• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    亚东地区高喜马拉雅结晶岩系部分熔融的时限:来自乃堆拉混合岩锆石U-Pb年代学的约束

    苟正彬 刘函 段瑶瑶 李俊 张士贞

    苟正彬, 刘函, 段瑶瑶, 李俊, 张士贞, 2020. 亚东地区高喜马拉雅结晶岩系部分熔融的时限:来自乃堆拉混合岩锆石U-Pb年代学的约束. 地球科学, 45(8): 2894-2904. doi: 10.3799/dqkx.2020.110
    引用本文: 苟正彬, 刘函, 段瑶瑶, 李俊, 张士贞, 2020. 亚东地区高喜马拉雅结晶岩系部分熔融的时限:来自乃堆拉混合岩锆石U-Pb年代学的约束. 地球科学, 45(8): 2894-2904. doi: 10.3799/dqkx.2020.110
    Gou Zhengbin, Liu Han, Duan Yaoyao, Li Jun, Zhang Shizhen, 2020. Timescales of Partial Melting in Yadong Region of Higher Himalayan Crystalline Sequence: Constraints from Zircon U-Pb Geochronology of Naiduila Migmatites. Earth Science, 45(8): 2894-2904. doi: 10.3799/dqkx.2020.110
    Citation: Gou Zhengbin, Liu Han, Duan Yaoyao, Li Jun, Zhang Shizhen, 2020. Timescales of Partial Melting in Yadong Region of Higher Himalayan Crystalline Sequence: Constraints from Zircon U-Pb Geochronology of Naiduila Migmatites. Earth Science, 45(8): 2894-2904. doi: 10.3799/dqkx.2020.110

    亚东地区高喜马拉雅结晶岩系部分熔融的时限:来自乃堆拉混合岩锆石U-Pb年代学的约束

    doi: 10.3799/dqkx.2020.110
    基金项目: 

    国家自然科学基金项目 41802071

    国家自然科学基金项目 41773026

    中国地质调查局项目 DD20190053

    详细信息
      作者简介:

      苟正彬(1986-), 男, 博士, 主要从事大陆造山带形成与构造演化研究.ORCID:0000-0002-0975-3557.E-mail:gzb3792@163.com

    • 中图分类号: P597

    Timescales of Partial Melting in Yadong Region of Higher Himalayan Crystalline Sequence: Constraints from Zircon U-Pb Geochronology of Naiduila Migmatites

    • 摘要: 高喜马拉雅结晶岩系由中-高级变质岩和淡色花岗岩组成,是研究喜马拉雅造山带形成与演化的天然实验室.高喜马拉雅结晶岩系混合岩和淡色花岗岩中锆石和独居石的定年结果往往是分散的,对这些定年结果的解释还存在争议,严重制约了对高喜马拉雅结晶岩系变质、部分熔融作用的起始时间和持续过程的理解.对造山带中段亚东地区高喜马拉雅结晶岩系上部构造层位的乃堆拉混合岩进行了锆石U-Pb年代学研究.研究结果显示,乃堆拉混合岩暗色体给出了29.1~24.7 Ma的进变质和部分熔融的时间,混合岩浅色体获得了25.0~13.7 Ma的退变质和熔体结晶的时间,表明亚东地区高喜马拉雅结晶岩系的部分熔融作用大约开始于30 Ma并持续到13 Ma,暗示它是一个长期、持续的过程.亚东地区高喜马拉雅结晶岩系发生部分熔融的时间明显早于藏南拆离系和主中央断裂开始活动的时间,部分熔融可能在高喜马拉雅结晶岩系俯冲过程中就已经发生了.相关成果为建立造山带构造演化模型提供了新信息.

       

    • 图  1  青藏高原地质简图(a)和研究区地质简图(b)

      GCT.大反向逆冲断裂;STD.藏南拆离系;MCT.主中央逆冲断裂;MBT.主边界逆冲断裂;MFT.主前缘逆冲断裂

      Fig.  1.  Simplified geological maps of the Tibetan Plateau (a) and the study area (b)

      图  2  混合岩野外露头.

