• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东昆仑祁漫塔格地区乌兰乌珠尔早古生代花岗岩锆石U-Pb年代学、地球化学及其地质意义

    韩志辉 孙丰月 田楠 高宏昶 李良 赵拓飞

    韩志辉, 孙丰月, 田楠, 高宏昶, 李良, 赵拓飞, 2021. 东昆仑祁漫塔格地区乌兰乌珠尔早古生代花岗岩锆石U-Pb年代学、地球化学及其地质意义. 地球科学, 46(1): 13-30. doi: 10.3799/dqkx.2020.067
    引用本文: 韩志辉, 孙丰月, 田楠, 高宏昶, 李良, 赵拓飞, 2021. 东昆仑祁漫塔格地区乌兰乌珠尔早古生代花岗岩锆石U-Pb年代学、地球化学及其地质意义. 地球科学, 46(1): 13-30. doi: 10.3799/dqkx.2020.067
    Han Zhihui, Sun Fengyue, Tian Nan, Gao Hongchang, Li Liang, Zhao Tuofei, 2021. Zircon U-Pb Geochronology, Geochemistry and Geological Implications of the Early Paleozoic Wulanwuzhuer Granites in the Qimantag, East Kunlun, China. Earth Science, 46(1): 13-30. doi: 10.3799/dqkx.2020.067
    Citation: Han Zhihui, Sun Fengyue, Tian Nan, Gao Hongchang, Li Liang, Zhao Tuofei, 2021. Zircon U-Pb Geochronology, Geochemistry and Geological Implications of the Early Paleozoic Wulanwuzhuer Granites in the Qimantag, East Kunlun, China. Earth Science, 46(1): 13-30. doi: 10.3799/dqkx.2020.067

    东昆仑祁漫塔格地区乌兰乌珠尔早古生代花岗岩锆石U-Pb年代学、地球化学及其地质意义

    doi: 10.3799/dqkx.2020.067
    基金项目: 

    国家自然科学基金项目 41402060

    详细信息
      作者简介:

      韩志辉(1995-), 男, 硕士研究生, 主要从事矿床学研究.ORCID:0000-0001-5796-5549.E-mail:1301055924@qq.com

      通讯作者:

      孙丰月, ORCID:0000-0001-9408-7298.E-mail:sunfeng0669@sina.com

    • 中图分类号: P581

    Zircon U-Pb Geochronology, Geochemistry and Geological Implications of the Early Paleozoic Wulanwuzhuer Granites in the Qimantag, East Kunlun, China

    • 摘要: 为确定东昆仑祁漫塔格乌兰乌珠尔地区片麻状黑云母花岗岩和二长花岗岩的形成时代、岩石成因、源区性质和构造背景,对该岩石样品进行了锆石U-Pb年代学、地球化学和锆石Hf同位素研究.结果显示:片麻状黑云母花岗岩加权平均年龄为457.5±2.3 Ma,铝饱和指数A/CNK介于0.98~1.02,属准铝质岩石,Na2O/K2O比值为0.440~0.625,属于高钾钙碱性系列.二长花岗岩加权平均年龄为422.5±1.6 Ma,铝饱和指数A/CNK介于1.03~1.05,属弱过铝质岩石.二者均具有高硅(SiO2介于68.93%~74.72%)、高碱(全碱ALK介于6.83%~9.40%)、低磷(P2O5小于0.12%)等特征.富集轻稀土元素,亏损重稀土元素,δEu值为0.29~0.70,显示Eu中度负异常.富集Rb、K等大离子亲石元素,亏损Nb、Ta、P、Ti等高场强元素,属于I型花岗岩.二长花岗岩样品的εHf(t)值为-2.2~+1.4,二阶段模式年龄为1 320~1 546 Ma.结合岩石成岩年龄、地球化学特征及区域构造演化认为片麻状黑云母花岗岩(457.5±2.3 Ma)为下地壳部分熔融产物,形成于原特提斯洋向北俯冲导致的局部拉张环境.二长花岗岩(422.5±1.6 Ma)岩浆来源于中元古代新增生的下部地壳熔融产物,形成于碰撞拼贴后的伸展构造环境.

       

    • 图  1  乌兰乌珠尔地区地质简图

      图a中:KBF.东昆北断裂; KZF.东昆中断裂; KBF.东昆南断裂; ANMQNF.阿尼玛卿南缘段裂; 图b中:1.第四系;2.金水口群片麻岩;3.黑云母钾长花岗岩;4.中细粒二长花岗岩;5斑状中细粒二长花岗岩;6.片麻状黑云母花岗岩;7.闪长岩脉;8.辉绿岩脉;9.断层;10.采样位置;图a研究区位置图据李世金等(2012)

      Fig.  1.  Sketch geologica map of Wulanwuzhuer

      图  2  乌兰乌珠尔花岗岩显微照片

      Al.碱性长石;Bt.黑云母;Pl.斜长石;Qtz.石英

      Fig.  2.  The micrographs from Wulanwuzhuer granites

      图  3  乌兰乌珠尔花岗岩锆石CL图像

      Fig.  3.  Cathodoluminescence images of analyzed zircons of the Wulanwuzhuer granites

      图  4  乌兰乌珠尔花岗岩U-Pb年龄谐和图

      Fig.  4.  U-Pb concordia diagram for wulanwuzhuer granites

      图  5  乌兰乌珠尔花岗岩TAS、A/CNK-A/NK、SiO2-K2O图解

      a.据Middlemost(1994);b.据Maniar and Piccoli(1989);c.据Peccerillo and Taylor(1976)

      Fig.  5.  Total alkali versus SiO2、A/CNK-A/NK diagrams and SiO2 versus K2O for the wulanwuzhuer granites

      图  6  乌兰乌珠尔花岗岩稀土元素配分模式和微量元素蛛网图

      a.球粒陨石值据Boynton(1984);b.原始地幔值据Sun and McDonough(1989)

      Fig.  6.  Chondrite-normalized REE patterns and primitive mantle-normalized trace element patterns for the Wulanwuzhuer granites

      图  7  乌兰乌珠尔二长花岗岩锆石的εHf(t)-t图解

      Yang et al.(2006)

      Fig.  7.  εHf(t) versus t diagram of the wulanwuzhuer monzonitic granites

      图  8  乌兰乌珠尔花岗岩成因类型判别图解

      a, b, c据Whalen et al.(1987);d, e, f据Chappell(1999)

      Fig.  8.  Diagrammatic analysis of genetic types of wulanwuzhuer granites

      图  9  乌兰乌珠尔花岗岩构造环境判别图解

      Batchelor and Bowden(1985)

