 

    国家科技重大专项 2017ZX05036003-007

    中国石油化工股份有限公司课题项目 P17027-4

    甘肃省高等学校科研项目 2015B-086

    甘肃省油气资源重点实验课题项目 1309RTSA041

    详细信息
      作者简介:

      徐洁(1982-), 女, 博士研究生, 主要从事页岩储层研究

      通讯作者:

      陶辉飞

    • 中图分类号: P599

    Evolutionary Characteristics of Pore Structure for Over-Matured Shales in Semi-Closed Thermal Simulation Experiment

    • 摘要: 为研究过熟页岩孔隙结构的演化规律及控制因素,选用上扬子寒武系牛蹄塘组和志留系龙马溪组2套过熟页岩开展热模拟实验,结合X-衍射、氮气和二氧化碳吸附以及扫描电镜研究其孔隙结构的演化特征.龙马溪组样品孔体积在500℃时得到最大提高,为原样的1.35倍; 牛蹄塘组样品孔体积在450℃时上升为最高,较原样提高到1.13倍.利用吸附数据计算出牛蹄塘组样品微孔体积是龙马溪组样品的1.72倍,龙马溪组中孔体积是牛蹄塘组样品的1.44倍.结果表明:(1)牛蹄塘组页岩有机质生烃潜力弱且原始微孔体积高,生烃量少又不易排出,孔隙结构改善较差; (2)龙马溪组页岩石英含量较高抗压能力较强,利于中-大孔隙的发育与保存,也有利于烃类生成后排出,孔体积得到较大提高.

       

    • 图  1  剖面地质图

      a.中国南方早志留世龙马溪组沉积古地理简图; b.寒武世牛蹄塘组沉积古地理简图(徐政语等, 2015)

      Fig.  1.  Geographical map of the sampling location

      图  2  实验样品

      a.CN样品; b.LTZ样品

      Fig.  2.  Sample pictures

      图  3  页岩样品原样与热模拟样品低温氮气吸附

      CN-1.CN原样氮气吸附曲线; LTZ-1.LTZ原样氮气吸附曲线; CN-***/LTZ-***.CN/LTZ各模拟温度下的氮气吸附曲线

      Fig.  3.  Low temperature N2 adsorption and desorption isotherms for the original and pyrolyzed samples

      图  4  物理吸附等温线和滞留环类型

      a.曲线类型; b.滞留环类型; 据Sing(1985)

      Fig.  4.  Types of physisorption isotherms and hysteresis loops

      图  5  页岩样品最大吸附量对比

      Fig.  5.  Comparison of the maximum adsorption for the original and pyrolyzed samples

      图  6  页岩样品低温二氧化碳吸附

      a.CN样品; b.LTZ样品

      Fig.  6.  Low temperature CO2 adsorption isotherms for the original and pyrolyzed samples

      图  7  场发射-扫描电镜照片

      CN-0.原样发育大量的粒间孔,大孔径有机孔以及少量粒内孔; CN-450.450 ℃样品发育粒间孔、大孔径有机孔; CN-525.525 ℃样品发育长石溶解粒内孔; LTZ-0.原样发育有少量小孔径有机孔、粒内孔、粒间孔; LTZ-450.450 ℃样品发育有较多的小孔径有机孔; LTZ-525.525 ℃样品发育有粒间孔、长石溶蚀粒内孔,少量较大孔径有机孔

      Fig.  7.  FE-SEM images for the original and pyrolyzed samples

      图  8  孔体积分布

      a.CN样品; b.LTZ样品

      Fig.  8.  The distributions of pore volume with the pore size for the original and pyrolyzed samples

      表  1  热模拟实验参数

      Table  1.   Pyrolysis experimental conditions

      样品号 样品重量(g) 模拟深度(m) 加热温度(℃) 静岩压力(MPa) 流体压力(MPa)
      CN-400 62.169 5 000 400 120 50
      CN-450 61.290 6 000 450 144 60
      CN-500 61.556 7 000 500 168 70
      CN-525 60.470 8 000 525 192 80
      LTZ-400 76.173 5 000 400 120 50
      LTZ-450 73.087 6 000 450 144 60
      LTZ-500 60.918 7 000 500 168 70
      LTZ-525 58.773 8 000 525 192 80
      下载: 导出CSV

