• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    江汉平原浅层含水层中土著硫酸盐还原菌对砷迁移释放的影响

    徐雨潇 郑天亮 高杰 邓娅敏 蒋宏忱

    徐雨潇, 郑天亮, 高杰, 邓娅敏, 蒋宏忱, 2021. 江汉平原浅层含水层中土著硫酸盐还原菌对砷迁移释放的影响. 地球科学, 46(2): 652-660. doi: 10.3799/dqkx.2020.063
    引用本文: 徐雨潇, 郑天亮, 高杰, 邓娅敏, 蒋宏忱, 2021. 江汉平原浅层含水层中土著硫酸盐还原菌对砷迁移释放的影响. 地球科学, 46(2): 652-660. doi: 10.3799/dqkx.2020.063
    Xu Yuxiao, Zheng Tianliang, Gao Jie, Deng Yamin, Jiang Hongchen, 2021. Effect of Indigenous Sulfate Reducing Bacteria on Arsenic Migration in Shallow Aquifer of Jianghan Plain. Earth Science, 46(2): 652-660. doi: 10.3799/dqkx.2020.063
    Citation: Xu Yuxiao, Zheng Tianliang, Gao Jie, Deng Yamin, Jiang Hongchen, 2021. Effect of Indigenous Sulfate Reducing Bacteria on Arsenic Migration in Shallow Aquifer of Jianghan Plain. Earth Science, 46(2): 652-660. doi: 10.3799/dqkx.2020.063

    江汉平原浅层含水层中土著硫酸盐还原菌对砷迁移释放的影响

    doi: 10.3799/dqkx.2020.063
    基金项目: 

    国家自然科学基金面上项目 41572226

    国家自然科学基金面上项目 41977174

    生物地质与环境地质国家重点实验室优先资助开放课题 128-GBL21711

    详细信息
      作者简介:

      徐雨潇(1996-), 女, 硕士研究生, 主要从事水文地质方面的研究.OCRID: 0000-0002-2268-5157.E-mail: yuxiao.xu@cug.edu.cn

      通讯作者:

      邓娅敏, OCRID: 0000-0002-4815-7176.E-mail: yamin.deng@cug.edu.cn

    • 中图分类号: P641

    Effect of Indigenous Sulfate Reducing Bacteria on Arsenic Migration in Shallow Aquifer of Jianghan Plain

    • 摘要: 硫酸盐还原菌是厌氧环境中参与砷形态转化的重要微生物种群,其介导的生物地球化学循环过程对铁氧化物表面吸附态砷迁移转化的影响亟待深入研究.选取江汉平原典型高砷含水层原位沉积物分离纯化出一株严格厌氧硫酸盐还原菌Desulfovibrio JH-S1,对其进行砷和铁还原能力鉴定,并通过模拟培养实验探究硫酸盐还原菌参与下的铁矿物相转化对吸附态砷迁移的影响.Desulfovibrio JH-S1具有Fe(III)还原能力,无硫和有硫体系中Fe(III)均能被还原,但在硫酸盐充足条件下铁还原量显著增加;该菌株不具备As(V)还原能力,但添加硫酸盐的培养体系中As(V)去除率可达96%以上.Desulfovibrio JH-S1能够还原硫酸盐从而促进载砷的水铁矿还原转化为纤铁矿,并导致吸附的砷释放.江汉平原高砷含水层土著硫酸盐还原菌兼具硫酸盐/铁还原功能,参与了高砷含水层系统中砷-铁-硫耦合循环,对高砷地下水的形成具有重要作用.

       

    • 图  1  基于Desulfovibrio JH-S1的16S rRNA基因建立的系统发育进化树

      Fig.  1.  Phylogenetic tree based on 16S rRNA of Desulfovibrio JH-S1

      图  2  Desulfovibrio JH-S1菌的生长曲线

      Fig.  2.  Growth curve of Desulfovibrio JH-S1

      图  3  Desulfovibrio JH-S1的硫酸盐、Fe(III)、As(V)还原能力鉴定

      Fig.  3.  Reduction capacity of sulfate, ferric iron and arsenate by Desulfovibrio JH-S1

      图  4  不同硫酸盐浓度下JH-S1菌与载砷水铁矿培养过程中砷、铁的释放

      Fig.  4.  Release of As and Fe during the incubation of As-ferrihydrite with JH-S1 under different sulfate concentrations

      图  5  反应初始及不同硫酸盐体系JH-S1与水铁矿培养60 d后固相XRD分析

      Fig.  5.  XRD analysis of solid phase at the initial and final stages of the incubation