      Fig.  9.  Tectonic setng discrimination diagrams of the Wulanwuzhuer granites

      图  10  东昆仑地区奥陶纪-晚志留世地球动力学演化示意

      李良(2018)

      Fig.  10.  Schematic diagram of Ordovician-Late Silurian geodynamic evolution in East Kunlun area

      表  1  乌兰乌珠尔花岗岩锆石LA-ICP-MS U-Pb同位素分析结果

      Table  1.   Zircon LA-ICP-MS U-Pb isotope analysis results of Wulanwuzhuer granites

      测点号 同位素比值 含量(10-6) 232Th/238U 同位素年龄(Ma)
      207Pb/ 206Pb 207Pb/ 235U 206Pb/ 238U 208Pb/ 232Th Th U 207Pb/ 206Pb 207Pb/ 235U 206Pb/ 238U
      WLWZE-N1(黑云母花岗岩)
      WLWZE-N1-01 0.056 5 0.000 6 0.572 0 0.007 6 0.073 3 0.000 6 0.022 1 0.000 5 691 1 657 0.42 472.1 24 459.3 5 456.0 4
      WLWZE-N1-02 0.057 5 0.000 9 0.570 8 0.007 8 0.071 8 0.001 0 0.022 2 0.000 9 704 2 083 0.34 510.9 35 458.6 5 446.9 6
      WLWZE-N1-03 0.055 7 0.00 04 0.565 7 0.007 0 0.073 5 0.000 7 0.022 8 0.000 4 355 1 869 0.19 440.7 17 455.2 5 457.1 4
      WLWZE-N1-04 0.056 1 0.000 5 0.573 0 0.005 1 0.074 0 0.000 6 0.022 9 0.000 6 497 1 758 0.28 456.4 19 459.9 3 460.1 4
      WLWZE-N1-05 0.056 3 0.000 7 0.574 1 0.006 4 0.073 9 0.000 6 0.022 6 0.000 7 462 1 093 0.42 465.2 26 460.6 4 459.3 4
      WLWZE-N1-06 0.056 1 0.000 5 0.568 7 0.004 7 0.073 5 0.000 6 0.022 9 0.000 7 548 1 422 0.39 456.0 21 457.2 3 457.0 3
      WLWZE-N1-07 0.056 3 0.001 2 0.573 4 0.014 4 0.073 7 0.001 0 0.0235 0.000 8 187 442 0.42 465.2 48 460.2 9 458.3 6
      WLWZE-N1-08 0.057 7 0.001 0 0.571 7 0.010 7 0.071 8 0.000 7 0.022 2 0.000 7 114 267 0.43 519.7 38 459.1 7 447.1 4
      WLWZE-N1-09 0.055 4 0.000 6 0.554 6 0.006 9 0.072 6 0.000 7 0.022 4 0.000 5 176 866 0.20 427.7 24 448.0 5 452.0 4
      WLWZE-N1-10 0.056 0 0.000 8 0.577 5 0.007 6 0.074 8 0.000 5 0.022 9 0.000 6 292 986 0.30 451.0 31 462.8 5 464.8 3
      WLWZE-N1-11 0.056 1 0.001 0 0.567 7 0.010 1 0.073 6 0.000 6 0.022 8 0.000 7 96 201 0.48 455.5 40 456.5 7 457.6 4
      WLWZE-N1-12 0.055 9 0.000 9 0.569 7 0.009 4 0.073 7 0.000 8 0.022 2 0.000 7 464 1 135 0.41 446.4 37 457.8 6 458.5 5
      WLWZE-N1-13 0.056 1 0.000 4 0.568 8 0.004 9 0.073 3 0.000 5 0.022 1 0.000 3 742 1 565 0.47 457.6 17 457.2 3 456.3 3
      WLWZE-N1-14 0.055 7 0.000 7 0.564 7 0.008 8 0.073 6 0.000 9 0.022 3 0.000 5 212 400 0.53 440.6 28 454.6 6 457.9 5
      WLWZE-N1-15 0.061 3 0.000 8 0.637 2 0.010 5 0.075 2 0.000 6 0.030 7 0.000 9 381 2 489 0.15 649.6 27 500.6 7 467.6 4
      WLWZE-N1-16 0.056 3 0.000 7 0.565 4 0.009 3 0.072 5 0.000 7 0.022 2 0.000 4 337 698 0.48 465.4 29 455.0 6 451.3 5
      WLWZE-N1-17 0.055 9 0.000 5 0.568 8 0.007 5 0.073 5 0.000 6 0.023 1 0.000 3 413 1 060 0.39 449.7 21 457.2 5 457.4 4
      WLWZE-N1-18 0.062 4 0.000 6 0.636 3 0.008 9 0.073 8 0.000 6 0.025 4 0.000 2 784 2 593 0.30 686.5 20 500.0 6 459.1 4
      WLWZE-N1-19 0.056 0 0.000 4 0.573 2 0.005 3 0.074 1 0.000 4 0.022 5 0.000 2 613 1 294 0.47 450.8 16 460.1 3 460.9 2
      WLWZE-N1-20 0.064 7 0.000 8 0.607 8 0.010 2 0.068 0 0.000 5 0.027 0 0.000 4 473 1 316 0.36 764.6 27 482.2 6 424.1 3
      WLWZE-N1-21 0.056 7 0.000 6 0.560 9 0.008 4 0.071 6 0.000 5 0.022 6 0.000 3 400 994 0.40 480.1 23 452.1 5 445.6 3
      WLWZE-N1-22 0.055 7 0.001 2 0.569 1 0.014 5 0.074 0 0.000 8 0.022 7 0.000 5 186 363 0.51 441.0 47 457.5 9 460.0 5