      表  2  样品有机质丰度与矿物组成

      Table  2.   The TOC and mineral compositions for the original and pyrolyzed samples

      样品号 石英(%) 钾长石(%) 斜长石(%) 方解石(%) 白云石(%) 黄铁矿(%) 粘土矿物(%) 其他(%) TOC(%)
      CN-0 73.0 0 1.5 4.3 5.0 2.8 13.4 0 5.74
      CN-400 80.1 0 1.4 5.8 0 0 12.7 0 5.91
      CN-450 81.7 0 1.8 5.3 0 0 11.2 0 5.62
      CN-500 77.0 0 1.8 5.4 0 0 5.9 9.9 5.79
      CN-525 83.1 1.7 2.7 5.0 0 0 7.5 0 5.62
      LTZ-1 37.4 1.9 12.2 1.6 5.0 9.5 28.4 4.0 10.60
      LTZ-400 34.9 2.5 11.9 2.3 11.5 8.7 26.4 1.8 10.47
      LTZ-450 34.3 2.6 11.2 1.8 7.7 0 29.8 12.6 9.44
      LTZ-500 40.4 2.7 13.8 6.6 9.1 6.5 18.8 2.1 9.47
      LTZ-525 40.6 4.0 13.4 9.1 0 3.0 22.2 7.7 9.33
      下载: 导出CSV

      表  3  页岩样品孔体积变化

      Table  3.   Transformation of pore volume for the original and pyrolyzed samples

      样品 总孔体积(cm3/g) 微孔 中孔 大孔
      (%) (cm3/g) (%) (cm3/g) (%) (cm3/g)
      CN-0 0.612 7 53.29% 0.326 5 38.76% 0.237 5 7.95% 0.048 7
      CN-400 0.667 3 46.79% 0.312 2 46.25% 0.308 6 6.95% 0.046 4
      CN-450 0.785 8 44.10% 0.346 5 45.20% 0.355 2 10.70% 0.084 1
      CN-500 0.824 8 38.22% 0.315 2 48.28% 0.398 2 13.49% 0.111 3
      CN-525 0.708 3 38.63% 0.273 6 45.24% 0.320 4 16.14% 0.114 3
      LTZ-0 0.783 0 67.89% 0.531 6 24.76% 0.193 9 7.34% 0.057 5
      LTZ-400 0.767 2 69.59% 0.533 9 23.75% 0.182 2 6.67% 0.051 2
      LTZ-450 0.881 1 66.17% 0.583 0 31.79% 0.280 1 2.03% 0.017 9
      LTZ-500 0.827 2 66.03% 0.546 2 31.87% 0.263 6 2.10% 0.017 4
      LTZ-525 0.810 6 62.25% 0.504 6 24.87% 0.201 6 12.89% 0.104 5
      下载: 导出CSV

      表  4  低压氮气、二氧化碳等温吸附孔隙结构参数

      Table  4.   Pore structure parameters of N2 and CO2 sorption for the original and pyrolyzed samples under low pressure condition

