• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    长江中下游成矿带深部结构层析成像图像揭示华北板块的东南向俯冲

    郑洪伟 李廷栋 贺日政

    郑洪伟, 李廷栋, 贺日政, 2020. 长江中下游成矿带深部结构层析成像图像揭示华北板块的东南向俯冲. 地球科学, 45(11): 4187-4197. doi: 10.3799/dqkx.2020.053
    引用本文: 郑洪伟, 李廷栋, 贺日政, 2020. 长江中下游成矿带深部结构层析成像图像揭示华北板块的东南向俯冲. 地球科学, 45(11): 4187-4197. doi: 10.3799/dqkx.2020.053
    Zheng Hongwei, Li Tingdong, He Rizheng, 2020. Southeastward Subduction of North China Block: Insights from Tomographyic Image of the Middle and Lower Yangtze River Metallogenic Belt. Earth Science, 45(11): 4187-4197. doi: 10.3799/dqkx.2020.053
    Citation: Zheng Hongwei, Li Tingdong, He Rizheng, 2020. Southeastward Subduction of North China Block: Insights from Tomographyic Image of the Middle and Lower Yangtze River Metallogenic Belt. Earth Science, 45(11): 4187-4197. doi: 10.3799/dqkx.2020.053

    长江中下游成矿带深部结构层析成像图像揭示华北板块的东南向俯冲

    doi: 10.3799/dqkx.2020.053
    基金项目: 

    上海佘山地球物理国家野外科学观测研究站开放基金项目 2020K07

    国家重点研发计划项目 2016YFC0600301

    中国地质调查项目 DD20190448

    中国地质调查项目 DD20190370

    国家自然科学基金项目 41374101

    详细信息
      作者简介:

      郑洪伟(1977-), 女, 副研究员, 博士, 主要从事地震层析成像研究.ORCID:0000-0002-1668-5230.E-mail:zhenghongwei004@sina.com

      通讯作者:

      贺日政, E-mail:herizheng@cags.ac.cn

    • 中图分类号: P3

    Southeastward Subduction of North China Block: Insights from Tomographyic Image of the Middle and Lower Yangtze River Metallogenic Belt

    • 摘要: 远震层析成像结果所揭示的华北板块东南向俯冲到扬子板块之下对于重新认识长江中下游地区成矿机制具有重要意义.利用来自中国地震台网中心,包括湖北、河南、安徽、江西、浙江、江苏等省级地震台网记录的波形数据对长江中下游地区深部结构进行了远震P波层析成像反演.综合研究结果显示,三叠纪华北与扬子板块俯冲碰撞,华北板块越过郯庐断裂带,向东南俯冲到扬子板块之下.推断板块碰撞的深部缝合线在郯庐断裂带以西位于大别造山带以南,在郯庐断裂带以东位于长江一线.经历后期的中生代构造转换过程,该带发生活化,成为中生代含矿岩浆和流体上升的通道,并形成著名的大型成矿带.

       

    • 图  1  长江中下游成矿带地区构造简图

      宋传中等(2011).蓝色的圆点为矿床点.LAF.六安断裂;XGF.襄樊-广济断裂;TLF.郯庐断裂

      Fig.  1.  Sketch map showing the tectonics and distribution of major ore concentration areas in the Mid-Lower reaches of Yangtze River

      图  2  长江中下游地区台站分布

      Fig.  2.  Distribution of the seismic stations used in this study

      图  3  使用的震级大于5.0的地震震中分布

      Fig.  3.  Epicentral locations of the local seismic events

      图  4  地震射线分布

      Fig.  4.  Distibution of the ray paths

      图  5  网格划分为0.5°×0.5°格点图

      Fig.  5.  Grid model map of 0.5°×0.5°

      图  6  反演所使用的一维P波速度模型

      Huang and Zhao(2004)

      Fig.  6.  The reference one-dimensional Vp model

      图  7  速度扰动变化与走时残差均方根之间的Trade-off曲线

      Fig.  7.  Trade-off curve for the root-mean-square (RMS) travel-time residuals versus RMS of P-wave velocity perturbations at the grid nodes

      图  8  不同深度水平切片的Checkerboard分辨率检测结果

      Fig.  8.  Results of a Checkerboard resolution test

      图  9  长江中下游成矿带地区不同深度水平剖面速度结构异常图

      每层深度值标注在图的右下角,速度扰动色标在图件下方

      Fig.  9.  Plan views of P-wave velocity images of the Mid-Lower reaches of Yangtze River at each depth