      WLWZE-N1-23 0.055 5 0.001 0 0.569 3 0.016 3 0.073 9 0.001 1 0.022 1 0.000 6 427 1 152 0.37 432.8 41 457.5 11 459.6 7
      WLWZE-N1-24 0.057 2 0.000 9 0.569 2 0.010 9 0.072 0 0.000 6 0.022 0 0.000 5 257 508 0.51 500.8 34 457.5 7 448.1 4
      WLWZE-N4(二长花岗岩)
      WLWZE-N4-01 0.055 6 0.000 5 0.518 6 0.005 9 0.067 4 0.000 5 0.021 6 0.001 1 576 1 503 0.38 436.2 18 424.2 4 420.4 3
      WLWZE-N4-02 0.055 5 0.000 5 0.514 7 0.005 7 0.067 1 0.000 6 0.023 7 0.001 1 700 2 164 0.32 431.0 19 421.6 4 418.7 4
      WLWZE-N4-03 0.055 0 0.000 5 0.518 6 0.005 0 0.068 2 0.000 4 0.021 4 0.000 4 1 040 2 077 0.50 411.5 19 424.2 3 425.5 2
      WLWZE-N4-04 0.054 8 0.000 5 0.515 0 0.005 2 0.068 0 0.000 5 0.021 1 0.000 5 493 1 398 0.35 403.8 19 421.8 4 424.0 3
      WLWZE-N4-05 0.060 4 0.000 4 0.525 8 0.004 7 0.063 1 0.000 5 0.022 8 0.000 5 431 1 595 0.27 616.9 16 429.0 3 394.3 3
      WLWZE-N4-06 0.055 3 0.000 7 0.521 5 0.008 2 0.068 2 0.000 9 0.021 3 0.000 7 347 2 186 0.16 424.3 29 426.1 6 425.2 5
      WLWZE-N4-07 0.057 7 0.000 4 0.522 3 0.004 2 0.065 6 0.000 5 0.021 2 0.000 3 519 1 916 0.27 518.5 14 426.7 3 409.4 3
      WLWZE-N4-08 0.056 3 0.001 0 0.523 5 0.010 1 0.067 2 0.000 9 0.021 2 0.000 8 461 1 943 0.24 464.1 38 427.5 7 419.0 5
      WLWZE-N4-09 0.062 5 0.000 4 0.564 9 0.005 3 0.065 4 0.000 4 0.024 2 0.000 4 188 445 0.42 690.2 15 454.7 4 408.3 2
      WLWZE-N4-10 0.057 5 0.000 3 0.521 3 0.004 6 0.065 6 0.000 4 0.017 6 0.000 2 531 1 292 0.41 510.7 11 426.0 3 409.6 3
      WLWZE-N4-11 0.055 4 0.000 4 0.516 2 0.004 5 0.067 4 0.000 5 0.022 4 0.000 6 163 5 602 0.03 429.0 18 422.6 3 420.6 3
      WLWZE-N4-12 0.055 8 0.000 5 0.517 7 0.005 7 0.067 2 0.000 5 0.019 4 0.000 4 124 4 587 0.03 445.8 19 423.6 4 419.1 3
      WLWZE-N4-13 0.055 1 0.000 4 0.517 1 0.005 4 0.067 9 0.000 5 0.020 4 0.000 2 755 2 817 0.27 416.6 16 423.2 4 423.7 3
      WLWZE-N4-14 0.057 0 0.000 5 0.534 1 0.006 4 0.067 9 0.000 5 0.020 3 0.000 2 531 1 589 0.33 490.7 20 434.5 4 423.2 3
      WLWZE-N4-15 0.056 6 0.000 3 0.508 4 0.003 7 0.065 0 0.000 4 0.021 6 0.000 2 509 1 947 0.26 477.3 10 417.4 3 406.1 2
      WLWZE-N4-16 0.055 4 0.000 6 0.522 8 0.006 7 0.068 2 0.000 7 0.021 2 0.000 6 198 6 531 0.03 429.9 24 427.0 5 425.5 4
      WLWZE-N4-17 0.057 2 0.000 6 0.531 6 0.006 6 0.067 3 0.000 6 0.022 9 0.000 7 394 1 127 0.35 498.6 22 432.8 4 419.6 4
      WLWZE-N4-18 0.054 9 0.000 5 0.513.0 0.005 7 0.067 7 0.000 5 0.021 0 0.000 4 360 1 714 0.21 408.2 22 420.4 4 422.0 3
      WLWZE-N4-19 0.055 5 0.000 6 0.517 1 0.006 3 0.067 6 0.000 5 0.021 0 0.000 3 1 395 5 238 0.27 430.8 24 423.2 4 421.7 3
      WLWZE-N4-20 0.055 5 0.000 4 0.539 9 0.004 5 0.070 4 0.000 4 0.021 3 0.000 2 458 1 936 0.24 433.1 15 438.4 3 438.7 3
      WLWZE-N4-21 0.055 0 0.000 3 0.517 1 0.004 8 0.067 9 0.000 5 0.020 8 0.000 5 1 224 2 964 0.41 413.9 14 423.2 3 423.7 3
      WLWZE-N4-22 0.056 0 0.000 4 0.523 3 0.004 6 0.067 7 0.000 5 0.019 6 0.000 2 862 3 030 0.28 450.6 14 427.4 3 422.5 3
      WLWZE-N4-23 0.056 0 0.000 3 0.523 1 0.004 6 0.067 6 0.000 5 0.027 4 0.001 2 1 397 4 420 0.32 453.1 14 427.2 3 421.9 3
      WLWZE-N4-24 0.055 5 0.000 6 0.518 8 0.006 3 0.067 7 0.000 6 0.021 4 0.000 7 236 1 839 0.13 431.1 23 424.4 4 422.5 4
      下载: 导出CSV

