• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    阿尔金断裂东北段敦煌阳关断裂晚第四纪活动性及其强震危险性影响分析

    邵延秀 邹小波 袁道阳 姚赟胜 刘兴旺

    邵延秀, 邹小波, 袁道阳, 姚赟胜, 刘兴旺, 2021. 阿尔金断裂东北段敦煌阳关断裂晚第四纪活动性及其强震危险性影响分析. 地球科学, 46(2): 683-696. doi: 10.3799/dqkx.2020.082
    引用本文: 邵延秀, 邹小波, 袁道阳, 姚赟胜, 刘兴旺, 2021. 阿尔金断裂东北段敦煌阳关断裂晚第四纪活动性及其强震危险性影响分析. 地球科学, 46(2): 683-696. doi: 10.3799/dqkx.2020.082
    Shao Yanxiu, Zou Xiaobo, Yuan Daoyang, Yao Yunsheng, Liu Xingwang, 2021. Late Quaternary Slip along Yangguan Fault at Northeastern Section of Altyn Tagh Fault and Implications for Seismic Risk. Earth Science, 46(2): 683-696. doi: 10.3799/dqkx.2020.082
    Citation: Shao Yanxiu, Zou Xiaobo, Yuan Daoyang, Yao Yunsheng, Liu Xingwang, 2021. Late Quaternary Slip along Yangguan Fault at Northeastern Section of Altyn Tagh Fault and Implications for Seismic Risk. Earth Science, 46(2): 683-696. doi: 10.3799/dqkx.2020.082

    阿尔金断裂东北段敦煌阳关断裂晚第四纪活动性及其强震危险性影响分析

    doi: 10.3799/dqkx.2020.082
    基金项目: 

    地震科技星火计划项目 XH19044

    国家自然科学基金项目 41802228

    详细信息
      作者简介:

      邵延秀(1984-), 男, 副研究员, 博士, 主要从事活动构造和构造地貌方面的研究.ORCID: 0000-0002-3281-8179.E-mail: shaoyx@geoidea.org

    • 中图分类号: P315.2

    Late Quaternary Slip along Yangguan Fault at Northeastern Section of Altyn Tagh Fault and Implications for Seismic Risk

    • 摘要: 阿尔金断裂系东北段阳关断裂的晚第四纪活动性与强震危险性关系到敦煌地区及相关文物古迹的防震减灾问题.基于高分辨率卫星影像对阳关断裂几何展布特征进行解译,采用差分GPS、无人机航空摄影测量方法、古地震探槽方法以及OSL测年方法对两个研究点进行了详细研究,对其定量活动参数进行了初步限定.结果显示,阳关断裂东段运动形式主要表现为挤压逆冲,最新的一次地震事件可能发生在距今43.5~12.1 ka之间,表明阳关断裂东段至少在晚更新世以来有过活动,并且具有发生Mw6.6强震的潜能及危险性.如果发生类似强度的地震,敦煌主城区的烈度至少在Ⅵ以上,阳关土遗址地区则会达到Ⅸ.因此,阳关断裂应该是该区防震减灾重点关注的发震断层之一.

       

