• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    Li同位素组成对太古宙海水相关的表生环境过程的初步限定

    付露露 肖益林 张兴亮 王洋洋 谭东波

    付露露, 肖益林, 张兴亮, 王洋洋, 谭东波, 2021. Li同位素组成对太古宙海水相关的表生环境过程的初步限定. 地球科学, 46(6): 2073-2082. doi: 10.3799/dqkx.2020.108
    引用本文: 付露露, 肖益林, 张兴亮, 王洋洋, 谭东波, 2021. Li同位素组成对太古宙海水相关的表生环境过程的初步限定. 地球科学, 46(6): 2073-2082. doi: 10.3799/dqkx.2020.108
    Fu Lulu, Xiao Yilin, Zhang Xingliang, Wang Yangyang, Tan Dongbo, 2021. Preliminary Definition of Li Isotope Compositions on Surficial Environmental Processes Associated with Archean Seawater. Earth Science, 46(6): 2073-2082. doi: 10.3799/dqkx.2020.108
    Citation: Fu Lulu, Xiao Yilin, Zhang Xingliang, Wang Yangyang, Tan Dongbo, 2021. Preliminary Definition of Li Isotope Compositions on Surficial Environmental Processes Associated with Archean Seawater. Earth Science, 46(6): 2073-2082. doi: 10.3799/dqkx.2020.108

    Li同位素组成对太古宙海水相关的表生环境过程的初步限定

    doi: 10.3799/dqkx.2020.108
    基金项目: 

    国家自然科学基金项目 41673031

    详细信息
      作者简介:

      付露露(1995-), 女, 硕士研究生, 从事海相碳酸盐的Li同位素研究.ORCID: 0000-0002-1220-484X.E-mail: full17@mail.ustc.edu.cn

      通讯作者:

      肖益林, E-mail: ylxiao@ustc.edu.cn

    • 中图分类号: P597

    Preliminary Definition of Li Isotope Compositions on Surficial Environmental Processes Associated with Archean Seawater

    • 摘要: 研究试图利用Li同位素地球化学对太古代海水相关的表生环境过程进行初步的限定.通过对来自南非Kaapvaal克拉通的海相碳酸盐岩样品进行Li同位素分析,发现在3.0~2.9 Ga期间形成的碳酸盐岩δ7Li值为~+1‰,而在2.6~2.5 Ga期间,碳酸盐岩δ7Li值达到7‰~10‰.经过反演计算得到对应时代的海水Li同位素组成分别为~+12‰和~+20‰,均明显低于现代海水值(~+31‰),但是2.6~2.5 Ga期间的海水δ7Li值要比3.0~2.9 Ga时高出8‰.作为大陆硅酸岩风化的有效示踪剂,太古代海水较低的Li同位素组成表明当时的地表风化以源岩溶解为主,次生矿物形成极少,在3.0~2.5 Ga期间,海水整体温度下降以及次生矿物形成增加可能共同导致了海水δ7Li值的升高.通过对太古代碳酸盐岩的Li同位素研究能够有效反演古海水的Li同位素组成,并为了解太古代表生风化过程对海水的影响提供了新的信息.

       

    • 图  1  Kaapvaal克拉通简图与样品位置(改自Frimmel et al., 2005)

      Fig.  1.  Simplified map of Kaapvaal craton and sample regions (modified from Frimmel et al., 2005)

      图  2  样品照片及采样示意图

      a.Nsuze-1(3.0~2.9 Ga)来自Pongola Supergroup;b.Transvaal-1(2.6~2.5 Ga)来自Transvaal Supergroup;c.Transvaal-2(2.6~2.5 Ga)来自Transvaal Supergroup

      Fig.  2.  Photos of carbonate samples and sampling position

      图  3  不同温度下海水与碳酸盐岩间的分馏值(a)和太古代海水的Li同位素组成(b)

      Fig.  3.  Fractionation values between seawater and carbonate at different temperatures (a), Li isotope composition of Archean seawater (b)

      图  4  现代海水和太古代海水的Li同位素组成模型

      a图改自Li and West(2014)

      Fig.  4.  Li isotope composition models of modern and archean seawater

      图  5  海水δ7Li值的变化趋势

      Misra and Froelich(2012)von Strandmann et al.(2013, 2017);Sun et al.(2018)