      样品 氮气吸附 二氧化碳吸附
      BET比表面积(m2/g) BJH孔体积(cm3/g) BJH平均孔径(nm) 微孔体积(cm3/g) 微孔比表面积(m2/g)
      CN-0 27.756 4 0.031 4 7.688 8 0.003 81 36.788 0
      CN-400 31.249 0 0.038 3 7.656 9 0.004 03 35.874 0
      CN-450 29.056 9 0.032 2 9.402 8 0.003 70 36.402 0
      CN-500 29.249 6 0.042 7 9.228 1 0.003 63 33.708 0
      CN-525 28.718 7 0.041 0 9.431 1 0.003 17 32.480 0
      LTZ-0 28.357 5 0.023 7 5.572 5 0.006 72 49.111 0
      LTZ-400 30.788 8 0.029 8 5.926 7 0.006 13 48.766 0
      LTZ-450 31.731 2 0.031 3 5.075 2 0.006 51 48.982 0
      LTZ-500 24.875 0 0.027 7 5.508 1 0.006 89 50.327 0
      LTZ-525 20.564 3 0.025 4 7.917 1 0.006 09 45.434 0
      下载: 导出CSV
    • Behar, F., Vandenbroucke, M., Tang, Y., et al., 1997. Thermal Cracking of Kerogen in Open and Closed Systems: Determination of Kinetic Parameters and Stoichiometric Coefficients for Oil and Gas Generation. Organic Geochemistry, 26(5/6): 321-339. https://doi.org/10.1016/s0146-6380(97)00014-4
      Bernard, S., Horsfield, B., Schulz, H. M., et al., 2010. Multi-Scale Detection of Organic and Inorganic Signatures Provides Insights into Gas Shale Properties and Evolution. Geochemistry, 70: 119-133. https://doi.org/10.1016/j.chemer.2010.05.005
      Bernard, S., Wirth, R., Schreiber, A., et al., 2012. Formation of Nanoporous Pyrobitumen Residues during Maturation of the Barnett Shale (Fort Worth Basin). International Journal of Coal Geology, 103: 3-11. https://doi.org/10.1016/j.coal.2012.04.010
      Chalmers, G. R. L., Bustin, R. M., 2008. Lower Cretaceous Gas Shales in Northeastern British Columbia, Part Ⅰ: Geological Controls on Methane Sorption Capacity. Bulletin of Canadian Petroleum Geology, 56(1): 1-21. https://doi.org/10.2113/gscpgbull.56.1.1
      Chen, J., Xiao, X. M., 2014. Evolution of Nanoporosity in Organic-Rich Shales during Thermal Maturation.Fuel, 129: 173-181. https://doi.org/10.1016/j.fuel.2014.03.058
      Chen, L., Jiang, Z. X., Liu, K. Y., et al., 2017. Pore Structure Characterization for Organic-Rich Lower Silurian Shale in the Upper Yangtze Platform, South China: A Possible Mechanism for Pore Development. Journal of Natural Gas Science and Engineering, 46: 1-15. https://doi.org/10.1016/j.jngse.2017.07.009
      Chen, S. B., Zuo, Z. X., Moore, T. A., et al., 2018. Nanoscale Pore Changes in a Marine Shale: A Case Study Using Pyrolysis Experiments and Nitrogen Adsorption.Energy & Fuels, 32(9): 9020-9032. https://doi.org/10.1021/acs.energyfuels.8b01405
      Chen, Y.Y., Zou, C.N., Maria, M., et al., 2015.Porosity and Fractal Characteristics of Shale across a Maturation Gradient. Natural Gas Geoscience, 26(9): 1646-1656 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201509004
      Curtis, J. B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86:1921-1938. http://d.old.wanfangdata.com.cn/Periodical/dkyqt201704025
      Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103: 26-31. https://doi.org/10.1016/j.coal.2012.08.004
      Dai, F.Y., Hao, F., Hu, H.Y., et al., 2017.Occurrence Mechanism and Key Controlling Factors of Wufeng-Longmaxi Shale Gas, Eastern Sichuan Basin. Earth Science, 42(7):1185-1194 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.096
      David, A.W., Bodhisatwa, H., 2017. Characterization of Organic-Rich Shales for Petroleum Exploration & Exploitation: A Review-Part 1: Bulk Properties, Multi-Scale Geometry and Gas Adsorption. Journal of Earth Science, 28(5): 739-757. doi: 10.1007/s12583-017-0732-x