      Fig.  2.  Field outcrops of the studied migmatites

      图  3  混合岩暗色体(a、b)和浅色体(c、d)样品显微镜下照片

      Qz.石英;Pl.斜长石;Bt.黑云母;Grt.石榴石;Crd.堇青石;Sil.矽线石

      Fig.  3.  Photomicrographs of the melanosomes (a, b) and leucosomes (c, d)

      图  4  混合岩浅色体(a)和暗色体(b)中代表性锆石阴极发光图像及定年结果

      圆圈为U-Pb年龄(Ma)分析点

      Fig.  4.  Cathodoluminescence images and ages of typical zircons in leucosomes (a) and melanosomes (b)

      图  5  混合岩浅色体和暗色体的锆石U-Pb谐和图(a、c)和稀土元素配分模式(b、d)

      Fig.  5.  Zircon U-Pb concordia diagrams (a, c) and chondrite-normalized REE patterns (b, d) of leucosomes and melanosomes

      图  6  高喜马拉雅结晶岩系变质作用P-T-t轨迹和部分熔融的时间及持续过程

      Gou et al.(2016)张泽明等(2017)修改

      Fig.  6.  Metamorphic P-T-t path of the Higher Himalayan crystalline sequence, showing the time and duration of partial melting

    • Ambrose, T. K., Larson, K. P., Guilmette, C., et al., 2015. Lateral Extrusion, Underplating, and Out-of-Sequence Thrusting within the Himalayan Metamorphic Core, Kanchenjunga, Nepal. Lithosphere, 7(4):441-464. https://doi.org/10.1130/l437.1
      Bea, F., Pereira, M. D., Stroh, A., 1994. Mineral/Leucosome Trace-Element Partitioning in a Peraluminous Migmatite (a Laser Ablation-ICP-MS Study). Chemical Geology, 117(1-4):291-312. https://doi.org/10.1016/0009-2541(94)90133-3
      Carosi, R., Montomoli, C., Langone, A., et al., 2015. Eocene Partial Melting Recorded in Peritectic Garnets from Kyanite-Gneiss, Greater Himalayan Sequence, Central Nepal. Geological Society, London, Special Publications, 412(1):111-129. https://doi.org/10.1144/sp412.1
      Corfu, F., Hanchar, J.M., Hoskin, P.W.O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1):469-500. https://doi.org/10.2113/0530469
      Corrie, S. L., Kohn, M. J., 2011. Metamorphic History of the Central Himalaya, Annapurna Region, Nepal, and Implications for Tectonic Models. Geological Society of America Bulletin, 123(9-10):1863-1879. https://doi.org/10.1130/b30376.1
      Cottle, J. M., Searle, M. P., Horstwood, M. S. A., et al., 2009. Timing of Midcrustal Metamorphism, Melting, and Deformation in the Mount Everest Region of Southern Tibet Revealed by U(-Th)-Pb Geochronology. The Journal of Geology, 117(6):643-664. https://doi.org/10.1086/605994
      Cui, H.J., Gou, Z.B., Liu, H., et al., 2019. The Petrogenesis and Tectonic Significance of the Late Early Cretaceous Granodiorites in the Nyixung Area, Western Lhasa Block, Xizang. Sedimentary Geology and Tethyan Geology, 39(1):1-13 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl201901001
      Ding, H.X., Zhang, Z.M., Li, M.M., et al., 2017. Metamorphism and Tectonic Significance of the Greater Himalayan Crystalline Sequence in Cona Region, Eastern Himalaya. Acta Petrologica Sinica, 33(8):2357-2376 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201708003
      Fu, J.G., Li, G.M., Wang, G.H., et al., 2018. Timing of E-W Extension Deformation in North Himalaya:Evidences from Ar-Ar Age in the Cuonadong Dome, South Tibet. Earth Science, 43(8):2638-2650 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808008.htm