    • Alam, R. , McPhedran, K. , 2019. Applications of Biological Sulfate Reduction for Remediation of Arsenic—A Review. Chemosphere, 222: 932-944. https://doi.org/10.1016/j.chemosphere.2019.01.194
      Bostick, B. C. , Fendorf, S. , 2003. Arsenite Sorption on Troilite (FeS) and Pyrite (FeS2). Geochimica et Cosmochimica Acta, 67(5): 909-921. https://doi.org/10.1016/S0016-7037(02)01170-5
      Burnol, A. , Garrido, F. , Baranger, P. , et al. , 2007. Decoupling of Arsenic and Iron Release from Ferrihydrite Suspension under Reducing Conditions: A Biogeochemical Model. Geochemical Transactions, 8: 12. https://doi.org/10.1186/1467-4866-8-12
      Burton, E. D. , Johnston, S. G. , Bush, R. T. , 2011. Microbial Sulfidogenesis in Ferrihydrite-Rich Environments: Effects on Iron Mineralogy and Arsenic Mobility. Geochimica et Cosmochimica Acta, 75(11): 3072-3087. https://doi.org/10.1016/j.gca.2011.03.001
      Burton, E. D. , Johnston, S. G. , Planer-Friedrich, B. , 2013. Coupling of Arsenic Mobility to Sulfur Transformations during Microbial Sulfate Reduction in the Presence and Absence of Humic Acid. Chemical Geology, 343: 12-24. https://doi.org/10.1016/j.chemgeo.2013.02.005
      Buschmann, J. , Berg, M. , 2009. Impact of Sulfate Reduction on the Scale of Arsenic Contamination in Groundwater of the Mekong, Bengal and Red River Deltas. Applied Geochemistry, 24(7): 1278-1286. https://doi.org/10.1016/j.apgeochem.2009.04.002
      Coleman, M. L. , Hedrick, D. B. , Lovley, D. R. , et al. , 1993. Reduction of Fe(III) in Sediments by Sulphate-Reducing Bacteria. Nature, 361(6411): 436-438. https://doi.org/10.1038/361436a0
      Deng, Y. M. , Wang, Y. X. , Li, H. J. , et al. , 2015. Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain. Earth Science, 40(11): 1876-1886 (in Chinese with English abstract). http://www.researchgate.net/publication/288228393_Seasonal_variation_of_arsenic_speciation_in_shallow_groundwater_from_endemic_arsenicosis_area_in_Jianghan_Plain
      Deng, Y. M. , Zheng, T. L. , Wang, Y. X. , et al. , 2018. Effect of Microbially Mediated Iron Mineral Transformation on Temporal Variation of Arsenic in the Pleistocene Aquifers of the Central Yangtze River Basin. Science of the Total Environment, 619-620: 1247-1258. https://doi.org/10.1016/j.scitotenv.2017.11.166
      Duan, Y. H. , Gan, Y. Q. , Wang, Y. X. , et al. , 2017. Arsenic Speciation in Aquifer Sediment under Varying Groundwater Regime and Redox Conditions at Jianghan Plain of Central China. The Science of the Total Environment, 607-608: 992-1000. https://doi.org/10.1016/j.scitotenv.2017.07.011
      Fendorf, S. , Michael, H. A. , van Geen, A. , 2010. Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia. Science, 328(5982): 1123-1127. https://doi.org/10.1126/science.1172974
      Fu, Y. H. , Qin, Z. H. , Yu, W. B. , et al. , 2018. Nanomineral-Aqueous Solution Interfacial Processes. Earth Science, 43(5): 1408-1424 (in Chinese with English abstract). http://www.researchgate.net/publication/326345898_Nanomineral-Aqueous_Solution_Interfacial_Processes?_sg=-GHzjV0bPRQFp8Mzbs6ayHDWFLqZ7APETmosh4SVzRmZ2a9j4ANHmW58E2nkec7-6FJt1xFu7dzijp4
      Gan, Y. Q. , Wang, Y. X. , Duan, Y. H. , et al. , 2014. Hydrogeochemistry and Arsenic Contamination of Groundwater in the Jianghan Plain, Central China. Journal of Geochemical Exploration, 138: 81-93. https://doi.org/10.1016/j.gexplo.2013.12.013
      Gao, J. , Zheng, T. L. , Deng, Y. M. , et al. , 2017. Indigenous Iron-Reducing Bacteria and Their Impacts on Arsenic Release in Arsenic-Affected Aquifer in Jianghan Plain. Earth Science, 42(5): 716-726 (in Chinese with English abstract). http://www.researchgate.net/publication/318836281_Indigenous_Iron-Reducing_Bacteria_and_Their_Impacts_on_Arsenic_Release_in_Arsenic-Affected_Aquifer_in_Jianghan_Plain
