• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏德明顶铜钼矿床短波红外光谱特征及勘查指示意义

    任欢 郑有业 吴松 张心 叶吉文 陈雪冬

    任欢, 郑有业, 吴松, 张心, 叶吉文, 陈雪冬, 2020. 西藏德明顶铜钼矿床短波红外光谱特征及勘查指示意义. 地球科学, 45(3): 930-944. doi: 10.3799/dqkx.2019.983
    引用本文: 任欢, 郑有业, 吴松, 张心, 叶吉文, 陈雪冬, 2020. 西藏德明顶铜钼矿床短波红外光谱特征及勘查指示意义. 地球科学, 45(3): 930-944. doi: 10.3799/dqkx.2019.983
    Ren Huan, Zheng Youye, Wu Song, Zhang Xin, Ye Jiwen, Chen Xuedong, 2020. Short-Wavelength Infrared Characteristics and Indications of Exploration of the Demingding Copper-Molybdenum Deposit in Tibet. Earth Science, 45(3): 930-944. doi: 10.3799/dqkx.2019.983
    Citation: Ren Huan, Zheng Youye, Wu Song, Zhang Xin, Ye Jiwen, Chen Xuedong, 2020. Short-Wavelength Infrared Characteristics and Indications of Exploration of the Demingding Copper-Molybdenum Deposit in Tibet. Earth Science, 45(3): 930-944. doi: 10.3799/dqkx.2019.983

    西藏德明顶铜钼矿床短波红外光谱特征及勘查指示意义

    doi: 10.3799/dqkx.2019.983
    基金项目: 

    科技部国家重点研发计划 2018YFC0604104

    科技部国家重点研发计划 2017YFC0601506

    详细信息
      作者简介:

      任欢(1996-), 女, 硕士研究生, 地质工程专业

      通讯作者:

      郑有业

    • 中图分类号: P618

    Short-Wavelength Infrared Characteristics and Indications of Exploration of the Demingding Copper-Molybdenum Deposit in Tibet

    • 摘要: 德明顶矿区因交通不便、高寒缺氧、物理风化强烈、倒石堆覆盖严重等原因,找矿效果不理想.为进一步指导野外矿产勘查,在详细的野外观察的基础上,系统开展了短波红外光谱分析测试工作.结果显示,绢云母短波红外光谱标量在空间上呈现规律性变化,由浓集中心向外Al-OH吸收峰波长逐渐变长、Al-OH吸收峰深度逐渐降低、SWIR-IC值逐渐变小,且三者套合较好,表明该区域流体温度、压力高于外围,为热液蚀变矿化中心.结合蚀变规律、成矿岩体中锆石U-Pb年龄与辉钼矿Re-Os同位素年龄结果,在矿区内圈定了1处重点勘查靶区,为晚期铜矿化与早期(铜)钼矿化叠加的区域.该技术可以有效地指导野外矿产评价、降低勘查成本,是中国西部特殊景观区找矿勘查评价的重要方法之一.

       

    • 图  1  青藏高原构造格架(a)和冈底斯成矿带斑岩型Cu-Mo(Au)矿床分布及研究区位置(b)

      图a据Zhu et al.(2012);图b据Zheng et al.(2014)Wu et al.(2014, 2016)

      Fig.  1.  Tectonic framework of the Tibetan Plateau (a) and the distribution of main porphyry Cu-Mo (Au) deposits in the Gangdese metallogenic belt and location of the study area (b)

      图  2  德明顶斑岩型铜钼矿床地质图

      Fig.  2.  Geological map of the Demingding porphyry Cu-Mo deposit

      图  3  德明顶斑岩型铜钼矿床AA’地质剖面图

      Fig.  3.  Geological section along AA' exploration line in the Demingding porphyry Cu-Mo deposit

      图  4  德明顶铜钼矿区矿石手标本照片

      a.薄膜状孔雀石、蓝铜矿;b.薄膜状孔雀石;c.蜂窝状孔雀石与浸染状黄铁矿共生;d.石英-辉钼矿脉;e.片状、鳞片状辉钼矿聚晶;f.浸染状黄铁矿、辉钼矿;g.石英-黄铁矿脉;h.浸染状黄铁矿;i.星点状黄铁矿.矿物缩写:Az.蓝铜矿;Mal.孔雀石;Py.黄铁矿;Mol.辉钼矿;Q.石英