      Fig.  5.  Variation trend of δ7Li in seawater

      表  1  碳酸盐中Li同位素和元素含量分析结果

      Table  1.   Analysis results of Li isotope and elemental contents in carbonate

      样品号 Li/Ca (μmol/mol) Ca/Mg (mol/mol) Fe/Ca (mmol/mol) Mn/Ca (mmol/mol) Al/(Ca+Mg) (μmol/mol) Li含量(10-6) δ7Li (‰) 2SD
      Nsuze-1
      Ns-1 2.54 2.04 73.99 11.14 0.93 0.6 1.1 0.1
      Ns-2 3.19 1.79 88.16 11.77 1.74 0.8 0.4 0.3
      Ns-3 2.93 1.85 74.66 9.82 1.01 0.7 0.9 0.1
      Ns-4 2.79 1.88 73.25 9.48 1.10 0.7 0.9 0.0
      Ns-4’ 2.92 1.87 74.28 9.59 1.09 0.7 1.1 0.1
      Ns-5 2.00 1.93 70.88 9.38 0.72 0.5 0.6 0.2
      Ns-6 2.03 1.97 60.08 8.01 0.52 0.5 1.0 0.0
      Ns-7 2.08 1.96 64.99 8.78 0.71 0.5 0.5 0.0
      Ns-8 4.19 1.89 79.31 10.69 2.27 1.0 1.5 0.1
      Ns-9 2.86 1.87 81.17 11.42 1.30 0.8 0.8 0.3
      Transvaal-1
      Tr-1-1 1.14 1.89 34.51 33.68 0.08 0.3 7.3 0.1
      Tr-1-2 1.23 1.95 30.07 33.13 0.14 0.4 7.7 0.0
      Tr-1-3 1.30 1.96 32.25 33.56 0.12 0.3 6.7 0.1
      Tr-1-4 1.13 1.90 24.49 32.52 0.19 0.4 7.3 0.6
      Tr-1-4 1.67 1.86 23.72 32.25 0.05 0.4 7.4 0.2
      Tr-1-5 1.03 1.91 33.40 34.37 0.02 0.3 7.3 0.2
      Tr-1-6 1.35 1.88 32.96 34.81 0.05 0.4 7.0 0.3
      Tr-1-7 1.24 1.88 34.02 34.56 0.02 0.4 6.9 0.1
      Tr-1-8 1.46 1.91 31.95 34.56 0.06 0.4 7.0 0.0
      Tr-1-9 1.42 1.98 50.46 35.93 0.09 0.4 6.6 0.3
      Tr-1-10 1.32 1.86 32.40 33.44 0.07 0.4 7.0 0.2
      Transvaal-2
      Tr-2-1 2.40 1.91 35.92 44.03 0.18 0.6 10.2 0.2
      Tr-2-2 2.82 1.90 31.17 42.10 0.11 0.7 10.0 0.1
      Tr-2-3 2.29 1.86 33.40 42.81 0.09 0.7 9.1 0.1
      Tr-2-4 3.23 1.92 28.51 41.78 0.08 0.8 9.5 0.0
      Tr-2-4 3.45 1.94 28.52 41.46 0.09 1.0 9.2 0.2
      Tr-2-5 3.18 1.94 45.53 49.54 0.22 0.9 9.8 0.0
      下载: 导出CSV
    • Allwood, A.C., Walter, M.R., Burch, I.W., et al., 2007.3.43 Billion-Year-Old Stromatolite Reef from the Pilbara Craton of Western Australia: Ecosystem-Scale Insights to Early Life on Earth. Precambrian Research, 158(3-4): 198-227. https://doi.org/10.1016/j.precamres.2007.04.013
      Berner, R.A., 1997. The Rise of Plants and Their Effect on Weathering and Atmospheric CO2. Science, 276(5312): 544-546. https://doi.org/10.1126/science.276.5312.544
      Bouchez, J., Gaillardet, J., von Blanckenburg, F., 2014. Weathering Intensity in Lowland River Basins: From the Andes to the Amazon Mouth. Procedia Earth and Planetary Science, 10: 280-286. https://doi.org/10.1016/j.proeps.2014.08.063
      Canfield, D.E., 2005. The Early History of Atmospheric Oxygen: Homage to Robert M. Garrels. Annual Review of Earth and Planetary Sciences, 33(1): 1-36. https://doi.org/10.1146/annurev.earth.33.092203.122711
      Chan, L.H., Edmond, J.M., Thompson, G., et al., 1992. Lithium Isotopic Composition of Submarine Basalts: Implications for the Lithium Cycle in the Oceans. Earth and Planetary Science Letters, 108(1-3): 151-160. https://doi.org/10.1016/0012-821x(92)90067-6 doi: 10.1016/0012-821X(92)90067-6
      Chen, F., Zhu, X.Q., 1985. Evolution of Archean Seawater pH and Its Relationship with Mineralization. Acta Sedimentologica Sinica, 3(4): 4-18(in Chinese with English abstract).
      Cohen, A.S., Coe, A.L., Harding, S.M., et al., 2004. Osmium Isotope Evidence for the Regulation of Atmospheric CO2 by Continental Weathering. Geology, 32(2): 157-160. https://doi.org/10.1130/g20158.1 doi: 10.1130/G20158.1