      Dong, D.Z., Cheng, K.M., Wang, Y.M., et al., 2010. Forming Conditions and Characteristics of Shale Gas in the Lower Paleozoic of the Upper Yangtze Region, China.Oil & Gas Geology, 31(3): 288-299, 308 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201003004
      Huang, L., Shen, W., 2015. Characteristics and Controlling Factors of the Formation of Pores of a Shale Gas Reservoir: A Case Study from Longmaxi Formation of the Upper Yangtze Region, China. Earth Science Frontiers, 22(1): 374-385 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=cfe89fa9d2deb0fa98bca7b01381e8be&encoded=0&v=paper_preview&mkt=zh-cn
      Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475-499. https://doi.org/10.1306/12190606068
      Li, J. J., Ma, Y., Huang, K. Z., et al., 2018. Quantitative Characterization of Organic Acid Generation, Decarboxylation, and Dissolution in a Shale Reservoir and the Corresponding Applications: A Case Study of the Bohai Bay Basin. Fuel, 214: 538-545. https://doi.org/10.1016/j.fuel.2017.11.034
      Liang, C., Jiang, Z., Cao, Y., et al., 2017. Sedimentary Characteristics and Paleoenvironment of Shale in the Wufeng-Longmaxi Formation, North Guizhou Province, and Its Shale Gas Potential. Journal of Earth Science, 28(6): 1020-1031. doi: 10.1007/s12583-016-0932-x
      Liang, D.G., Guo, T.L., Chen, J.P., et al., 2009. Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 2): Geochemical Characteristics of Four Suits of Regional Marine Source Rocks, South China. Marine Origin Petroleum Geology, 14(1): 1-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ200901004.htm
      Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. https://doi.org/10.1306/08171111061
      Nie, H. K., Sun, C. X., Liu, G. X., et al., 2019. Dissolution Pore Types of the Wufeng Formation and the Longmaxi Formation in the Sichuan Basin, South China: Implications for Shale Gas Enrichment. Marine and Petroleum Geology, 101: 243-251. https://doi.org/10.1016/j.marpetgeo.2018.11.042
      Pan, T., Zhu, L., Wang, Y.D., et al., 2016.Organic Matter Characteristics in Longmaxi Formation Shale and Their Impacts on Shale Gas Enrichment in Southern Sichuan. Geological Journal of China Universities, 22(2):344-349 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201602014
      Qiu, Q., 2017.Characteristics of Organic Matter Shale Deposit and Reservoir in the Niutitang Formation, Southeast Chongqing (Dissertation).Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Qiu, Z., Zou, C. N., Li, X. Z., et al., 2018. Discussion on the Contribution of Graptolite to Organic Enrichment and Gas Shale Reservoir: A Case Study of the Wufeng-Longmaxi Formations in South China. Natural Gas Geoscience, 29(5): 606-615 (in Chinese with English abstract).
      Sing, K. S. W., 1985. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4): 603-619. https://doi.org/10.1351/pac198557040603
      Sun, L. N., Tuo, J. C., Zhang, M. F., et al., 2015. Formation and Development of the Pore Structure in Chang 7 Member Oil-Shale from Ordos Basin during Organic Matter Evolution Induced by Hydrous Pyrolysis. Fuel, 158: 549-557. https://doi.org/10.1016/j.fuel.2015.05.061