    • 图  1  研究区区域构造图

      a.青藏高原活动构造简图;b.阳关断裂及其邻区构造展布,底图为Google earth卫星影像

      Fig.  1.  Tectonic map of the study area

      图  2  阳关断裂东段几何展布特征

      红色线条为断层,虚线为推测断层;底图为GF-2卫星影像,分辨率约为0.8 m

      Fig.  2.  Geometry along eastern section of the Yangguan Fault

      图  3  阳关断裂东段地质构造图

      红色线条为断层,虚线为推测断层;等高线数据来源于美国SRTM 30 m DEM,间距为40 m

      Fig.  3.  Tectonic map of eastern section of the Yangguan Fault

      图  4  阳关断裂东段断错地貌

      a. 被断错的Q1冲积扇面;b.晚第四纪扇面上发育两期近平行分布的小陡坎;c.基岩区残留的裂点;d.错动扇面的陡坎,高约3 m.照片位置见图 2

      Fig.  4.  Faulted feature along the eastern section of the Yangguan Fault

      图  5  研究点1的断层陡坎解译和位移测量

      底图为使用SfM方法获得的高分辨率DEM(分辨率为0.2 m)生成的山影图

      Fig.  5.  Fault scarp investigation and vertical throw measurements at Site 1

      图  6  研究点2的断层陡坎解译和位移测量

      图a底图为使用SfM方法获得的高分辨率DEM(分辨率为0.2 m)生成的山影图

      Fig.  6.  Fault scarp investigation and vertical throw measurements at Site 2

      图  7  地形测量剖面

      剖面位置见图 5图 6;阴影区为探槽位置

      Fig.  7.  Topography measurement profiles

      图  8  古地震探槽TC2西壁部分剖面

      a. 探槽剖面照片拼接图;b. 地层和断层解译图

      Fig.  8.  Westwall of paleoseismological trench TC2

      图  9  古地震探槽TC3东壁剖面

      a. 探槽剖面照片拼接图;b. 地层和断层解译图

      Fig.  9.  Eastwall of paleoseismological trench TC3

      图  10  古地震探槽TC7西壁剖面

      a. 探槽剖面照片拼接图;b. 地层和断层解译图

      Fig.  10.  Westwall of paleoseismological trench TC7

      表  1  OSL样品测试结果

      Table  1.   Analytical result of OSL samples

      样品编号 深度(m) 含水率(%) Ua (10-6) Th a (10-6) K a (%) 剂量率b (Ga/ka) 等效剂量c (Ga) 年代c (ka)
      YG1701 0.4 1.1 2.92±0.11 18.40±0.50 1.52±0.05 3.7±0.2 162±14 43.5±4.2
      YG1702 0.4 1.9 2.37±0.09 6.17±0.21 1.36±0.05 2.6±0.1 30.9±3.0 12.1±1.3
      YG1710 0.8 2.9 1.90±0.08 7.18±0.24 1.54±0.05 2.7±0.1 162±17 60.5±6.9
      注:a. U、Th和K元素的含量在中国原子能科学研究院使用中子活化法(NAA)测试;b. 测试矿物为石英,样品测试粒级为90~125 µm,剂量率和年代计算参考“DRAC”;c.使用三参数最小年代模型MAM-3计算的等效剂量及其年代.
      下载: 导出CSV
    • Aitken, M. J. , 1998. An Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence. Oxford University Press, London.
      Bemis, S. P. , Micklethwaite, S. , Turner, D. , et al. , 2014. Ground-Based and UAV-Based Photogrammetry: A Multi-Scale, High-Resolution Mapping Tool for Structural Geology and Paleoseismology. Journal of Structural Geology, 69: 163-178. https://doi.org/10.1016/j.jsg.2014.10.007
      Cunningham, D. , Zhang, J. , Li, Y. F. , 2016. Late Cenozoic Transpressional Mountain Building Directly North of the Altyn Tagh Fault in the Sanweishan and Nanjieshan, North Tibetan Foreland, China. Tectonophysics, 687: 111-128. https://doi.org/10.1016/j.tecto.2016.09.010
      Cowgill, E. , Yin, A. , Arrowsmith, J. R. , et al. , 2004. The AkatoTagh Bend along the Altyn Tagh Fault, Northwest Tibet 1: Smoothing by Vertical-Axis Rotation and the Effect of Topographic Stresses on Bend-Flanking Faults. Geological Society of America Bulletin, 116(11-12): 1423-1442. https://doi.org/10.1130/b25359.1
      Cowgill, E. , Yin, A. , Feng, W. X. , et al. , 2000. Is the North Altyn Fault Part of a Strike-Slip Duplex along the Altyn Tagh Fault System? Geology, 28(3): 255-258. https://doi.org/10.1130/0091-7613(2000)28255:itnafp>2.0.co;2 doi: 10.1130/0091-7613(2000)28255:itnafp>2.0.co;2
      Deng, Q. D. , Chen, L. C. , Ran, Y. K. , 2004. Quantitative Studies and Applications of Active Tectonics. Earth Science Frontiers, 11(4): 383-392(in Chinese with English abstract). http://www.researchgate.net/publication/304335743_Quantitative_studies_and_applications_of_active_tectonics