      Dellinger, M., Joshua, W.A., Paris, G., et al., 2018. The Li Isotope Composition of Marine Biogenic Carbonates: Patterns and Mechanisms. Geochimica et Cosmochimica Acta, 236: 315-335. https://doi.org/10.1016/j.gca.2018.03.014
      Evans, D.A., Beukes, N.J., Kirschvink, J.L., 1997. Low-Latitude Glaciation in the Palaeoproterozoic Era. Nature, 386: 262-266. https://doi.org/10.1038/386262a0
      Fang, Q., Hong, H.L., Zhao, L.L., et al., 2018. Climatic Implication of Authigenic Minerals Formed during Pedogenic Weathering Processes. Earth Science, 43(3): 753-769(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201803009.htm
      Frimmel, H.E., Groves, D.I., Kirk, J., et al., 2005. The Formation and Preservation of the Witwatersr and Goldfields, the World's Largest Gold Province. Society of Economic Geologists. 100: 769-797. https://doi.org/10.5382/av100.23 http://www.researchgate.net/publication/336543164_The_Formation_and_Preservation_of_the_Witwatersrand_Goldfields_the_World's_Largest_Gold_Province
      Gou, L.F., Jin, Z.D., He, M.Y., 2017. Using Lithium Isotopes Traces Continental Weathering: Progresses and Challenges. Journal of Earth Environment, 8(2): 89-102(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHJ201702001.htm
      Gouldey, J.C., Saltzman, M.R., Young, S.A., et al., 2010. Strontium and Carbon Isotope Stratigraphy of the Llandovery (Early Silurian): Implications for Tectonics and Weathering. Palaeogeography, Palaeoclimatology, Palaeoecology, 296(3-4): 264-275. https://doi.org/10.1016/j.palaeo.2010.05.035
      Gumsley, A., Olsson, J., Söderlund, U., et al., 2015. Precise U-Pb Baddeleyite Age Dating of the Usushwana Complex, Southern Africa-Implications for the Mesoarchaean Magmatic and Sedimentological Evolution of the Pongola Supergroup, Kaapvaal Craton. Precambrian Research, 267: 174-185. https://doi.org/10.1016/j.precamres.2015.06.010
      Haqq-Misra, J.D., Domagal-Goldman, S.D., Kasting, P.J., et al., 2008. A Revised, Hazy Methane Greenhouse for the Archean Earth. Astrobiology, 8(6): 1127-1137. https://doi.org/10.1089/ast.2007.0197
      Hegner, E., Kröner, A., Hunt, P., 1994. A Precise U-Pb Zircon Age for the Archaean Pongola Supergroup Volcanics in Swaziland. Journal of African Earth Sciences, 18(4): 339-341. https://doi.org/10.1016/0899-5362(94)90072-8
      Hessler, A.M., Lowe, D.R., 2006. Weathering and Sediment Generation in the Archean: An Integrated Study of the Evolution of Siliciclastic Sedimentary Rocks of the 3.2 Ga Moodies Group, Barberton Greenstone Belt, South Africa. Precambrian Research, 151(3-4): 185-210. https://doi.org/10.1016/j.precamres.2006.08.008
      Huang, L.M., Shao, M.A., Jia, X.X., et al., 2016. A Review of the Methods and Controls of Soil Weathering Rates. Advances in Earth Science, 31(10): 1021-1031(in Chinese with English abstract). http://www.researchgate.net/publication/315830466_A_review_of_the_methods_and_controls_of_soil_weathering_rates
      Li, D.Y., Xiao, Y.L., Wang, Y.Y., et al., 2019. Mg-Li-Fe-Cr Isotopic Fractionation during Subduction. Earth Science, 44(12): 4081-4085(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912016.htm
      Li, G.J., West, A.J., 2014. Evolution of Cenozoic Seawater Lithium Isotopes: Coupling of Global Denudation Regime and Shifting Seawater Sinks. Earth and Planetary Science Letters, 401: 284-293. https://doi.org/10.1016/j.epsl.2014.06.011