      图  10  长江中下游地区沿不同经纬度方向的层析成像剖面

      右下图为剖面所在位置.黑虚线标出了华北板块高速体范围.断裂构造参加图 1

      Fig.  10.  Vertical cross-sections of P-wave tomography along the profiles shown on the lower-right panel. Black dashed lines show the range of the NCB velocity anomalies. The tectonic lines are the same as the Fig. 1

    • Chang, Y. F., Liu, X. P., Wu, Y. C., 1991.Iron Copper Metallogenic Belt in the Middle and Lower Yangtze River. Geological Publishing House, Beijing (in Chinese).
      Chang, Y. F., Zhou, T. F., Fan, Y., 2017. Review of Exploration and Geological Research Progress in the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 33(11):3333-3352 (in Chinese with English abstract). http://www.researchgate.net/publication/330636672_Review_of_exploration_and_geological_research_progress_in_the_Middle-Lower_Yangtze_River_Valley_Metallogenic_Belt
      Chen, L., Zheng, Y. F., 2019. Neoproterozoic Oceanic Slab-Mantle Interaction:Geochemical Evidence from Mesozoic Andesitic Rocks in the Middle and Lower Yangtze Valley. Earth Science, 44(12):4144-4151 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912024.htm
      Chung, S. L., 1999. Trace Element and Isotope Characteristics of Cenozoic Basalts around the Tanlu Fault with Implications for the Eastern Plate Boundary between North and South China. The Journal of Geology, 107:301-312. doi: 10.1086/314348
      Dong, S. W., Ma, L. C., Liu, G., et al., 2011. On Dynamics of the Metallogenic Belt of Middle-Lower Reaches of Yangtze River, Eastern China. Acta Geologica Sinica, 85(5):612-625 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201105004.htm
      Dong, S. W., Qiu, R. L., 1993. Tectonics and Magmatic Activity in Anqing-Yueshan Area. Geological Publishing House, Beijing, 1-158 (in Chinese).
      Guo, H. L., Xu, P. F., Zhang, F.Q., 2014. P Wave Velocity Structure of the North China Craton and West Pacific Active Continental Margin:Exploration for Dynamic Processes of Lithospheric Thinning. Chinese Journal of Geophysics, 57:2352-2361 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201407029.htm
      Guo, R. H., Li, S. Z., Suo, Y. H., et al., 2017. Indentation of North China Block into Greater South China Block and Indosinian Orocline. Earth Science Frontiers, 24:171-184 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201704023.htm
      Hou, Z. Q., Yang, Z. M., 2009.Porphyry Deposits in Continental Settings of China:Geological Characteristics Magmatic-Hydrothermal System, and Metallogenic Model. Acta Geologica Sinica, 83(12):1779-1817 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200912002.htm
      Huang, J. L., Zhao, D. P., 2004. Crustal Heterogeneity and Seismotectonics of the Region around Beijing, China. Tectonophysics, 385:159-180. doi: 10.1016/j.tecto.2004.04.024
      Jahn, B.M., Chen, B., 2007. Dabieshan UHP Metamorphic Terrane:Sr-Nd-Pb Isotopic Constraint to Pre-Metamorphic Subduction Polarity. Int. Geol. Rev., 49:14-29. doi: 10.2747/0020-6814.49.1.14
      Jiang, G. M., Zhang, G. B., Zhao, D., et al., 2015. Mantle Dynamics and Cretaceous Magmatism in East-Central China:Insight from Teleseismic Tomograms. Tectonophysics, 664:256-268. doi: 10.1016/j.tecto.2015.09.019
      Li, S.G., 2004. Exhumation Mechanism of the Ultrahigh-Pressure Metamorphic Rocks in the Dabie Mountains and Continental Collison Process between the North and South China Blocks. Earth Science Frontiers, 11(3):63-70 (in Chinese with English abstract).