      表  2  乌兰乌珠尔花岗岩主量元素(%)、稀土元素及微量元素(10-6)分析结果

      Table  2.   Major(%), REE and trace (10-6) element copositions of the Wulanwuzhuer granites

      样号 WLWZE-N1-1 WLWZE-N1-2 WLWZE-N1-3 WLWZE-N1-4 WLWZE-N1-5 WLWZE-N4-1 WLWZE-N4-2 WLWZE-N4-3 WLWZE-N4-4 WLWZE-N4-5
      SiO2 68.93 70.19 70.36 70.13 70.42 74.82 74.29 74.61 74.03 74.92
      TiO2 0.39 0.36 0.37 0.34 0.36 0.14 0.17 0.15 0.14 0.11
      Al2O3 14.19 13.62 13.21 13.76 13.09 12.66 12.46 12.71 13.03 12.83
      TFe2O3 3.81 3.66 3.83 3.62 3.74 1.45 1.85 1.76 1.86 1.34
      MnO 0.13 0.12 0.12 0.10 0.12 0.06 0.07 0.09 0.07 0.06
      MgO 1.26 1.20 1.28 1.14 1.17 0.24 0.23 0.20 0.25 0.21
      CaO 2.82 2.53 2.51 2.35 2.21 1.14 0.45 1.02 1.02 1.03
      Na2O 2.77 2.64 2.48 2.64 2.27 2.41 1.86 2.38 2.59 2.41
      K2O 4.42 4.48 4.36 4.54 5.16 5.79 7.54 5.90 5.82 6.01
      P2O5 0.12 0.12 0.12 0.11 0.11 0.04 0.10 0.04 0.05 0.04
      LOI 0.77 0.80 0.84 0.79 0.94 0.57 0.31 0.45 0.46 0.43
      Total 99.60 99.71 99.47 99.51 99.57 99.31 99.32 99.32 99.32 99.39
      ALK 7.19 7.12 6.83 7.18 7.42 8.19 9.40 8.29 8.41 8.42
      Na2O/K2O 0.63 0.59 0.57 0.58 0.44 0.42 0.25 0.40 0.44 0.40
      Mg# 24.67 20.00 18.27 20.80 23.43 39.54 39.32 39.77 38.33 38.15
      La 48.6 26.9 49.3 59.8 38.1 59.1 17.7 51.7 51.4 37.6
      Ce 93.8 54.0 95.9 110 69.7 113 33.2 98.3 115 73.1
      Pr 11.5 6.82 11.7 11.9 7.80 12.5 3.82 10.9 13.4 9.14
      Nd 40.6 23.8 41.6 45.5 30.6 48.3 15.0 41.7 47.9 33.8
      Sm 7.62 5.58 7.85 8.35 6.38 8.72 3.06 7.55 7.98 6.16
      Eu 0.987 1.02 1.05 1.22 1.23 0.784 0.698 0.845 0.835 0.603
      Gd 7.11 5.46 7.35 8.48 6.61 7.63 2.93 6.82 7.34 5.03
      Tb 1.11 0.930 1.20 1.03 0.896 0.675 0.363 0.634 0.818 0.566
      Dy 5.84 5.51 6.19 5.55 5.18 2.39 1.95 2.47 3.03 2.12
      Ho 1.24 1.13 1.33 1.04 0.988 0.330 0.346 0.368 0.518 0.350
      Er 3.29 3.07 3.55 3.03 2.94 0.86 1.00 1.04 1.47 0.992
      Tm 0.498 0 0.467 0 0.532 0 0.420 0 0.414 0 0.083 9 0.132 0 0.120 0 0.164 0 0.109 0
      Yb 3.14 2.99 3.46 2.67 2.66 0.539 0.879 0.798 1.13 0.826
      Lu 0.470 0.432 0.518 0.370 0.375 0.075 0.121 0.120 0.163 0.117
      Y 29.7 26.5 31.1 28.1 27.6 7.82 9.05 9.26 11.7 7.88
      ΣREE 226 138 232 260 174 263 90.2 233 262 178
      LREE 203 118 207 237 157 242 73.4 211 236 160
      HREE 22.7 20.0 24.1 22.6 20.1 12.6 7.71 12.4 14.6 10.1
      LREE/HREE 8.95 5.91 8.60 10.5 7.66 19.3 9.52 17.1 16.1 15.9
      (La/Yb)N 11.1 6.46 10.2 16.1 10.3 73.8 13.6 43.7 30.8 30.7
      (Gd/Lu)N 1.88 1.57 1.77 2.85 2.19 12.7 3.00 7.09 5.61 5.34
      Rb/Sr 0.853 0.897 1.02 0.887 1.52 2.12 2.26 2.22 2.01 1.85
      Ba/Nb 34.9 38.9 37.6 49.6 45.3 38.3 41.2 36.1 33.1 57.5
      La/Nb 3.01 1.73 3.12 3.92 2.55 7.98 1.96 6.42 6.43 8.61
      Th/La 0.944 1.13 0.982 0.641 0.662 0.563 0.512 0.571 0.771 0.758
      Nb/Ta 14.0 13.0 14.8 14.4 15.7 20.5 22.6 22.9 16.0 16.3
      δEu 0.403 0.558 0.417 0.438 0.574 0.287 0.703 0.353 0.328 0.321
      V 44.9 41.7 45.2 61.2 60.1 13.7 15.5 15.3 5.80 5.48
      Co 6.88 6.32 6.46 7.32 5.83 1.50 1.74 2.25 1.28 1.39
      Ni 7.98 8.29 8.11 7.48 6.43 1.95 1.84 4.06 2.08 3.69
      Cu 6.03 5.95 6.81 4.53 4.39 3.21 6.11 7.04 4.30 3.30
      Zn 194 197 198 181 106 12.4 13.2 11.7 14.1 11.0
      Ga 15.8 13.7 15.0 17.0 16.0 16.3 13.5 17.5 14.9 13.6
      Rb 198 194 217 264 306 204 228 225 195 181
      Sr 232 216 213 299 201 96.0 101 101 97.1 97.6
      Y 29.7 26.5 31.1 28.1 27.6 7.82 9.05 9.26 11.7 7.88
      Zr 76.5 76.0 66.1 72.9 48.1 81.6 74.5 97.4 69.2 81.5
      Nb 16.7 15.5 15.8 15.2 14.9 7.40 9.00 8.06 8.00 4.36
      Cs 13.6 14.0 18.1 16.8 21.9 4.69 3.79 4.96 6.27 4.98
      Ba 564 605 593 756 677 284 371 291 265 251
      Lu 0.470 0.432 0.518 0.370 0.375 0.075 0.121 0.120 0.163 0.117
      Hf 2.52 2.62 2.27 2.32 1.49 2.33 2.09 2.74 2.12 2.55
      Ta 1.15 1.19 1.07 1.06 0.948 0.361 0.398 0.352 0.501 0.267
      Th 45.8 30.3 48.4 38.3 25.2 33.3 9.05 29.5 39.6 28.5
      U 4.03 3.00 4.44 4.19 3.99 2.81 1.61 2.88 3.10 2.50
      下载: 导出CSV