      Fig.  4.  The hand specimen photograph of mineral at the Demingding porphyry Cu-Mo deposit

      图  5  德明顶铜钼矿区钻孔柱状图

      Fig.  5.  The histogram of drills of cross sections at the Demingding porphyry Cu-Mo deposit

      图  6  德明顶铜钼矿区蚀变特征

      a.斑状二长花岗岩,发生强绢云母化蚀变(绿色);b.斑状二长花岗岩中斜长石斑晶发生绢云母化,仅保留斜长石晶型,绢云母颗粒细小;c.斑状二长花岗岩,与石英脉共生的绢云母化晕(白色);d.斑状二长花岗岩中绢云母沿斑晶边缘、解理、裂隙分布,重结晶形成叶片状白云母;e.斑状二长花岗岩,绿泥石蚀变;f.斑状二长花岗岩中黑云母全部蚀变为绿泥石、绢云母;g.斑状二长花岗岩,团块状绿泥石化;h.斑状二长花岗岩中出现不规则放射状绿泥石;i.辉绿玢岩,绿泥石化、绿帘石化;j.辉绿玢岩中角闪石、阳起石等矿物蚀变成绿泥石、绿帘石,正交偏光下绿泥石干涉色为灰蓝色;k.辉绿玢岩,绿泥石化、绿帘石化;l.辉绿玢岩中出现绿帘石、方解石等青磐岩化蚀变特征矿物;m.英安质晶屑凝灰岩,绿帘石化;n.英安质晶屑凝灰岩中斜长石晶屑发生次生变化,形成绢云母和绿帘石颗粒;o.花岗斑岩,高岭石化及绿帘石化;p.花岗斑岩中钾长石斑晶次生变化形成高岭石、绿帘石,表面呈尘土状.矿物缩写:Ser.绢云母;Pl.斜长石;Ms.白云母;Chl.绿泥石;Epi.绿帘石;Cal.方解石;Kfs.钾长石;Kln.高岭石;Q.石英

      Fig.  6.  Photographs showing characteristics of the alteration at the Demingding deposit

      图  7  德明顶矿区短波红外识别矿物组合图

      Fig.  7.  Alteration minerals assemblage using SWIR instrument at the Demingding deposit

      图  8  德明顶矿区绢云母族矿物Al-OH吸收峰波长频数分布直方图(a)和波长-深度与结晶度关系(b)

      Fig.  8.  Wavelength frequency distribution histogram of Al-OH absorption peak (a) and the relation of three scalars (b) in sericite at the Demingding deposit

      图  9  德明顶矿区地表绢云母Al-OH短波红外标量空间变化

      Fig.  9.  Spatial variation diagram of short-wave infrared scalar in sericite at the Demingding deposit