      Li, S. G., Yang, W., 2003. Decoupling of Surface and Subsurface Sutures in the Dabie Orogen and a Continent-Collisional Lithospheric-Wedging Model:Sr-Nd-Pb Isotopic Evidences of Mesozoic Igneous Rocks in Eastern China. Chinese Science Bulletin, 48:831-838. http://d.wanfangdata.com.cn/Periodical/kxtb-e200308024
      Li, S. Z., Jahn, B. M., Zhao, S. J., et al., 2017. Triassic Southeastward Subduction of North China Block to South China Block:Insights from New Geological, Geophysical and Geochemical Data. Earth-Science Review, 166:270-285. doi: 10.1016/j.earscirev.2017.01.009
      Li, X. H., Li, Z. X., Zheng, X. L., et al., 2013. Revisiting the"C-Type Adakites"of the Lower Yangtze River Belt, Central Eastern China:In-Situ Zircon Hf-O Isotope and Geochemical Constraints. Chemical Geology, 345:1-15. doi: 10.1016/j.chemgeo.2013.02.024
      Li, Z. X., 1994. Collision between the North and South China Blocks:A Crustal-Detachment Model for the Suturing in the Region East of the Tanlu Fault. Geology, 22:739-742. doi: 10.1130/0091-7613(1994)022<0739:CBTNAS>2.3.CO;2
      Liu, B., Li, S. Z., Wang, P. C., et al., 2018. Deep-Seated Structural Styles and Mesozoic Metallogenic Dynamic Model in the Middle-Lower Yangtze Region, China. Acta Petrologica Sinica, 34(3):799-812 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252011686.html
      Luo, S., Yao, H., Li, Q., et al., 2019. High-Resolution 3D Crustal S-Wave Velocity Structure of the Middle-Lower Yangtze River Metallogenic Belt and Implications for Its Deep Geodynamic Setting. Science in China (Series D:Earth Sciences), 49:1394-1412 (in Chinese). doi: 10.1007/s11430-018-9352-9
      Lü, Q. T., Dong, S. W., Shi, D. N., et al., 2014. Lithosphere Architecture and Geodynamic Model of Middle and Lower Reaches of Yangtze Metallogenic Belt:A Review from SinoProbe. Acta Petrologica Sinica, 30(4):889-906 (in Chinese with English abstract). http://www.researchgate.net/publication/305535292_Lithosphere_architecture_and_geodynamic_model_of_Middle_and_Lower_Reaches_of_Yangtze_Metallogenic_Belt_A_review_from_SinoProbe
      Lü, Q. T., Dong, S. W., Tang, J. T., et al., 2015.Multi-Scale and Integrated Geophysical Data Revealing Mineral Systems and Exploring for Mineral Deposits at Depth:A Synthesis from SinoProbe-03. Chinese Journal of Geophysics, 58(12):4319-4343 (in Chinese with English abstract). http://www.researchgate.net/publication/300631761_Understanding_world-class_mineral_systems_and_exploring_for_mineral_deposits_at_depth_using_multi-scale_and_integrated_geophysical_data_A_synthesis_from_SinoProbe
      Lü, Q. T., Meng, G. X., Yan, J. Y., et al., 2019. Multi-Scale Exploration of Mineral System:Concept and Progress-A Case Study in the Middle and Lower Reaches of the Yangtze River Metallogenic Belt. Geology in China, 46(4):673-689 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201904002.htm
      Lü, Q. T., Shi, D. N., Liu, Z. D., et al., 2015. Crustal Structure and Geodynamic of the Middle and Lower Reaches of Yangtze Metallogenic Belt and Neighboring Areas:Insights from Deep Seismic Reflection Profiling. Journal of Asian Earth Science, 114:704-716. doi: 10.1016/j.jseaes.2015.03.022
      Mao, J. W., Xie, G. Q., Duan, C., et al., 2011. A Tectono-Genetic Model for Porphyry-Skarn-Stratabound Cu-Au-Mo-Fe and Magnetite-Apatite Deposits along the Middle-Lower Yangtze River Valley, Eastern China. Ore Geology Reviews, 43(1):294-314.
      Pei, R. F., Li, J. W., Wang, Y. L., et al., 2011. Metalligeny of the Tectonomagmatic Emplacing Contact Structural Systems of the Metallogenic Belt in Middle and Lower Reaches of Yangtze. Geology and Resources, 20(6):401-412 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJSD201106002.htm