      Sun, M. D., Yu, B. S., Hu, Q. H., et al., 2018. Pore Structure Characterization of Organic-Rich Niutitang Shale from China: Small Angle Neutron Scattering (SANS) Study. International Journal of Coal Geology, 186: 115-125. https://doi.org/10.1016/j.coal.2017.12.006
      Tuo, J. C., Wu, C. J., Zhang, M. F., 2016. Organic Matter Properties and Shale Gas Potential of Paleozoic Shales in Sichuan Basin, China.Journal of Natural Gas Science and Engineering, 28: 434-446. https://doi.org/10.1016/j.jngse.2015.12.003
      Wang, F.Y., Guan, J., Feng, W.P., et al., 2013. Evolution of Overmature Marine Shale Porosity and Implication to the Free Gas Volume. Petroleum Exploration and Development, 40(6): 764-768 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201306019
      Wang, P.F., Jiang, Z.X., Han, B., et al., 2018. Reservoir Geological Parameters for Efficient Exploration and Development of Lower Cambrian Niutitang Formation Shale Gas in South China. Acta Petrolei Sinica, 39(2): 152-162 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syxb201802003
      Wang, S.F., Zhang, Z.Y., Dong, D.Z., et al., 2016. Microscopic Pore Structure and Reasons Making Reservoir Property Weaker of Lower Cambrian Qiongzhusi Shale, Sichuan Basin, China. Natural Gas Geoscience, 27(9): 1619-1628 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201609007
      Wu, Y. D., Ji, L. M., He, C., et al., 2016. The Effects of Pressure and Hydrocarbon Expulsion on Hydrocarbon Generation during Hydrous Pyrolysis of Type-Ⅰ Kerogen in Source Rock. Journal of Natural Gas Science and Engineering, 34: 1215-1224. https://doi.org/10.1016/j.jngse.2016.08.017
      Xia, W., Yu, B.S., Wang, Y.H., et al., 2017. Study on the Depositional Environment and Organic Accumulation Mechanism in the Niutitang and Longmaxi Formation, North Guizhou Province: A Case Study of Well Renye 1 and Well Xiye 1. Journal of Mineralogy and Petrology, 37(3): 77-89 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwys201703011
      Xu, Z., Shi, W.Z., Zhai, G.Y., et al., 2017. Relationship Differences and Causes between Porosity and Organic Carbon in Black Shales of the Lower Cambrian and the Lower Silurian in Yangtze Area. Earth Science, 42(7): 1223-1234 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.099
      Xu, Z.Y., Jiang, S., Xiong, S.Y., et al., 2015. Characteristics and Depositional Model of the Lower Paleozoic Organic Rich Shale in the Yangtze Continental Block. Acta Sedimentologica Sinica, 33(1): 21-35 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201501003
      Yang, B.G., Pan, R.F., Liu, L., et al., 2015.The Influence of Geological Condition of Sichuan Basin Changning Demonstration Area on the Development of Organic Matters in Shale.Science Technology and Engineering, 15(26):35-41, 65 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxjsygc201526005
      Yu, B.S., 2013.Classification and Characterization of Gas Shale Pore System. Earth Science Frontiers, 20(4):211-220 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201304017
      Zhang, T.S., Yang, Y., Gong, Q.S., et al., 2014. Characteristics and Mechanisms of the Micro-Pores in the Early Palaeozoic Marine Shale, Southern Sichuan Basin.Acta Geologica Sinica, 88(9): 1728-1740 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201409009
      Zhao, W.Z., Li, J.Z., Yang, T., et al., 2016. Geological Difference and Its Significance of Marine Shale Gases in South China. Petroleum Exploration and Development, 43(4): 499-510 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201604001