      Galbraith, R. F. , Roberts, R. G. , 2012. Statistical Aspects of Equivalent Dose and Error Calculation and Display in OSL Dating: An Overview and Some Recommendations. Quaternary Geochronology, 11: 1-27. https://doi.org/10.1016/j.quageo.2012.04.020
      Hetzel, R. , Hampel, A. , Gebbeken, P. , et al. , 2019. A Constant Slip Rate for the Western Qilian Shan Frontal Thrust during the Last 200 ka Consistent with GPS-Derived and Geological Shortening Rates. Earth and Planetary Science Letters, 509: 100-113. https://doi.org/10.1016/j.epsl.2018.12.032
      Li, H. B. , Pan, J. W. , Lin, A. M. , et al. , 2016. Coseismic Surface Ruptures Associated with the 2014 Mw 6.9 Yutian Earthquake on the Altyn Tagh Fault, Tibetan Plateau. Bulletin of the Seismological Society of America, 106(2): 595-608. https://doi.org/10.1785/0120150136
      Liu, X. W. , Yuan, D. Y. , Su, Q. , 2019. Late Pleistocene Slip Rate on a Blind Thrust in the Western Qilian Shan, NW China. Geomorphology, 345: 106841. https://doi.org/10.1016/j.geomorph.2019.106841
      Liu, X. W. , Yuan, D. Y. , Su, Q. , et al. , 2020. Late Quaternary Tectonic Activity and Slip Rates of Active Faults in the Western Hexi Corridor, NW China. Journal of Earth Science, 31(5): 968-977. https://doi.org/10.1007/s12583-020-1287-9
      Liu, X. W. , Yuan, D. Y. , Zou, X. B. , et al. , 2018. Active Characteristics of the Sanweishan Fault in the Northern Margin of the Tibetan Plateau during Late Pleistocene. Seismology and Geology, 40(1): 121-132(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_seismology-geology_thesis/0201253220867.html
      Meyer, B. , Tapponnier, P. , Gaudemer, Y. , et al. , 1996. Rate of Left-Lateral Movement along the Easternmost Segment of the Altyn Tagh Fault, East of 96°E (China). Geophysical Journal International, 124(1): 29-44. https://doi.org/10.1111/j.1365-246x.1996.tb06350.x
      Molnar, P. , Tapponnier, P. , 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science, 189(4201): 419-426. https://doi.org/10.1126/science.189.4201.419
      Ran, Y. K. , Chen, L. C. , Chen, W. S. , et al. , 2012. Key Techniques and Several Cases Analysis in Paleoseismic Studies in Mainland China(2): Surface Deformation Characteristics of Wenchuan Earthquake and Paleoseismic Indicators on Fold-Reverse Fault. Seismology and Geology, 34(3): 385-400(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ201404001.htm
      Ran, Y. K. , Chen, L. C. , Shen, J. , et al. , 2007. Xishan Fault Group near Urumqi City and Paleoearthquake Identification on Reverse Fault. Seismology and Geology, 29(2): 218-235(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_seismology-geology_thesis/0201253224705.html
      Shao, Y. X. , Yuan, D. Y. , Oskin, M. E. , et al. , 2017. Historical (Yuan Dynasty) Earthquake on the North Danghe Nanshan Thrust, Western Qilian Shan, China. Bulletin of the Seismological Society of America, 107(3): 1175-1184. https://doi.org/10.1785/0120160289
      Tapponnier, P. , Molnar, P. , 1977. Active Faulting and Tectonics in China. Journal of Geophysical Research, 82(20): 2905-2930. https://doi.org/10.1029/jb082i020p02905
      Tapponnier, P. , Xu, Z, Q. , Roger, F. , et al. , 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978