      Guo, H. M. , Ni, P. , Jia, Y. F. , et al. , 2014. Types, Chemical Characteristics and Genesis of Geogenic High-Arsenic Groundwater in the World. Earth Science Frontiers, 21(4): 1-12 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dxqy201404001
      Guo, H. M. , Zhou, Y. Z. , Jia, Y. F. , et al. , 2016. Sulfur Cycling-Related Biogeochemical Processes of Arsenic Mobilization in the Western Hetao Basin, China: Evidence from Multiple Isotope Approaches. Environmental Science & Technology, 50(23): 12650-12659. https://doi.org/ 10.1021/acs.est.6b03460
      Hassan, Z. , Sultana, M. , van Breukelen, B. M. , et al. , 2015. Diverse Arsenic- and Iron-Cycling Microbial Communities in Arsenic-Contaminated Aquifers Used for Drinking Water in Bangladesh. FEMS Microbiology Ecology, 91(4): fiv026. https://doi.org/10.1093/femsec/fiv026
      Huang, F. G. , Jia, S. Y. , Liu, Y. , et al. , 2015. Reductive Dissolution of Ferrihydrite with the Release of As(V) in the Presence of Dissolved S(-II). Journal of Hazardous Materials, 286: 291-297. https://doi.org/10.1016/j.jhazmat.2014.12.035
      Jong, T. , Parry, D. L. , 2003. Removal of Sulfate and Heavy Metals by Sulfate Reducing Bacteria in Short-Term Bench Scale Upflow Anaerobic Packed Bed Reactor Runs. Water Research, 37(14): 3379-3389. https://doi.org/10.1016/s0043-1354(03)00165-9
      Kocar, B. D. , Borch, T. , Fendorf, S. , 2010. Arsenic Repartitioning during Biogenic Sulfidization and Transformation of Ferrihydrite. Geochimica et Cosmochimica Acta, 74(3): 980-994. https://doi.org/10.1016/j.gca.2009.10.023
      Kwon, M. J. , Boyanov, M. I. , Antonopoulos, D. A. , et al. , 2014. Effects of Dissimilatory Sulfate Reduction on FeIII (Hydr) Oxide Reduction and Microbial Community Development. Geochimica et Cosmochimica Acta, 129: 177-190. https://doi.org/10.1016/j.gca.2013.09.037
      Li, P. , Jiang, Z. , Wang, Y. H. , et al. , 2017. Analysis of the Functional Gene Structure and Metabolic Potential of Microbial Community in High Arsenic Groundwater. Water Research, 123: 268-276. https://doi.org/10.1016/j.watres.2017.06.053
      Li, P. , Li, B. , Webster, G. , et al. , 2014. Abundance and Diversity of Sulfate-Reducing Bacteria in High Arsenic Shallow Aquifers. Geomicrobiology Journal, 31(9): 802-812. https://doi.org/10.1080/01490451.2014.893181
      Li, Y. L. , Vali, H. , Yang, J. , et al. , 2006. Reduction of Iron Oxides Enhanced by a Sulfate-Reducing Bacterium and Biogenic H2S. Geomicrobiology Journal, 23(2): 103-117. https://doi.org/10.1080/01490450500533965
      Lu, Z. J. , Deng, Y. M. , Du, Y. , et al. , 2017. EEMs Characteristics of Dissolved Organic Matter and Their Implication in High Arsenic Groundwater of Jianghan Plain. Earth Science, 42(5): 771-782 (in Chinese with English abstract).
      McArthur, J. M. , Banerjee, D. M. , Hudson-Edwards, K. A. , et al. , 2004. Natural Organic Matter in Sedimentary Basins and Its Relation to Arsenic in Anoxic Ground Water: The Example of West Bengal and Its Worldwide Implications. Applied Geochemistry, 19(8): 1255-1293. https://doi.org/10.1016/j.apgeochem.2004.02.001
      Ouyang, X. X. , Zhang, G. P. , Li, H. X. , et al. , 2014. Removal of Antimony in Synthetic Wastewater by Sulfate-Reducing Bacteria. Earth and Environment, 42(5): 663-668 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ201405013.htm
      Pi, K. F. , Wang, Y. X. , Postma, D. , et al. , 2018. Vertical Variability of Arsenic Concentrations under the Control of Iron-Sulfur-Arsenic Interactions in Reducing Aquifer Systems. Journal of Hydrology, 561: 200-210. https://doi.org/10.1016/j.jhydrol.2018.03.049