      图  10  德明顶斑岩型铜钼矿勘查综合预测图

      Fig.  10.  Comprehensive forecast map of Demingding porphyry Cu-Mo deposit

      表  1  德明顶矿区钻孔信息

      Table  1.   Information from drill holes in Demingding deposit

      钻孔号 测量光谱数(条) 主要蚀变矿物分布特征(自上而下)(短波红外光谱识别)
      ZK001 321 绢云母→绢云母+石膏→绢云母+石膏+高岭石
      ZK002 164 绿泥石+绿帘石→绢云母→绢云母+绿泥石→绢云母+绿泥石+石膏→绢云母+石膏→绢云母+绿泥石
      ZK003 528 绢云母+绿泥石→绢云母+石膏+绿泥石→高岭石+绢云母+石膏→绿泥石+石膏+绢云母
      ZK004 327 绢云母+蒙脱石+高岭石→绢云母+石膏+绿泥石→高岭石+绢云母→绢云母+绿泥石→绢云母+高岭石+石膏→绢云母+石膏+绿泥石
      下载: 导出CSV
    • Alva Jimenez, T. R., 2011. Variation in Hydrothermal Muscovite and Chlorite Composition in the Highland Valley Porphyry Cu-Mo District, British Columbia, Canada (Dissertation). The University of British Columbia, Vancouver.
      Chang, Z. S., Hedenquist, J. W., White, N. C., et al., 2011. Exploration Tools for Linked Porphyry and Epithermal Deposits: Example from the Mankayan Intrusion- Centered Cu-Au District, Luzon, Philippines. Economic Geology, 106(8): 1365-1398. https://doi.org/10.2113/econgeo.106.8.1365
      Chen, S.B., Huang, B.Q., Li, C., et al., 2018. Alteration and Mineralization of the Yuhai Cu Deposit in Eastern Tianshan, Xinjiang and Applications of Short Wavelength Infra-Red (SWIR) in Exploration. Earth Science, 43(9): 2911-2928 (in Chinese with English abstract).
      Duke, E. F., 1994. Near Infrared Spectra of Muscovite, Tschermak Substitution, and Metamorphic Reaction Progress: Implications for Remote Sensing. Geology, 22(7): 621-624. https://doi.org/10.1130/0091-7613(1994)0220621:nisomt > 2.3.co; 2 doi: 10.1130/0091-7613(1994)0220621:nisomt>2.3.co;2
      Feng, Y. Z., Xiao, B., Li, R. C., et al., 2019. Alteration Mapping with Short Wavelength Infrared (SWIR) Spectroscopy on Xiaokelehe Porphyry Cu-Mo Deposit in the Great Xing'an Range, NE China: Metallogenic and Exploration Implications. Ore Geology Reviews, 112: 103062. https://doi.org/10.1016/j.oregeorev.2019.103062
      Gan, F.P., Wang, R.S., Yang, S.M., 2002. Studying on the Alteration Minerals Identification Using Hyperion Data. Remote Sensing for Land & Resources, 14(4): 44-50 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtzyyg200204010
      Graham, G. E., Kokaly, R. F., Kelley, K. D., et al., 2018. Application of Imaging Spectroscopy for Mineral Exploration in Alaska: A Study over Porphyry Cu Deposits in the Eastern Alaska Range. Economic Geology, 113(2): 489-510. https://doi.org/10.5382/econgeo.2018.4559
      Guo, N., Thomas, C., Tang, J. X., et al., 2017. Mapping White Mica Alteration Associated with the Jiama Porphyry-Skarn Cu Deposit, Central Tibet Using Field SWIR Spectrometry. Ore Geology Reviews, 108: 147-157. https://doi.org/10.1016/j.oregeorev.2017.07.027
      Han, J. S., Chu, G. B., Chen, H. Y., et al., 2018. Hydrothermal Alteration and Short Wavelength Infrared (SWIR) Characteristics of the Tongshankou Porphyry-Skarn Cu-Mo Deposit, Yangtze Craton, Eastern China. Ore Geology Reviews, 101: 143-164. https://doi.org/10.1016/j.oregeorev.2018.07.018
      Harraden, C. L., McNulty, B. A., Gregory, M. J., et al., 2013. Shortwave Infrared Spectral Analysis of Hydrothermal Alteration Associated with the Pebble Porphyry Copper-Gold-Molybdenum Deposit, Iliamna, Alaska. Economic Geology, 108(3): 483-494. https://doi.org/10.2113/econgeo.108.3.483
      Herrmann, W., Blake, M., Doyle, M., et al., 2001. Short Wavelength Infrared (SWIR) Spectral Analysis of Hydrothermal Alteration Zones Associated with Base Metal Sulfide Deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland. Economic Geology, 96(5): 939-955. https://doi.org/10.2113/96.5.939