      Qiang, J. K., Wang, X. Y., Tang, J. T., et al., 2014. The Geological Structures along Huainan-Liyang Magnetotelluric Profile:Constraints from MT Data. Acta Petrologica Sinica, 30(4):957-965 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201404006.htm
      Song, C. Z., Zhang, H., Ren, S. L., et al., 2011. Transform Tectonic Node of the Middle and Lower Reaches of the Yangtze River and Analysis of Regional Metallogenic Settings. Acta Geologica Sinica, 85(5):778-788 (in Chinese with English abstract). http://www.researchgate.net/publication/285166322_Transform_tectonic_node_of_the_Middle_and_Lower_Reaches_of_the_Yangtze_River_and_analysis_of_regional_metallogenic_settings
      Sun, W. J., Li, S. Z., Liu, X. M., et al., 2015. Deep Structures and Surface Boundaries among Proto-Tethyan Micro-Blocks:Constraints from Seismic Tomography and Aeromagnetic Anomalies in the Central China Orogen. Tectonophysics, 659:109-121. doi: 10.1016/j.tecto.2015.07.033
      Sun, Y., Mang, C. Q., Liu, B., 2017. Record of Late Yanshanian Mafic Magmatic Activity in the Middle-Lower Yangtze River Metallogenic Belt. Earth Science, 42(6):891-908 (in Chinese with English abstract). http://www.researchgate.net/publication/319455763_Record_of_Late_Yanshanian_Mafic_Magmatic_Activity_in_the_Middle-Lower_Yangtze_River_Metallogenic_Belt
      Wu, F. Y., Ji, W. Q., Sun, D. H., et al., 2012. Zircon U-Pb Geochronology and Hf Isotopic Compositions of the Mesozoic Granites in Southern Anhui Province, China. Lithos, 150:6-25. doi: 10.1016/j.lithos.2012.03.020
      Xie, G. Q., Mao, J. W., Li, R. L., et al., 2008. Geochemistry and Nd-Sr Isotopic Studies of Mesozoic Granitoids in the Southeastern Hubei Province, Middle-Lower Yangtze River Belt, Eastern China:Petrogenesis and Tectonic Setting. Lithos, 104:216-230. doi: 10.1016/j.lithos.2007.12.008
      Xu, T., Zhang, Z. J., Tian, X. B., et al., 2014. Crustal Structure beneath the Middle-Lower Yangtze Metallogenic Belt and Its Surrounding Areas:Constraints from Active Source Seismic Experiment along the Lixin to Yixing Profile in East China. Acta Petrologica Sinica, 30(4):918-930 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201404003.htm
      Ying, J. F., Zhang, H. F., Zhou, X. H., et al., 2013. Tectonic Affinity of the Sub-Continental Lithosphere of the Sulu Orogenic Belts:Constraints from Granulite and Peridotites Xenoliths. Bulletin of Mineralogy, Petrology and Geochemistry, 32(3):328-334 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KYDH201303005.htm
      Zhang, C., Ma, C. Q., Holtz, F., 2010. Origin of High-Mg Adakitic Magmatic Enclaves from the Meichuan Pluton, Southern Dabie Orogen (Central China):Implications for Delamination of the Lower Continental Crust and Melt-Mantle Interaction. Lithos, 119:467-484. doi: 10.1016/j.lithos.2010.08.001
      Zhang, Y. Q., Dong, S. W., 2019. East Asia Multi-Plate Convergence in Late Mesozoic and the Development of Continental Tectonic Systems. Journal of Geomechanics, 25(5):613-641 (in Chinese with English abstract).
      Zhang, Y. Q., Lü, Q. T., Teng, J. W., et al., 2014. Discussion on the Crustal Density Structure and Deep Mineralization Background in the Middle-Lower Yangtze Metallogenic Belt and Its Surrounding Areas:Constraints from the Gravity Inversion. Acta Petrologica Sinica, 30(4):931-940 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201404004.htm