      表  3  乌兰乌珠尔花岗岩锆石Hf同位素分析结果

      Table  3.   Zircon Hf isotopic compositions of Wulanwuzhuer granites

      样品 t(Ma) 176Yb/177Hf 176Lu/177Hf εHf(0) εHf(t) TDM1 TDM2 fLu/Hf
      WLWZE-N4-1 423 0.051 910 0.001 932 0.000 077 -8.82 -0.05 0.70 1 058 1 411 -0.94
      WLWZE-N4-2 423 0.052 300 0.001 988 0.000 079 -9.76 -1.01 0.66 1 098 1 471 -0.94
      WLWZE-N4-3 423 0.026 188 0.000 929 0.000 003 -9.86 -0.81 0.46 1 071 1 459 -0.97
      WLWZE-N4-4 423 0.027 585 0.001 006 0.000 049 -7.64 1.39 0.72 985 1 320 -0.97
      WLWZE-N4-8 423 0.024 066 0.000 874 0.000 017 -11.25 -2.19 0.52 1 125 1 546 -0.97
      WLWZE-N4-11 423 0.041 139 0.001 681 0.000 018 -9.09 -0.25 0.54 1 061 1 423 -0.95
      WLWZE-N4-12 423 0.038 887 0.001 360 0.000 024 -8.44 0.49 0.56 1 026 1 377 -0.96
      WLWZE-N4-13 423 0.033 894 0.001 223 0.000 005 -9.01 -0.04 0.51 1 045 1 410 -0.96
      WLWZE-N4-16 423 0.028 747 0.001 053 0.000 012 -9.76 -0.75 0.51 1 071 1 455 -0.97
      WLWZE-N4-18 423 0.034 242 0.001 215 0.000 015 -10.66 -1.69 0.58 1 111 1 515 -0.96
      WLWZE-N4-23 423 0.040 920 0.001 712 0.000 013 -10.52 -1.70 0.54 1 121 1 515 -0.95
      WLWZE-N4-24 423 0.022 720 0.000 799 0.000 023 -7.96 1.12 0.61 992 1 337 -0.98
      下载: 导出CSV
    • Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses that Do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      Barbarin, B., 1999.A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments.Lithos, 46(3):605-626. https://doi.org/10.1016/s0024-4937(98)00085-1
      Batchelor, R.A., Bowden, P., 1985.Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters.Chemical Geology, 48(1-4):43-55. https://doi.org/10.1016/0009-2541(85)90034-8
      Bian, Q.T., Zhao, D.S., Ye, Z.R., et al., 2002.A Preliminary Study of the Kunlun-Qilian-Qinling Suture System.Acta Geosicientia Sinica, 23(6):501-508(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200206003.htm
      Boynton, W.V., 1984.Chapter 3-Cosmochemistry of the Rare Earth Elements:Meteorite Studies.Developments in Geochemistry, 2(2):63-114.https://doi.org/10.1016/b978- 0-444-42148-7.50008-3 doi: 10.1016/b978-0-444-42148-7.50008-3
      Cao, S.T., Liu, X.K., Ma, Y.S., et al., 2011.Qimantage Area Silurian Intrusive Rocks and Its Geological Significance.Qinghai Science and Technology, 18(5):26-30(in Chinese with English abstract).
      Chappell, B.W., 1999.Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites.Lithos, 46(3):535-551. https://doi.org/10.1016/s0024-4937(98)00086-3
      Chen, H.W., Luo, Z.H., Mo, X.X., et al., 2006.SHRIMP Ages of Kayakedengtage Complex in the East Kunlun Mountains and Their Geological Implications.Acta Petrologica et Mineralogica, 25(1):25-32(in Chinese with English abstract). http://www.researchgate.net/publication/285453961_SHRIMP_ages_of_Kayakedengtage_complex_in_the_East_Kunlun_Mountains_and_their_geological_implications
      Chen, J.J., Fu, L.B., Wei, J.H., et al., 2016.Geochemical Characteristics of Late Ordovician Granodiorite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province:Implications on the Evolution of Proto-Tethys Ocean.Earth Science, 41(11):1863-1882(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201611004.htm
      Cui, M.H., Meng, F.C., Wu, X.K., 2011.Early Ordovician Island Arc of Qimantag Mountain, Eastern Kunlun:Evidences from Geochemistry, SM-ND Isotope and Geochronology of Intermediate-Basic Igneous Rocks.Acta Petrologica Sinica, 27(11):3365-3379(in Chinese with English abstract).
      Gao, X.F., Xiao, P.X., Xie, C.R., et al., 2010.Zircon LA-ICP-MS U-Pb Dating and Geological Significance of Bashierxi Granite in the Eastern Kunlun Area, China.Geological Bulletin of China, 29(7):1001-1008(in Chinese with English abstract). http://www.researchgate.net/publication/289317698_Zircon_LA-ICP-MS_U-Pb_dating_and_geological_significance_of_Bashierxi_granite_in_the_eastern_kimlun_area_China
      Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004.Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons.Precambrian Research, 131(3-4):231-282. https://doi.org/10.1016/j.precamres.2003.12.011
      Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269. https://doi.org/10.1016/s0024-4937(02)00082-8
      Guo, X.Z., Jia, Q.Z., Li, J.C., et al., 2018.Zircon U-Pb Geochronology and Geochemistry and Their Geological Significances of Eclogites from East Kunlun High-Pressure Metamorphic Belt.Earth Science, 43(12):4300-4318(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201812003.htm
      Hao, N.N., Yuan, W.M., Zhang, A.K., et al., 2014.Late Silurian to Early Devonian Granitoids in the Qimantage Area, East Kunlun Mountains:LA-ICP-MS Zircon U-Pb Ages, Geochemical Features and Geological Setting.Geological Review, 60(1):201-215 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201401021.htm
      He, S.Y., Sun, F.F., Li, Y.P., et al., 2017.Geochemical Geochemical and Geochronological Significance of the Binggounan Garbbro in the Qiman Tage Region, Qinghai Province.Bulletin of Mineralogy, Petrology and Geochemistry, 36(4):582-592(in Chinese with English abstract).
      Huw Davies, J., von Blanckenburg, F., 1995.Slab Breakoff:A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens.Earth and Planetary Science Letters, 129(1-4):85-102. https://doi.org/10.1016/0012-821x(94)00237-s
      Jiang, C.F., Wang, Z.Q., Li, J.Y., et al., 2000.Tectonics of the Central Orogenic Belt.Geological Press, Beijing(in Chinese).
      Li, D.P., Li, J., Zhang, H.J., et al., 2003.The Turbidite of the Silurian Baiganhu Formation in the Qimantage Mountain Eastern Kunlun.Geology of Shaanxi, 21(2):39-44(in Chinese with English abstract). http://www.researchgate.net/publication/285980281_The_turbidite_of_the_Silurian_Baiganhu_Formation_in_the_Qimantage_mountain_Eastern_Kunlun