      van der Woerd, J. , Xu, X. W. , Li, H. B. , et al. , 2001. Rapid Active Thrusting along the Northwestern Range Front of the Tanghe Nan Shan (Western Gansu, China). Journal of Geophysical Research: Solid Earth, 106(B12): 30475-30504. https://doi.org/10.1029/2001JB000583
      Wang, P. T. , Shao, Y. X. , Zhang, H. P. , et al. , 2016. The Application of sUAV Photogrammetry in Active Tections: Shanmagou Site of Haiyuan Fault, for Example. Quaternary Sciences, 36(2): 433-442(in Chinese with English abstract). http://www.dsjyj.com.cn/EN/Y2016/V36/I2/433
      Wells, D. L. , Coppersmith, K. J. , 1994. Updated Empirical Relationships between Magnitude, Rupture Length, Rupture Area and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 972-1002. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=84/4/974
      Wintle, A. G. , 2008. Luminescence Dating: Where It has been and Where It is Going. Boreas, 37(4): 471-482. https://doi.org/10.1111/j.1502-3885.2008.00059.x
      Wu, Y. , Chen, Z. L. , Chen, B. L. , et al. , 2019. Early Paleozoic Tectonic Deformation in Qiashenkansayigou Area, North Altun, and Implication for Tectonic Evolution. Journal of Geomechanics, 25(3): 301-312(in Chinese with English abstract).
      Wu, Z. H. , 2019. The Definition and Classification of Active Faults: History, Current Status and Progress. Acta Geoscientica Sinica, 40(5): 661-697(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geoscientica-sinica_thesis/0201273307896.html
      Wu, Z. H. , Hu, M. M. , 2019. Neotectonics, Active Tectonics and Earthquake Geology: Terminology, Applications and Advances. Journal of Geodynamics, 127: 1-15. https://doi.org/10.1016/j.jog.2019.01.007
      Xiao, Q. B. , Shao, G. H. , Jing, L. Z. , et al. , 2015. Eastern Termination of the Altyn Tagh Fault, Western China: Constraints from a Magnetotelluric Survey. Journal of Geophysical Research: Solid Earth, 120(5): 2838-2858. https://doi.org/10.1002/2014jb011363
      Xu, X. W. , Tan, X. B. , Yu, G. H. , et al. , 2013. Normal- and Oblique-Slip of the 2008 Yutian Earthquake: Evidence for Eastward Block Motion, Northern Tibetan Plateau. Tectonophysics, 584: 152-165. https://doi.org/10.1016/j.tecto.2012.08.007
      Xu, X. W. , Yu, G. H. , Ran, Y. K. , et al. , 2015. Introduction on Urban Active Faults in China: Surveying Outcomes from 20 Chinese Mega-Cities. Seismological Press, Beijing (in Chinese).
      Yang, H. B. , Yang, X. P. , Cunningham, D. , et al. , 2020. A Regionally Evolving Transpressional Duplex along the Northern Margin of the Altyn Tagh Fault: New Kinematic and Timing Constraints from the Sanweishan and Nanjieshan, China. Tectonics, 39(2): e2019tc005749. https://doi.org/10.1029/2019TC005749
      Yuan, D. Y. , Shi, Y. C. , Wang, X. D. , 2000. The Features of New Activity and Influence to Grottoes in Dunhuang Mogao Grott Oes Region. Dunhuang Research, (1): 56-64(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DHYJ200001011.htm
      Yun, L. , Yang, X. P. , Song, F. M. , et al. , 2016a. Late Quaternary Sinistral Strike-Slip Activities of Sanwei Shan Fault in the North of Tibetan Plateau. Seismology and Geology, 38(2): 434-446(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ201602016.htm
      Yun, L. , Yang, X. P. , Wang, J. , et al. , 2016b. Paleo-Earthquake Events along Northeastern Segment of the Sanweishan Mountain Fault, Northern Tibetan Plateau. Technology for Earthquake Disaster Prevention, 11(2): 186-198(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZZFY201602002.htm