      Saalfield, S. L. , Bostick, B. C. , 2009. Changes in Iron, Sulfur, and Arsenic Speciation Associated with Bacterial Sulfate Reduction in Ferrihydrite-Rich Systems. Environmental Science & Technology, 43(23): 8787-8793. https://doi.org/10.1021/es901651k
      Smedley, P. L. , Kinniburgh, D. G. , 2002. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Applied Geochemistry, 17(5): 517-568. https://doi.org/10.1016/s0883-2927(02)00018-5
      Sun, J. , Quicksall, A. N. , Chillrud, S. N. , et al. , 2016. Arsenic Mobilization from Sediments in Microcosms under Sulfate Reduction. Chemosphere, 153: 254-261. https://doi.org/10.1016/j.chemosphere.2016.02.117
      Teclu, D. , Tivchev, G. , Laing, M. , et al. , 2008. Bioremoval of Arsenic Species from Contaminated Waters by Sulphate-Reducing Bacteria. Water Research, 42(19): 4885-4893. https://doi.org/10.1016/j.watres.2008.09.010
      Wang, J. N. , Zeng, X. C. , Zhu, X. B. , et al. , 2017. Sulfate Enhances the Dissimilatory Arsenate-Respiring Prokaryotes-Mediated Mobilization, Reduction and Release of Insoluble Arsenic and Iron from the Arsenic-Rich Sediments into Groundwater. Journal of Hazardous Materials, 339: 409-417. https://doi.org/10.1016/j.jhazmat.2017.06.052
      Wang, S. F. , He, X. Y. , Pan, R. R. , et al. , 2016. The Effect of Microbial Sulfidogenesis on the Stability of As-Fe Coprecipitate with Low Fe/As Molar Ratio under Anaerobic Conditions. Environmental Science and Pollution Research, 23(8): 7267-7277. https://doi.org/10.1007/s11356-015-5927-z
      Wang, X. M. , Yang, K. G. , Sun, S. F. , et al. , 2011. The Structure and Composition of Ferrihydrite and Its Environmental Geochemical Behaviors. Earth Science Frontiers, 18(2): 339-347 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201102037.htm
      Yu, F. , Wan, J. F. , Zhao, Y. G. , et al. , 2016. Factors Influencing Arsenic Removal by Sulfate-Reducing Bacteria. Chinese Journal of Environmental Engineering, 10(7): 3898-3904 (in Chinese with English abstract). http://www.researchgate.net/publication/305540225_Factors_influencing_arsenic_removal_by_sulfate-reducing_bacteria
      Zheng, T. L. , Deng, Y. M. , Wang, Y. X. , et al. , 2019. Seasonal Microbial Variation Accounts for Arsenic Dynamics in Shallow Alluvial Aquifer Systems. Journal of Hazardous Materials, 367: 109-119. https://doi.org/10.1016/j.jhazmat.2018.12.087
      邓娅敏, 王焰新, 李慧娟, 等, 2015. 江汉平原砷中毒病区地下水砷形态季节性变化特征. 地球科学, 40(11): 1876-1886. doi: 10.3799/dqkx.2015.168
      傅宇虹, 覃宗华, 于文彬, 等, 2018. 纳米矿物-水溶液界面过程. 地球科学, 43(5): 1408-1424. doi: 10.3799/dqkx.2018.401
      高杰, 郑天亮, 邓娅敏, 等, 2017. 江汉平原高砷地下水原位微生物的铁还原及其对砷释放的影响. 地球科学, 42(5): 716-726. doi: 10.3799/dqkx.2017.059
      郭华明, 倪萍, 贾永锋, 等, 2014. 原生高砷地下水的类型、化学特征及成因. 地学前缘, 21(4): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404002.htm
      鲁宗杰, 邓娅敏, 杜尧, 等, 2017. 江汉平原高砷地下水中DOM三维荧光特征及其指示意义. 地球科学, 42(5): 771-782. doi: 10.3799/dqkx.2017.065
      欧阳小雪, 张国平, 李海霞, 等, 2014. 用硫酸盐还原菌去除废水中锑的实验研究. 地球与环境, 42(5): 663-668. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201405013.htm
      王小明, 杨凯光, 孙世发, 等, 2011. 水铁矿的结构、组成及环境地球化学行为. 地学前缘, 18(2): 339-347. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201102037.htm
      余飞, 万俊锋, 赵雅光, 等, 2016. 硫酸盐还原菌SRB除砷的影响因素. 环境工程学报, 10(7): 3898-3904. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201607084.htm
    • 加载中
    图(5)
    计量
    • 文章访问数:  5296
    • HTML全文浏览量:  2363
    • PDF下载量:  159
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-02-19
    • 刊出日期:  2021-02-15

    目录

      /

      返回文章
      返回