      Li, G.C., Feng, C.Y., Wang, R.J., et al., 2012.SIMS Zircon U-Pb Age, Petrochemistry and Tectonic Implications of Granitoids in Northeastern Baiganhue W-SN Orefield, Xinjiang.Acta Geoscientia Sinica, 33(2):216-226(in Chinese with English abstract). http://www.oalib.com/paper/1560063
      Li, H.K., Lu, S.N., Xiang, Z.Q., et al., 2006.SHRIMP U-Pb Zircon Age of the Granulite from the Qingshuiquan Area, Central Eastern Kunlun Suture Zone.Earth Science Frontiers, 13(6):311-321(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200606039.htm
      Li, L., 2018.Features of the Mafic-Ultramafic Rocks in the Periphery of Qaidam Block, Qinghai Province and Their Metallogenesis (Dissertation).Jilin University, Changchun, 290(in Chinese with English abstract).
      Li, S.J., Sun, F.Y., Gao, Y.W., et al., 2012.The Theoretical Guidance and the Practice of Small Intrusions Forming Large Deposits—The Enlightenment and Significance for Searching Breakthrough of Cu-Ni sulfide Deposit in Xiarihamu, East Kunlun, Qinghai.Northwestern Geology, 45(4): 185-191(in Chinese with English abstract). http://www.researchgate.net/publication/285898027_The_theoretical_guidance_and_the_practice_of_small_intrusions_forming_large_deposits_-_The_enlightenment_and_significance_for_searching_breakthrough_of_Cu-Ni_sulfide_deposit_in_Xiarihamu_East_K'un_lun
      Li, T., Li, M., Hu, C.B., et al., 2018.Zircon U-Pb Geochronology, Geochemistry and Its Geological Implications of Intrusions in Aquedun Area from Qimantag, East Kunlun, China.Earth Science, 43(12):4350-4363(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201812006.htm
      Li, T.D., 1995.The Uplifting Process and Mechanism of the Qinghai-Tibet Plateau.Acta Geoscientica Sinica, (1):1-9(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB501.000.htm
      Liu, B., Ma, C.Q., Guo, P., et al., 2013.Discovery of the Middle Devonian A-Type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications.Earth Science, 38(5):947-962(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201305005.htm
      Liu, D.L., Li, H.B., Sun, Z.M., et al., 2016.The Major Magmatic Events in the Qimantag Mountain of Tibeatan Plateau since Paleozoic and Its Implications.Geological Bulletin of China, 35(12):2014-2026(in Chinese with English abstract). http://www.researchgate.net/publication/312128984_The_major_magmatic_events_in_the_Qimantag_Mountain_of_Tibeatan_Plateau_since_Paleozoic_and_its_implications
      Liu, G.Z., Zhang, Y.X., Xue, J.Q., et al., 2014.Zircon LA-ICPMS U-Pb Dating and Geochemistry of Basement Granites from North Kunlun Faults Zone, Western Qaidam Basin and Their Geological Implications.Acta Petrologica Sinica, 30(6):1615-1627(in Chinese with English abstract).
      Liu, Z.Q., 2011.Study on the Geological Characteristics and Tectonic of Buqingshan Melanges Belt, the South Margin of East Kunlun Mountains (Dissertation).Chang'an University, Xi'an (in Chinese with English abstract).
      Lu, L., Wu, Z.H., Hu, D.G., et al., 2010.Zircon U-Pb Age for Rhyolite of the Maoniushan Formation and Its Tectonic Significance in the East Kunlun Mountains.Acta Petrologica Sinica, 26(4):1150-1158(in Chinese with English abstract).
      Lu, S.N., Yu, H.F., Zhao, F.Q., et al., 2002.Geological Exploration of the Cambrian in the Northern Part of the Qinghai Tibet Plateau.Geological Press, Beijing, 125(in Chinese).
      Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
      McDonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      Meng, F.C., Cui, M.H., Jia, L.H., et al., 2015.Paleozoic Continental Collision of the East Kunlun Orogen:Evidence from Protoliths of the Eclogites.Acta Petrologica Sinica, 31(12):3581-3594(in Chinese with English abstract). http://www.researchgate.net/publication/292551551_Paleozoic_continental_collision_of_the_East_Kunlun_orogen_Evidence_from_protoliths_of_the_eclogites
      Meng, F.C., Cui, M.H., Wu, X.K., et al., 2015.Heishan Mafic-Ultramafic Rocks in the Qimantag Area of Eastern Kunlun, NW China:Remnants of an Early Paleozoic Incipient Island Arc.Gondwana Research, 27(2):745-759. https://doi.org/10.1016/j.gr.2013.09.023
      Meng, F.C., Zhang, J.X., Cui, M.H., 2013.Discovery of Early Paleozoic Eclogite from the East Kunlun, Western China and Its Tectonic Significance.Gondwana Research, 23(2):825-836. https://doi.org/10.1016/j.gr.2012.06.007
      Middlemost, E.A.K., 1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities, 13(3):403-414(in Chinese with English abstract). http://adsabs.harvard.edu/abs/2011AGUFM.T51D2370M
      Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745
      Pitcher, W.S., 1993.The Nature and Origin of Granite. Blackie Academic and Progressional, London, 193-291.
      Prowatke, S., Klemme, S., 2005.Effect of Melt Composition on the Partitioning of Trace Elements between Titanite and Silicate Melt.Geochimica et Cosmochimica Acta, 69(3):695-709. https://doi.org/10.1016/j.gca.2004.06.037
      Qiu, J.S., Xiao, E., Hu, J., et al., 2008.Petrogenesis of Highly Fractionated I-Type Granites in the Coastal Area of Northeastern Fujian Province:Constraints from Zircon U-Pb Geochronology, Geochemistry and ND-HF Isotopes.Acta Petrologica Sinica, 24(11):2468-2484(in Chinese with English abstract). http://www.researchgate.net/publication/263693089_Petrogenesis_of_highly_fractionated_I-type_granites_in_the_coastal_area_of_northeastern_Fujian_Province_Constraints_from_zircon_U-Pb_geochronology_geochemistry_and_Nd-Hf_isotopes