      Yun, L. , Zhang, J. , Wang, J. , et al. , 2020. Active Deformation to the North of the Altyn Tagh Fault: Constraints on the Northward Growth of the Northern Tibetan Plateau. Journal of Asian Earth Sciences, 198: 104312. https://doi.org/10.1016/j.jseaes.2020.104312
      Yun, L. , Zhang, J. , Xiao, Q. B. , et al. , 2019. Thrust Movement and Deep Structural Characteristic of the Sanweishan Fault in the Northern Margin of the Tibetan Plateau since the Late Quaternary. Acta Geologica Sinica, 93(9): 2107-2122(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201909001.htm
      Zhang, P. Z. , Molnar, P. , Xu, X. W. , 2007. Late Quaternary and Present-Day Rates of Slip along the Altyn Tagh Fault, Northern Margin of the Tibetan Plateau. Tectonics, 26(5): TC5010. https://doi.org/10.1029/2006tc002014
      Zhang, Y. M. , Liu, T. Z. , 1989. The Sanweishan Fault: A Quaternary Active Fault without Large Earthquakes. Earthquake Research in China, 5(3): 37-48(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGZD198903004.htm
      Zhou, Z. H. , He, S. L. , Chen, W. K. , et al. , 2011. Parameters in Seismic Intensity Affecting Field Model of Gansu Area. Technology for Earthquake Disaster Prevention, 6(2): 180-189(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZZFY201102012.htm
      邓起东, 陈立春, 冉勇康, 2004. 活动构造定量研究与应用. 地学前缘, 11(4): 383-392. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200404006.htm
      刘兴旺, 袁道阳, 邹小波, 等, 2018. 青藏高原北缘三危山断裂晚更新世活动特征. 地震地质, 40(1): 121-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201801010.htm
      冉勇康, 陈立春, 陈文山, 等, 2012. 中国大陆古地震研究的关键技术与案例解析(2): 汶川地震地表变形特征与褶皱逆断层古地震识别. 地震地质, 34(3): 385-400. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201203003.htm
      冉勇康, 陈立春, 沈军, 等, 2007. 乌鲁木齐西山断裂组与地表破裂型逆断层古地震识别标志. 地震地质, 29(2): 218-235. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200702002.htm
      王朋涛, 邵延秀, 张会平, 等, 2016. sUAV摄影技术在活动构造研究中的应用: 以海原断裂骟马沟为例. 第四纪研究, 36(2): 433-442. http://d.wanfangdata.com.cn/Periodical/dsjyj201602018
      吴玉, 陈正乐, 陈柏林, 等, 2019. 北阿尔金恰什坎萨依沟地区早古生代构造变形特征及构造演化启示. 地质力学学报, 25(3): 301-312. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201903016.htm
      吴中海, 2019. 活断层的定义与分类: 历史、现状和进展. 地球学报, 40(5): 661-697. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201905003.htm
      徐锡伟, 于贵华, 冉勇康, 等, 2015. 中国城市活动断层概论: 20个城市活动断层探测成果. 北京: 地震出版社.
      袁道阳, 石玉成, 王旭东, 2000. 敦煌莫高窟地区断裂新活动特征及其对石窟的影响. 敦煌研究, (1): 56-64. https://www.cnki.com.cn/Article/CJFDTOTAL-DHYJ200001011.htm
      云龙, 杨晓平, 宋方敏, 等, 2016a. 青藏高原北缘三危山断裂晚第四纪以来的左旋走滑活动. 地震地质, 38(2): 434-446. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201602016.htm
      云龙, 杨晓平, 王驹, 等, 2016b. 青藏高原北缘三危山断裂东北段的古地震事件. 震灾防御技术, 11(2): 186-198. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201602002.htm
      云龙, 张进, 肖骑斌, 等, 2019. 青藏高原北缘三危山断裂晚第四纪以来的逆冲运动及其深部构造特征. 地质学报, 93(9): 2107-2122. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201909001.htm
      张裕明, 柳覃卓, 1989. 敦煌三危山断层: 一条无强震的第四纪活动断层. 中国地震, 5(3): 37-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD198903004.htm
      周中红, 何少林, 陈文凯, 等, 2011. 甘肃地区地震烈度影响场计算模型参数的改进研究与应用. 震灾防御技术, 6(2): 180-189. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201102012.htm
    • 加载中
    图(10) / 表(1)
    计量
    • 文章访问数:  1163
    • HTML全文浏览量:  694
    • PDF下载量:  84
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-03-18
    • 刊出日期:  2021-02-15

    目录

      /

      返回文章
      返回