      Zhou, T. F., Fan, Y., Wang, S.W., et al., 2017. Metallogenic Regularity and Metallogenic Model of the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 33(11):3353-3372 (in Chinese with English abstract). http://www.researchgate.net/publication/330637013_Metallogenic_regularity_and_metallogenic_model_of_the_Middle-Lower_Yangtze_River_Valley_Metallogenic_Belt
      Zhou, T. F., Fan, Y., Yuan, F., et al., 2011. Geochronology and Significance of Volcanic Rocks in the Ning-Wu Basin of China. Science in China (Series D:Earth Science), 41(7):960-971 (in Chinese). http://www.springerlink.com/content/q7070174022622w8/
      Zhou, T. F., Wang, S. W., Yuan, F., et al., 2016. Magmatism and Related Mineralization of the Intracontinental Porphyry Deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 32(2):271-288 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201602001.htm
      常印佛, 刘湘培, 吴言昌, 1991.长江中下游铁铜成矿带.北京:地质出版社.
      常印佛, 周涛发, 范裕, 2017.长江中下游成矿带矿产勘查-科研工作回顾和展望.岩石学报, 33(11):3333-3352. http://d.wanfangdata.com.cn/Periodical/ysxb98201711001
      陈龙, 郑永飞, 2019.长江中下游中生代安山质火山岩记录的新元古代大洋板片-地幔相互作用.地球科学, 44(12):4144-4151. doi: 10.3799/dqkx.2019.243
      董树文, 马立成, 刘刚, 等, 2011.论长江中下游成矿动力学.地质学报, 85(5):612-625. http://www.cqvip.com/QK/95080X/201105/38046840.html
      董树文, 邱瑞龙, 1993.安庆-岳山地区构造作用及岩浆活动.北京:地质出版社, 1-158.
      郭慧丽, 徐佩芬, 张福勤, 2014.华北克拉通及东邻西太平洋活动大陆边缘地区的P波速度结构:对岩石圈减薄动力学过程的探讨.地球物理学报, 57:2352-2361. http://www.cnki.com.cn/article/cjfdtotal-dqwx201407029.htm
      郭润华, 李三忠, 索艳慧, 等, 2017.华北地块揳入大华南地块和印支期弯山构造.地学前缘, 24:171-184. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201704023.htm
      侯增谦, 杨志明, 2009.中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型.地质学报, 83(12):1779-1817. http://www.cnki.com.cn/Article/CJFDTotal-DZXE200912002.htm
      李曙光, 2004.大别山超高压变质岩折返机制与华北-华南陆块碰撞过程.地学前缘, 11(3):63-70. http://d.wanfangdata.com.cn/Periodical/dxqy200403008
      刘博, 李三忠, 王鹏程, 等, 2018.长江中下游深部构造及其中生代成矿动力学模式.岩石学报, 34(3):799-812. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201803017
      罗松, 姚华建, 李秋生, 等, 2019.长江中下游成矿带高分辨地壳三维横波速度结构及其形成的深部动力学背景.中国科学(D辑:地球科学), 49:1394-1412. http://d.wanfangdata.com.cn/periodical/zgkx-cd201909006
      吕庆田, 董树文, 史大年, 等, 2014.长江中下游成矿带岩石圈结构与成矿动力学模型——深部探测(SinoProbe)综述.岩石学报, 30(4):889-906. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20140401&flag=1
      吕庆田, 董树文, 汤井田, 等, 2015.多尺度综合地球物理探测:揭示成矿系统、助力深部找矿——长江中下游深部探测(SinoProbe-03)进展.地球物理学报, 58(12):4319-4343.
      吕庆田, 孟贵祥, 严加永, 等, 2019.成矿系统的多尺度探测:概念与进展——以长江中下游成矿带为例.中国地质, 46(4):673-689.
      裴荣富, 李进文, 王永磊, 等, 2011.长江中下游成矿带构造岩浆侵位的接触构造体系与成矿.地质与资源, 20(6):401-412.
      强建科, 王显莹, 汤井田, 等, 2014.淮南-溧阳大地电磁剖面与地质结构分析.岩石学报, 30(4):957-965. http://www.cqvip.com/QK/94579X/20144/49589231.html
      宋传中, 张华, 任升莲, 等, 2011.长江中下游转换构造结与区域成矿背景分析.地质学报, 85(5):778-788.
      孙洋, 马昌前, 刘彬, 2017.长江中下游地区燕山晚期基性岩浆活动的记录.地球科学, 42(6):891-908. doi: 10.3799/dqkx.2017.077
      徐涛, 张忠杰, 田小波, 等, 2014.长江中下游成矿带及邻区地壳速度结构:来自利辛-宜兴宽角地震资料的约束.岩石学报, 30(4):918-930.
      英基丰, 张宏福, 周新华, 等, 2013.苏鲁造山带深部岩石圈的属性:来自麻粒岩和橄榄岩捕虏体的制约.矿物岩石地球化学通报, 32(3):328-334.
      张岳桥, 董树文, 2019.晚中生代东亚多板块汇聚与大陆构造体系的发展.地质力学学报, 25(5):613-641.
      张永谦, 吕庆田, 滕吉文, 等, 2014.长江中下游及邻区的地壳密度结构与深部成矿背景探讨——来自重力学的约束.岩石学报, 30(4):931-940.
      周涛发, 范裕, 王世伟, 等, 2017.长江中下游成矿带成矿规律和成矿模式.岩石学报, 33(11):3353-3372.
      周涛发, 范裕, 袁峰, 等, 2011.宁芜(南京-芜湖)盆地火山岩的年代学及其意义.中国科学(D辑:地球科学), 41(7):960-971.
      周涛发, 王世伟, 袁峰, 等, 2016.长江中下游成矿带陆内斑岩型矿床的成岩成矿作用.岩石学报, 32(2):271-288.
    • 加载中
    图(10)
    计量
    • 文章访问数:  1051
    • HTML全文浏览量:  460
    • PDF下载量:  90
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-03-17
    • 刊出日期:  2020-11-15

    目录

      /

      返回文章
      返回