      Richards, J.P., 2011.Magmatic to Hydrothermal Metal Fluxes in Convergent and Collided Margins.Ore Geology Reviews, 40(1):1-26. https://doi.org/10.1016/j.oregeorev.2011.05.006
      Rudnick, R.L., Gao, S., 2014.Composition of the Continental Crust.Treatise on Geochemistry, 4:1-51. https://doi.org/10.1016/b978-0-08-095975-7.00301-6
      Salters, V.J.M., Hart, S.R., 1991.The Mantle Sources of Ocean Ridges, Islands and Arcs:The Hf-Isotope Connection.Earth and Planetary Science Letters, 104(2-4):364-380. https://doi.org/10.1016/0012-821x(91)90216-5
      Stepanov, A., Mavrogenes, J.A., Meffre, S., et al., 2014.The Key Role of Mica during Igneous Concentration of Tantalum.Contributions to Mineralogy and Petrology, 167(6):1009. https://doi.org/10.1007/s00410-014-1009-3
      Sun, F.Y., Chen, G.H., Chi, X.G., et al., 2003.Study of Metallogenic Regularity and Prospecting Direction in the East Kunlun Metallogenic Belt in Xinjiang-Qinghai Geological Survey Project.Research Report of China Geological Survey, Changchun(in Chinese).
      Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Taylor, S.R., McLennan, S.M., 1995.The Geochemical Evolution of the Continental Crust.Reviews of Geophysics, 33(2):241-265. https://doi.org/10.1029/95rg00262
      Wang, B.Z., Luo, Z.H., Pan, T., et al., 2012.Petrotectonic Assemblages and LA-ICP-MS Zircon U-Pb Age of Early Paleozoic Volcanic Rocks in Qimantag Area, Tibetan Plateau.Geological Bulletin of China, 31(6):860-874(in Chinese with English abstract). http://www.researchgate.net/publication/285649780_Petrotectonic_assemblages_and_LA-ICP-MS_zircon_U-Pb_age_of_Early_Paleozoic_volcanic_rocks_in_Qimantag_area_Tibetan_Plateau
      Wang, G., Sun, F.Y., Li, B.L., et al., 2013.Zircon U-Pb Geochronology and Geochemistry of the Early Devonian Syenogranite in the Xiarihamu Ore District from East Kunlun, with Implications for the Geodynamic Setting.Geotectonica et Metallogenia, 37(4):685-697 (in Chinese with English abstract). http://www.researchgate.net/publication/285897903_Zircon_U-Pb_geochronology_and_geochemistry_of_the_Early_Devonian_syenogranite_in_the_Xiarihamu_ore_district_from_East_Kunlun_with_implications_for_the_geodynamic_setting
      Wang, G., Sun, F.Y., Li, B.L., et al., 2014.Petrography, Zircon U-Pb Geochronology and Geochemistry of the Mafic-Ultramafic Intrusion in Xiarihamu Cu-Ni Deposit from East Kunlun, with Implications for Geodynamic Setting.Earth Science Frontiers, 21(6):381-401 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DXQY201406042.htm
      Weaver, B.L., 1991.The Origin of Ocean Island Basalt End-Member Compositions:Trace Element and Isotopic Constraints.Earth and Planetary Science Letters, 104(2-4):381-397. https://doi.org/10.1016/0012-821x(91)90217-6
      Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202
      Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007a.Discussions on the Petrogenesis of Granites.Acta Petrologica Sinica, 23(6):1217-1238(in Chinese with English abstract). http://www.researchgate.net/publication/279707410_Discussion_on_the_petrogenesis_of_granites
      Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007b.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702002.htm
      Wu, F.Y., Yang, Y.H., Xie, L.W., et al., 2006.Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology.Chemical Geology, 234(1-2):105-126. https://doi.org/10.1016/j.chemgeo.2006.05.003
      Wu, S.F., Chen, L.B., Ren, W.K., et al., 2012.Discovery of Rapakivite Grantite and Its Geological Implication in Qimantage.Journal of Qinghai University (Nature Science Edition), 30(5):49-54(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QHXZ201205012.htm
      Xu, Q.L., 2014.Study on Metallogenesis of Porphyry Deposits in Eastern Kunlun Orogenic Belt, Qinghai Province (Dissertation).Jilin University, Changchun(in Chinese with English abstract).
      Xu, W.L., Ji, W.Q., Pei, F.P., et al., 2009.Triassic Volcanism in Eastern Heilongjiang and Jilin Provinces, NE China:Chronology, Geochemistry, and Tectonic Implications.Journal of Asian Earth Sciences, 34(3):392-402. https://doi.org/10.1016/j.jseaes.2008.07.001
      Xu, Z.Q., Jiang, M., Yang, J.S., 1996.Tectonophysical Process at Depth for the Uplift of the Northern Part of the Qinghai-Tibet Plateau:Illu- Strated by the Geological and Geophysical Compreh- Ensive Profile from Golmud to the Tanggula Mountains, Qinghai Province, China.Acta Geologica Sinica, 70(3):195-206(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE199603000.htm
      Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2006.The Early Palaeozoic Terrene Framework and the Formation of the High-Pressure (HP) and Ultra-High Pressure (UHP) Metamorphic Belts at the Central Orogenic Belt (COB).Acta Geologica Sinica, 80(12):1793-1806(in Chinese with English abstract). http://www.researchgate.net/publication/279767883_The_Early_Palaeozoic_terrene_framework_and_the_formation_of_the_high-pressure_(HP)_and_ultra-high_pressure_(UHP)_metamorphic_belts_at_the_Central_Orogenic_belt_(COB)
      Yang, J.H., Wu, F.Y., Shao, J., et al., 2006.Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China.Earth and Planetary Science Letters, 246(3-4):336-352. https://doi.org/10.1016/j.epsl.2006.04.029
      Yang, J.S., Robinson, P.T., Jiang, C.F., et al., 1996.Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications.Tectonophysics, 258(1-4):215-231. https://doi.org/10.1016/0040-1951(95)00199-9
      Yu, M., Feng, C.Y., He, S.Y., et al., 2017.The Qiman Tagh Orogen as a Window to the Crustal Evolution of the Northern Tibetan Plateau.Acta Geologica Sinica, 91(4):703-723(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201704002&dbcode=CJFD&year=2017&dflag=pdfdown