      Zheng, M., Li, J.Z., Wu, X.Z., et al., 2018. China's Conventional and Unconventional Natural Gas Resource Potential, Key Exploration Fields and Direction.Natural Gas Geoscience, 29(10):1383-1397 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201810001
      Zou, C.N., Dong, D.Z., Wang, S.J., et al., 2010. Geological Characteristics, Formation Mechanism and Resource Potential of Shale Gas in China. Petroleum Exploration and Development, 37(6): 641-653 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60001-3
      陈燕燕, 邹才能, Mastalerz, M., 等, 2015.页岩微观孔隙演化及分形特征研究.天然气地球科学, 26(9):1646-1656. http://d.old.wanfangdata.com.cn/Conference/9128721
      戴方尧, 郝芳, 胡海燕, 等, 2017.川东焦石坝五峰-龙马溪组页岩气赋存机理及其主控因素.地球科学, 42(7):1185-1194. doi: 10.3799/dqkx.2017.096
      董大忠, 程克明, 王玉满, 等, 2010.中国上扬子区下古生界页岩气形成条件及特征.石油与天然气地质, 31(3): 288-299, 308. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201003004
      黄磊, 申维, 2015.页岩气储层孔隙发育特征及主控因素分析:以上扬子地区龙马溪组为例.地学前缘, 22(1):374-385. http://d.old.wanfangdata.com.cn/Periodical/dxqy201501032
      梁狄刚, 郭彤楼, 陈建平, 等, 2009.中国南方海相生烃成藏研究的若干新进展(二):南方四套区域性海相烃源岩的地球化学特征.海相油气地质, 14(1):1-15. doi: 10.3969/j.issn.1672-9854.2009.01.001
      潘涛, 朱雷, 王亚东, 等, 2016.川南地区龙马溪组有机质特征及其对页岩气富集规律的影响研究.高校地质学报, 22(2):344-349. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201602014
      邱琼, 2017.渝东南牛蹄塘组富有机质页岩沉积与储层特征(硕士学位论文).成都: 成都理工大学. http://cdmd.cnki.com.cn/Article/CDMD-10616-1017216681.htm
      邱振, 邹才能, 李熙喆, 等, 2018.论笔石对页岩气源储的贡献——以华南地区五峰组-龙马溪组笔石页岩为例.天然气地球科学, 29(5):606-615. http://www.cnki.com.cn/Article/CJFDTotal-TDKX201805002.htm
      王飞宇, 关晶, 冯伟平, 等, 2013.过成熟海相页岩孔隙度演化特征和游离气量.石油勘探与开发, 40(6):764-768. http://d.old.wanfangdata.com.cn/Periodical/syktykf201306019
      王朋飞, 姜振学, 韩波, 等, 2018.中国南方下寒武统牛蹄塘组页岩气高效勘探开发储层地质参数.石油学报, 39(2):152-162. http://d.old.wanfangdata.com.cn/Periodical/syxb201802003
      王淑芳, 张子亚, 董大忠, 等, 2016.四川盆地下寒武统筇竹寺组页岩孔隙特征及物性变差机制探讨.天然气地球科学, 27(9):1619-1628. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201609007
      夏威, 于炳松, 王运海, 等, 2017.黔北牛蹄塘组和龙马溪组沉积环境及有机质富集机理———以RY1井和XY1井为例.矿物岩石, 37(3):77-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwys201703011
      徐壮, 石万忠, 翟刚毅, 等, 2017.扬子地区下寒武统与下志留统黑色页岩孔隙度与有机碳关系差异性及原因.地球科学, 42(7):1223-1234. doi: 10.3799/dqkx.2017.099
      徐政语, 蒋恕, 熊绍云, 等, 2015.扬子陆块下古生界页岩发育特征与沉积模式.沉积学报, 33(1):21-35. http://d.old.wanfangdata.com.cn/Periodical/cjxb201501003
      杨宝刚, 潘仁芳, 刘龙, 等, 2015.四川盆地长宁示范区地质条件对页岩有机质的影响.科学技术与工程, 15(26): 35-41, 65. doi: 10.3969/j.issn.1671-1815.2015.26.005
      于炳松, 2013.页岩气储层孔隙分类与表征.地学前缘, 20(4):211-220. http://d.old.wanfangdata.com.cn/Periodical/qgsj201715138
      张廷山, 杨洋, 龚其森, 等, 2014.四川盆地南部早古生代海相页岩微观孔隙特征及发育控制因素.地质学报, 88(9):1728-1740. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201409009
      赵文智, 李建忠, 杨涛, 等, 2016.中国南方海相页岩气成藏差异性比较与意义.石油勘探与开发, 43(4):499-510. doi: 10.11698/PED.2016.04.01
      郑民, 李建忠, 吴晓智, 等, 2018.我国常规与非常规天然气资源潜力、重点领域与勘探方向.天然气地球科学, 29(10):1383-1397. doi: 10.11764/j.issn.1672-1926.2018.09.006
      邹才能, 董大忠, 王社教, 等, 2010.中国页岩气形成机理、地质特征及资源潜力.石油勘探与开发, 37(6):641-653. http://d.old.wanfangdata.com.cn/Periodical/syktykf201006001
    • 加载中
    图(8) / 表(4)
    计量
    • 文章访问数:  3141
    • HTML全文浏览量:  1329
    • PDF下载量:  53
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-08-31
    • 刊出日期:  2019-11-15

    目录

      /

      返回文章
      返回