      Hou, Z. Q., Yang, Z. M., Lu, Y. J., et al., 2015. A Genetic Linkage between Subduction- and Collision-Related Porphyry Cu Deposits in Continental Collision Zones. Geology, 43(3): 247-250. https://doi.org/10.1130/g36362.1
      Huang, Y.R., Guo, N., Zheng, L., et al., 2017. 3D Geological Alteration Mapping Based on Remote Sensing and Shortwave Infrared Technology: A Case Study of the Sinongduo Low-Sulfidation Epithermal Deposit. Acta Geoscientica Sinica, 38(5): 779-789 (in Chinese with English abstract).
      Jones, S., Herrnumn, W., Gemmell, J.B., 2005. Short Wavelength Infrared Spectral Characteristics of the HW Horizon: Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada. Economic Geology, 100(2): 273-294. https://doi.org/10.2113/100.2.273
      Laakso, K., Peter, J. M., Rivard, B., et al., 2016. Short-Wave Infrared Spectral and Geochemical Characteristics of Hydrothermal Alteration at the Archean Izok Lake Zn-Cu-Pb-Ag Volcanogenic Massive Sulfide Deposit, Nunavut, Canada: Application in Exploration Target Vectoring. Economic Geology, 111(5): 1223-1239. https://doi.org/10.2113/econgeo.111.5.1223
      Lang, X.H., Tang, J.X., Chen, Y.C., et al., 2012. Neo-Tethys Mineralization on the Southern Margin of the Gangdise Metallogenic Belt, Tibet, China: Evidence from Re-Os Ages of Xiongcun Orebody No.Ⅰ. Earth Science, 37(3): 515-525 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201203012
      Liang, S.N., Gan, F.P., Yan, B.K., et al., 2012. Relationship between Composition and Spectral Feature of Muscovite. Remote Sensing for Land & Resources, 24(3): 111-115 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gtzyyg201203020
      Liu, H., Ma, Y., Ren, H., et al., 2015. Short-Wave Infrared Spectroscopy Study on Wallrock Alteration of the Tiemaoshan Porphyry Molybdenum Deposit, Fujian Province, China. Acta Mineralogica Sinica, 35(2): 221-228 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201502017
      Neal, L. C., Wilkinson, J. J., Mason, P. J., et al., 2018. Spectral Characteristics of Propylitic Alteration Minerals as a Vectoring Tool for Porphyry Copper Deposits. Journal of Geochemical Exploration, 184: 179-198. https://doi.org/10.1016/j.gexplo.2017.10.019
      Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial-temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001
      Pontual, S., Merry, N., Gamson, P., 1997. Spectral Interpretation Field Manual. AusSpec International Pty Ltd., Brisbane.
      Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3
      Sun, S.Q., Chen, H.Y., Jin, S.G., et al., 2019. Geochemical Study and Exploration Application of Altered Minerals in Southeast Hubei Mining Area. Science Press, Beijing (in Chinese).
      Tappert, M., Rivard, B., Giles, D., et al., 2011. Automated Drill Core Logging Using Visible and Near-Infrared Reflectance Spectroscopy: A Case Study from the Olympic Dam IOCG Deposit, South Australia. Economic Geology, 106(2): 289-296. https://doi.org/10.2113/econgeo.106.2.289
      Thompson, A.J.B., Phoebe, L.H., Audrey, J.R., 1999. Alteration Mapping in Exploration: Application of Short-Wave Infrared (SWIR) Spectroscopy. Society of Economic Geologists' Newsletter, 39: 1-27.
      Tian, F., Leng, C.B., Zhang, X.C., et al., 2019. Application of Short-Wave Infrared Spectroscopy in Gangjiang Porphyry Cu-Mo Deposit in Nimu Ore Field, Tibet. Earth Science, 44(6): 2143-2154 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201906027
      Tian, J., Zhang, Y., Cheng, J. M., et al., 2019. Short Wavelength Infra-Red (SWIR) Characteristics of Hydrothermal Alteration Minerals in Skarn Deposits: Example from the Jiguanzui Cu-Au Deposit, Eastern China. Ore Geology Reviews, 106: 134-149. https://doi.org/10.1016/j.oregeorev.2019.01.025