      Lin, J., Liu, Y.S., Hu, Z.C., et al., 2019. Accurate Measurement of Lithium Isotopes in Eleven Carbonate Reference Materials by MC-ICP-MS with Soft Extraction Mode and 1012 Ω Resistor High-Gain Faraday Amplifiers. Geostandards and Geoanalytical Research, 43(2): 277-289. https://doi.org/10.1111/ggr.12260
      Luo, G.M., Ono, S., Beukes, N.J., et al., 2016. Rapid Oxygenation of Earth's Atmosphere 2.33 Billion Years Ago. Science Advances, 2(5): e1600134. https://doi.org/10.1126/sciadv.1600134
      Marriott, C.S., Henderson, G.M., Belshaw, N.S., et al., 2004a. Temperature Dependence of δ7Li, δ44Ca and Li/Ca during Growth of Calcium Carbonate. Earth and Planetary Science Letters, 222(2): 615-624. https://doi.org/10.1016/j.epsl.2004.02.031
      Marriott, C.S., Henderson, G.M., Crompton, R., et al., 2004b. Effect of Mineralogy, Salinity, and Temperature on Li/Ca and Li Isotope Composition of Calcium Carbonate. Chemical Geology, 212(1-2): 5-15. https://doi.org/10.1016/j.chemgeo.2004.08.002
      Misra, S., Froelich, P.N., 2012. Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering and Reverse Weathering. Science, 335(6070): 818-823. https://doi.org/10.1126/science.1214697
      Neaman, A., Chorover, J., Brantley, S.L., 2005. Element Mobility Patterns Record Organic Ligands in Soils on Early Earth. Geology, 33(2): 117. https://doi.org/10.1130/g20687.1 doi: 10.1130/G20687.1
      Rasmussen, B., Krapež, B., Muhling, J.R., et al., 2015. Precipitation of Iron Silicate Nanoparticles in Early Precambrian Oceans Marks Earth's First Iron Age. Geology, 43(4): 303-306. https://doi.org/10.1130/g36309.1 doi: 10.1130/G36309.1
      Robert, F., Chaussidon, M., 2006. A Palaeotemperature Curve for the Precambrian Oceans Based on Silicon Isotopes in Cherts. Nature, 443: 969-972. https://doi.org/10.1038/nature05239
      Rogers, J.J.W., Santosh, M., 2003. Supercontinents in Earth History. Gondwana Research, 6(3): 357-368. https://doi.org/10.1016/s1342-937x(05)70993-x doi: 10.1016/S1342-937X(05)70993-X
      Rudnick, R.L., Tomascak, P.B., Njo, H.B., et al., 2004. Extreme Lithium Isotopic Fractionation during Continental Weathering Revealed in Saprolites from South Carolina. Chemical Geology, 212(1-2): 45-57. https://doi.org/10.1016/j.chemgeo.2004.08.008
      Siahi, M., Hofmann, A., Hegner, E., et al., 2016. Sedimentology and Facies Analysis of Mesoarchaean Stromatolitic Carbonate Rocks of the Pongola Supergroup, South Africa. Precambrian Research, 278: 244-264. https://doi.org/10.1016/j.precamres.2016.03.004
      Siever, R., 1992. The Silica Cycle in the Precambrian. Geochimica et Cosmochimica Acta, 56(8): 3265-3272. https://doi.org/10.1016/0016-7037(92)90303-z doi: 10.1016/0016-7037(92)90303-Z
      Soomer, S., Somelar, P., Mänd, K., et al., 2019. High-CO2, Acidic and Oxygen-Starved Weathering at the Fennoscandian Shield at the Archean-Proterozoic Transition. Precambrian Research, 327: 68-80. https://doi.org/10.1016/j.precamres.2019.03.001
      Sumner, D.Y., Beukes, N.J., 2006. Sequence Stratigraphic Development of the Neoarchean Transvaal Carbonate Platform, Kaapvaal Craton, South Africa. South African Journal of Geology, 109(1-2): 11-22. https://doi.org/10.2113/gssajg.109.1-2.11