      Zhang, Q., Wang, Y., Li, C.D., et al., 2006.Granite Classification on the Basis of Sr and Yb Contents and Its Implications.Acta Petrologica Sinica, 22(9):2249-2269(in Chinese with English abstract). http://www.oalib.com/paper/1473353
      Zhang, Y.F., Pei, X.Z., Ding, S.P., et al., 2010.LA-ICP-MS Zircon U-Pb Age of Quartz Diorite at the Kekesha Area of Dulan County, Eastern Section of the East Kunlun Orogenic Belt, China and Its Significance.Geological Bulletin of China, 29(1):79-85(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zgqydz201001010
      边千韬, 赵大升, 叶正仁, 等, 2002.初论昆祁秦缝合系.地球学报, 23(6):501-508. doi: 10.3321/j.issn:1006-3021.2002.06.004
      曹世泰, 刘晓康, 马永胜, 等, 2011.祁漫塔格地区早志留世侵入岩的发现及其地质意义.青海科技, 18(5):26-30. doi: 10.3969/j.issn.1005-9393.2011.05.010
      陈加杰, 付乐兵, 魏俊浩, 等, 2016.东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约.地球科学, 41(11):1863-1882. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201611004.htm
      谌宏伟, 罗照华, 莫宣学, 等, 2006.东昆仑喀雅克登塔格杂岩体的SHRIMP年龄及其地质意义.岩石矿物学杂志, 25(1):25-32. doi: 10.3969/j.issn.1000-6524.2006.01.003
      崔美慧, 孟繁聪, 吴祥珂, 2011.东昆仑祁漫塔格早奥陶世岛弧:中基性火成岩地球化学、Sm-Nd同位素及年代学证据.岩石学报, 27(11):3365-3379. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111017.htm
      高晓峰, 校培喜, 谢从瑞, 等, 2010.东昆仑阿牙克库木湖北巴什尔希花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义.地质通报, 29(7):1001-1008. doi: 10.3969/j.issn.1671-2552.2010.07.005
      国显正, 贾群子, 李金超, 等, 2018.东昆仑高压变质带榴辉岩年代学、地球化学及其地质意义.地球科学, 43(12):4300-4318. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201812003.htm
      郝娜娜, 袁万明, 张爱奎, 等, 2014.东昆仑祁漫塔格晚志留世-早泥盆世花岗岩:年代学、地球化学及形成环境.地质论评, 60(1):201-215. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201401021.htm
      何书跃, 孙非非, 李云平, 等, 2017.青海祁漫塔格地区冰沟南辉长岩岩石地球化学特征及年代学意义.矿物岩石地球化学通报, 36(4):582-592. doi: 10.3969/j.issn.1007-2802.2017.04.010
      姜春发, 王宗起, 李锦铁, 等, 2000.中央造山带开合构造.北京:地质出版社.
      黎敦朋, 李静, 张汉军, 等, 2003.东昆仑祁漫塔格山志留系白干湖组浊积岩特征.陕西地质, 21(2):39-44. doi: 10.3969/j.issn.1001-6996.2003.02.005
      李国臣, 丰成友, 王瑞江, 等, 2012.新疆白干湖钨锡矿田东北部花岗岩锆石SIMS U-Pb年龄、地球化学特征及构造意义.地球学报, 33(2):216-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201202015.htm
      李怀坤, 陆松年, 相振群, 等, 2006.东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb年代学研究.地学前缘, 13(6):311-321. doi: 10.3321/j.issn:1005-2321.2006.06.034
      李良, 2018.柴达木周缘镁铁质-超镁铁质岩特征及成矿作用研究(博士学位论文).长春: 吉林大学.
      李世金, 孙丰月, 高永旺, 等, 2012.小岩体成大矿理论指导与实践——青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义.西北地质, 45(4):185-191. doi: 10.3969/j.issn.1009-6248.2012.04.017
      李廷栋, 1995.青藏高原隆升的过程和机制.地球学报, (1):1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB501.000.htm
      李婷, 李猛, 胡朝斌, 等, 2018.东昆仑祁漫塔格阿确墩地区侵入岩U-Pb年代学、地球化学及其地质意义.地球科学, 43(12):4350-4363. doi: 10.3799/dqkx.2018.224
      刘彬, 马昌前, 郭盼, 等, 2013.东昆仑中泥盆世A型花岗岩的确定及其构造意义.地球科学, 38(5):947-962. doi: 10.3799/dqkx.2013.093
      刘栋梁, 李海兵, 孙知明, 等, 2016.青藏高原祁漫塔格古生代以来主要岩浆活动及其意义.地质通报, 35(12):2014-2026. doi: 10.3969/j.issn.1671-2552.2016.12.009
      刘桂珍, 张玉修, 薛建勤, 等, 2014.柴达木盆地西部昆北断阶带基底花岗岩锆石U-Pb年龄、地球化学特征及其地质意义.岩石学报, 30(6):1615-1627. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406007.htm
      刘战庆, 2011.东昆仑南缘布青山构造混杂岩带地质特征及区域构造研究(博士学位论文).西安: 长安大学.
      陆露, 吴珍汉, 胡道功, 等, 2010.东昆仑牦牛山组流纹岩锆石U-Pb年龄及构造意义.岩石学报, 26(4):1150-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004013.htm
      陆松年, 于海峰, 赵风清, 等, 2002.青藏高原北部前寒武纪地质初探.北京:地质出版社.
      孟繁聪, 崔美慧, 贾丽辉, 等, 2015.东昆仑造山带早古生代的大陆碰撞:来自榴辉岩原岩性质的证据.岩石学报, 31(12):3581-3594. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512006.htm
      莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3):403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010
      邱检生, 肖娥, 胡建, 等, 2008.福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约.岩石学报, 24(11):2468-2484. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200811003.htm
      孙丰月, 陈国华, 迟效国, 等, 2003.新疆-青海东昆仑成矿带成矿规律和找矿方向综合研究.长春: 中国地质调查局地质调查项目科研报告.
      王秉璋, 罗照华, 潘彤, 等, 2012.青藏高原祁漫塔格地区早古生代火山岩岩石构造组合和LA-ICP-MS锆石U-Pb年龄.地质通报, 31(6):860-874. doi: 10.3969/j.issn.1671-2552.2012.06.005
      王冠, 孙丰月, 李碧乐, 等, 2013.东昆仑夏日哈木矿区早泥盆世正长花岗岩锆石U-Pb年代学、地球化学及其动力学意义.大地构造与成矿学, 37(4):685-697. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201304013.htm
      王冠, 孙丰月, 李碧乐, 等, 2014.东昆仑夏日哈木铜镍矿镁铁质-超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义.地学前缘, 21(6):381-401. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201406042.htm
      吴福元, 李献华, 杨进辉, 等, 2007a.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706000.htm
      吴福元, 李献华, 郑永飞, 等, 2007b.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      吴少锋, 陈礼标, 任文恺, 等, 2012.祁漫塔格地区更长环斑花岗岩的发现及其地质意义.青海大学学报(自然科学版), 30(5):49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXZ201205012.htm
      许庆林, 2014.青海东昆仑造山带斑岩型矿床成矿作用研究(博士学位论文).长春: 吉林大学.
      许志琴, 姜枚, 杨经绥, 1996.青藏高原北部隆升的深部构造物理作用:以"格尔木-唐古拉山"地质及地球物理综合剖面为例.地质学报, 70(3):195-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199603000.htm
      许志琴, 杨经绥, 李海兵, 等, 2006.中央造山带早古生代地体构架与高压/超高压变质带的形成.地质学报, 80(12):1793-1806. doi: 10.3321/j.issn:0001-5717.2006.12.002
      于淼, 丰成友, 何书跃, 等, 2017.祁漫塔格造山带:青藏高原北部地壳演化窥探.地质学报, 91(4):703-723. doi: 10.3969/j.issn.0001-5717.2017.04.001
      张旗, 王焰, 李承东, 等, 2006.花岗岩的Sr-Yb分类及其地质意义.岩石学报, 22(9):2249-2269. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609000.htm
      张亚峰, 裴先治, 丁仨平, 等, 2010.东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义.地质通报, 29(1):79-85. doi: 10.3969/j.issn.1671-2552.2010.01.010
    • 加载中
    图(10) / 表(3)
    计量
    • 文章访问数:  1371
    • HTML全文浏览量:  601
    • PDF下载量:  102
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-02-11
    • 刊出日期:  2021-01-15

    目录

      /

      返回文章
      返回