      Wang, J.R., Lü, X.B., Huang, Z.Q., et al., 2017. A Study of Near-Infrared Spectroscopy on Altered Minerals in the Nuri Copper-Polymetallic Deposit, Tibet. Geology and Exploration, 53(1): 141-150 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201701014
      Wu, S., Zheng, Y. Y., Sun, X., 2016. Subduction Metasomatism and Collision-Related Metamorphic Dehydration Controls on the Fertility of Porphyry Copper Ore-Forming High Sr/Y Magma in Tibet. Ore Geology Reviews, 73: 83-103. https://doi.org/10.1016/j.oregeorev.2015.10.023
      Wu, S., Zheng, Y. Y., Sun, X., et al., 2014. Origin of the Miocene Porphyries and Their Mafic Microgranular Enclaves from Dabu Porphyry Cu-Mo Deposit, Southern Tibet: Implications for Magma Mixing/Mingling and Mineralization. International Geology Review, 56(5): 571-595. https://doi.org/10.1080/00206814.2014.880074
      Xia, L.Q., Ma, Z.P., Li, X.M., et al., 2009. Paleocene-Early Eocene (65-40 Ma) Volcanic Rocks in Tibetan Plateau: The Products of Syn-Collisional Volcanism. Northwestern Geology, 42(3): 1-25 (in Chinese with English abstract).
      Xu, C., Chen, H. Y., White, N., et al., 2017. Alteration and Mineralization of Xi'nan Cu-Mo Ore Deposit in Zijinshan Orefield, Fujian Province, and Application of Short Wavelength Infra-Red Technology (SWIR) to Exploration. Mineral Deposits, 36(5): 1013-1038 (in Chinese with English abstract).
      Yang, K., Huntington, J. F., Gemmell, J. B., et al., 2011. Variations in Composition and Abundance of White Mica in the Hydrothermal Alteration System at Hellyer, Tasmania, as Revealed by Infrared Reflectance Spectroscopy. Journal of Geochemical Exploration, 108(2): 143-156. https://doi.org/10.1016/j.gexplo.2011.01.001
      Yang, Z.M., Hou, Z.Q., Yang, Z.S., et al., 2012. Application of Short Wavelength infrared (SWIR) Technique in Exploration of Poorly Eroded Porphyry Cu District: A Case Study of Niancun Ore District, Tibet. Mineral Deposits, 31(4): 699-717 (in Chinese with English abstract).
      Ye, F.W., Meng, S., Zhang, C., et al., 2018. Minerageny Study of High-Al, Medium-Al- and Low-Al Sericites Identified by Airborne Hyperspectral Remote Sensing Technology. Acta Geologica Sinica, 92(2): 395-412 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201802013
      Zhang, G.Y., Zheng, Y.Y., Gong, F.Z., et al., 2008. Geochronologic Constraints on Magmatic Intrusions and Mineralization of the Jiru Porphyry Copper Deposit, Tibet, Associated with Continent-Continent Collisional Process. Acta Petrologica Sinica, 24(3): 473-479 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200803007
      Zhang, J.Z., 2013. Geology, Exploration Model and Practice of Zijinshan Ore Concentrated Area. Mineral Deposits, 32(4): 758-767 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201304009
      Zhang, S.T., Chen, H.Y., Zhang, X.B., et al., 2017. Application of Short Wavelength Infrared (SWIR) Technique to Exploration of Skarn Deposit: A Case Study of Tonglvshan Cu-Fe-Au Deposit, Edongnan (Southeast Hubei) Ore Concentration Area. Mineral Deposits, 36(6): 1263-1288 (in Chinese with English abstract).
      Zhao, L.Q., Deng, J., Yuan, H.T., et al., 2008. Short Wavelength Infrared Spectral Analysis of Alteration Zone in the Taishang Gold Deposit. Geology and Prospecting, 44(5): 58-63 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt200805010
      Zheng, Y.Y., Gao, S.B., Cheng, L.J., et al., 2004. Finding and Significances of Chongjiang Porphyry Copper (Molybdenum, Aurum) Deposit, Tibet. Earth Science, 29(3): 333-339 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200403012