      Sun, H., Gao, Y.J., Xiao, Y.L., et al., 2016. Lithium Isotope Fractionation during Incongruent Melting: Constraints from Post-Collisional Leucogranite and Residual Enclaves from Bengbu Uplift, China. Chemical Geology, 439: 71-82. https://doi.org/10.1016/j.chemgeo.2016.06.004
      Sun, H., Xiao, Y.L., Gao, Y.J., et al., 2018. Rapid Enhancement of Chemical Weathering Recorded by Extremely Light Seawater Lithium Isotopes at the Permian-Triassic Boundary. Proceedings of the National Academy of Sciences, 115(15): 3782-3787. https://doi.org/10.1073/pnas.1711862115
      Taylor, H.L., Duivestein, I.J.K., Farkas, J., et al., 2019. Technical Note: Lithium Isotopes in Dolostone as a Palaeo-Environmental Proxy: An Experimental Approach. Climate of the Past Discussions, 15(2): 635-646. https://doi.org/10.5194/cp-15-635-2019
      Teng, F.Z., McDonough, W.F., Rudnick, R.L., et al., 2004. Lithium Isotopic Composition and Concentration of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 68(20): 4167-4178. https://doi.org/10.1016/j.gca.2004.03.031
      Tomascak, P.B., 2004. Developments in the Understanding and Application of Lithium Isotopes in the Earth and Planetary Sciences. Reviews in Mineralogy and Geochemistry, 55(1): 153-195. https://doi.org/10.2138/gsrmg.55.1.153
      Ushikubo, T., Kita, N.T., Cavosie, A.J., et al., 2008. Lithium in Jack Hills Zircons: Evidence for Extensive Weathering of Earth's Earliest Crust. Earth and Planetary Science Letters, 272(3-4): 666-676. https://doi.org/10.1016/j.epsl.2008.05.032
      von Strandmann, P.A.E.P., Desrochers, A., Murphy, M.J., et al., 2017. Global Climate Stabilisation by Chemical Weathering during the Hirnantian Glaciation. Geochemical Perspectives Letters, 3: 230-237. https://doi.org/10.7185/geochemlet.172 http://ora.ox.ac.uk/objects/uuid:93c031fb-e00b-4ac5-b3a6-4323e9f75f42
      von Strandmann, P.A.E.P., Jenkyns, H.C., Woodfine, R.G., 2013. Lithium Isotope Evidence for Enhanced Weathering during Oceanic Anoxic Event 2. Nature Geoscience, 6(8): 668-672. https://doi.org/10.1038/ngeo1875
      Wang, Q.L., Zhao, Z.Q., Liu, C.Q., et al., 2008. Progress in Geochemical Research of Lithium Isotope during Continental Weathering. Earth Science Frontiers, 15(6): 332-337(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY200806042.htm
      Zahnle, K., Claire, M., Catling, D., 2006. The Loss of Mass-Independent Fractionation in Sulfur Due to a Palaeoproterozoic Collapse of Atmospheric Methane. Geobiology, 4(4): 271-283. https://doi.org/10.1111/j.1472-4669.2006.00085.x
      陈福, 朱笑青, 1985. 太古代海水pH值的演化及其和成矿作用的关系. 沉积学报, 3(4): 4-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198504000.htm
      方谦, 洪汉烈, 赵璐璐, 等, 2018. 风化成土过程中自生矿物的气候指示意义. 地球科学, 43(3): 753-769. doi: 10.3799/dqkx.2018.905
      苟龙飞, 金章东, 贺茂勇, 2017. 锂同位素示踪大陆风化: 进展与挑战. 地球环境学报, 8(2): 89-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201702001.htm
      黄来明, 邵明安, 贾小旭, 等, 2016. 土壤风化速率测定方法及其影响因素研究进展. 地球科学进展, 31(10): 1021-1031. doi: 10.11867/j.issn.1001-8166.2016.10.1021
      李东永, 肖益林, 王洋洋, 等, 2019. 板块俯冲过程中的Mg-Li-Fe-Cr同位素分馏. 地球科学, 44(12): 4081-4085. doi: 10.3799/dqkx.2019.255
      汪齐连, 赵志琦, 刘丛强, 等, 2008. 大陆风化过程的锂同位素地球化学研究进展. 地学前缘, 15(6): 332-337. doi: 10.3321/j.issn:1005-2321.2008.06.039
    • 加载中
    图(5) / 表(1)
    计量
    • 文章访问数:  1134
    • HTML全文浏览量:  769
    • PDF下载量:  67
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-03-09
    • 刊出日期:  2021-06-15

    目录

      /

      返回文章
      返回