      Zheng, Y.Y., Gao, S.B., Fan, Z.H., et al., 2005. Major Breakthroughs and Enlightenment of Geochemical Exploration Information and Scientific Prospecting: Examples of Multiple Large and Ultra-Large Porphyry Copper Deposits Discovered in Tibet in Recent Years. The Sixth World Chinese Geological Science Symposium and the 2005 Annual Conference of Geological Society of China, Chifeng (in Chinese).
      Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79: 842-857. https://doi.org/10.1016/j.jseaes.2013.03.029
      Zheng, Y.Y., Xue, Y.X., Cheng, L.J., et al., 2004. Finding, Characteristics and Significances of Qulong Superlarge Porphyry Copper (Molybdenum) Deposit, Tibet. Earth Science, 29(1): 103-108 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200401018
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2012. Cambrian Bimodal Volcanism in the Lhasa Terrane, Southern Tibet: Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin. Chemical Geology, 328: 290-308. https://doi.org/10.1016/j.chemgeo.2011.12.024
      陈寿波, 黄宝强, 李琛, 等, 2018.新疆东天山玉海铜矿蚀变矿化特征及SWIR勘查应用研究.地球科学, 43(9): 2911-2928. doi: 10.3799/dqkx.2018.156
      甘甫平, 王润生, 杨苏明, 2002.西藏Hyperion数据蚀变矿物识别初步研究.国土资源遥感, 14(4): 44-50. doi: 10.3969/j.issn.1001-070X.2002.04.010
      黄一入, 郭娜, 郑龙, 等, 2017.基于遥感短波红外技术的三维蚀变填图——以低硫化浅成低温热液型矿床斯弄多为例.地球学报, 38(5): 779-789. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201705017
      郎兴海, 唐菊兴, 陈毓川, 等, 2012.西藏冈底斯成矿带南缘新特提斯洋俯冲期成矿作用:来自雄村矿集区Ⅰ号矿体的Re-Os同位素年龄证据.地球科学, 37(3): 515-525. http://www.earth-science.net/article/id/2255
      梁树能, 甘甫平, 闫柏锟, 等, 2012.白云母矿物成分与光谱特征的关系研究.国土资源遥感, 24(3): 111-115. doi: 10.6046/gtzyyg.2012.03.20
      刘鹤, 马宇, 任宏, 等, 2015.福建铁帽山钼矿床围岩蚀变的短波红外光谱学研究.矿物学报, 35(2): 221-228. http://d.old.wanfangdata.com.cn/Periodical/kwxb201502017
      潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3): 521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
      孙四权, 陈华勇, 金尚刚, 等, 2019.鄂东南矿集区蚀变矿物地球化学研究及其勘查应用.北京:科学出版社.
      田丰, 冷成彪, 张兴春, 等, 2019.短波红外光谱技术在西藏尼木地区岗讲斑岩铜-钼矿床中的应用.地球科学, 44(6): 2143-2154. doi: 10.3799/dqkx.2018.373
      王锦荣, 吕新彪, 黄照强, 等, 2017.西藏努日铜多金属矿床蚀变矿物的近红外光谱学研究.地质与勘探, 53(1): 141-150. http://d.old.wanfangdata.com.cn/Periodical/dzykt201701014
      夏林圻, 马中平, 李向民, 等, 2009.青藏高原古新世-始新世早期(65~40 Ma)火山岩:同碰撞火山作用的产物.西北地质, 42(3): 1-25. doi: 10.3969/j.issn.1009-6248.2009.03.001
      许超, 陈华勇, White, N., 等, 2017.福建紫金山矿田西南铜钼矿段蚀变矿化特征及SWIR勘查应用研究.矿床地质, 36(5): 1013-1038. http://d.old.wanfangdata.com.cn/Periodical/kcdz201705001
      杨志明, 侯增谦, 杨竹森, 等, 2012.短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用:以西藏念村矿区为例.矿床地质, 31(4): 699-717. doi: 10.3969/j.issn.0258-7106.2012.04.004
      叶发旺, 孟树, 张川, 等, 2018.航空高光谱识别的高、中、低铝绢云母矿物成因学研究.地质学报, 92(2): 395-412. doi: 10.3969/j.issn.0001-5717.2018.02.013
      张刚阳, 郑有业, 龚福志, 等, 2008.西藏吉如斑岩铜矿:与陆陆碰撞过程相关的斑岩成岩成矿时代约束.岩石学报, 24(3): 473-479. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200803007
      张锦章, 2013.紫金山矿集区地质特征、矿床模型与勘查实践.矿床地质, 32(4): 758-767. http://d.old.wanfangdata.com.cn/Periodical/kcdz201304009
      张世涛, 陈华勇, 张小波, 等, 2017.短波红外光谱技术在矽卡岩型矿床中的应用:以鄂东南铜绿山铜铁金矿床为例.矿床地质, 36(6): 1263-1288. http://d.old.wanfangdata.com.cn/Periodical/kcdz201706002
      赵利青, 邓军, 原海涛, 等, 2008.台上金矿床蚀变带短波红外光谱研究.地质与勘探, 44(5): 58-63. doi: 10.3969/j.issn.1001-1986.2008.05.015
      郑有业, 高顺宝, 程力军, 等, 2004.西藏冲江大型斑岩铜(钼金)矿床的发现及意义.地球科学, 29(3): 333-339. doi: 10.3321/j.issn:1000-2383.2004.03.012
      郑有业, 高顺宝, 樊子珲, 等, 2005.化探信息与科学找矿的重大突破和启示——以西藏近年发现的多个大-超大型斑岩铜矿为例.赤峰: 第六届世界华人地质科学研讨会和中国地质学会二零零五年学术年会.
      郑有业, 薛迎喜, 程力军, 等, 2004.西藏驱龙超大型斑岩铜(钼)矿床:发现、特征及意义.地球科学, 29(1): 103-108. doi: 10.3321/j.issn:1000-2383.2004.01.018
    • 加载中
    图(10) / 表(1)
    计量
    • 文章访问数:  4658
    • HTML全文浏览量:  1633
    • PDF下载量:  96
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-10-30
    • 刊出日期:  2020-03-15

    目录

      /

      返回文章
      返回