      Godin, L., Grujic, D., Law, R. D., et al., 2006. Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones:An Introduction. Geological Society, London, Special Publications, 268(1):1-23. https://doi.org/10.1144/gsl.sp.2006.268.01.01
      Gou, Z. B., Dong, X., Wang, B. D., 2019. Petrogenesis and Tectonic Implications of the Paiku Leucogranites, Northern Himalaya. Journal of Earth Science, 30(3):525-534. https://doi.org/10.1007/s12583-019-1219-8
      Gou, Z. B., Zhang, Z. M., Dong, X., et al., 2016. Petrogenesis and Tectonic Implications of the Yadong Leucogranites, Southern Himalaya. Lithos, 256-257:300-310. https://doi.org/10.1016/j.lithos.2016.04.009
      Groppo, C., Rolfo, F., Indares, A., 2012. Partial Melting in the Higher Himalayan Crystallines of Eastern Nepal:The Effect of Decompression and Implications for the 'Channel Flow' Model. Journal of Petrology, 53(5):1057-1088. https://doi.org/10.1093/petrology/egs009
      Groppo, C., Rubatto, D., Rolfo, F., et al., 2010. Early Oligocene Partial Melting in the Main Central Thrust Zone (Arun Valley, Eastern Nepal Himalaya). Lithos, 118(3-4):287-301. https://doi.org/10.1016/j.lithos.2010.05.003
      Guilmette, C., Indares, A., Hébert, R, 2011. High-Pressure Anatectic Paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis:Textural Evidence for Partial Melting, Phase Equilibria Modeling and Tectonic Implications. Lithos, 124(1-2):66-81. https://doi.org/10.1016/j.lithos.2010.09.003
      Iaccarino, S., Montomoli, C., Carosi, R., et al., 2015. Pressure-Temperature-Time-Deformation Path of Kyanite-Bearing Migmatitic Paragneiss in the Kali Gandaki Valley (Central Nepal):Investigation of Late Eocene-Early Oligocene Melting Processes. Lithos, 231:103-121. https://doi.org/10.1016/j.lithos.2015.06.005
      Imayama, T., Takeshita, T., Yi, K., et al., 2012. Two-Stage Partial Melting and Contrasting Cooling History within the Higher Himalayan Crystalline Sequence in the Far-Eastern Nepal Himalaya. Lithos, 134-135:1-22. https://doi.org/10.1016/j.lithos.2011.12.004
      Kali, E., Leloup, P. H., Arnaud, N., et al., 2010. Exhumation History of the Deepest Central Himalayan Rocks, Ama Drime Range:Key Pressure-Temperature-Deformation-Time Constraints on Orogenic Models. Tectonics, 29:TC2014. https://doi.org/10.1029/2009tc002551
      Kohn, M. J., Corrie, S. L., 2011. Preserved Zr-Temperatures and U-Pb Ages in High-Grade Metamorphic Titanite:Evidence for a Static Hot Channel in the Himalayan Orogen. Earth and Planetary Science Letters, 311(1-2):136-143. https://doi.org/10.1016/j.epsl.2011.09.008
      Li, W.C., Zhang, Z.M., Xiang, H., et al., 2015. Metamorphism and Anatexis of the Himalayan Orogen:Petrology and Geochronology of HP Pelitic Granulites from the Yadong Area, Southern Tibet. Acta Petrologica Sinica, 31(5):1219-1234 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201505003.htm
      Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082
      Ludwig, K.R., 2003. ISOPLOT: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley.
      Pan, G.T., Wang, L.Q., Li, X.Z., et al., 2001. The Tectonic Framework and Spatial Allocation of the Archipelagic Arc Basin Systems on the Qinghai-Xizang Plateau. Sedimentary Geology and Tethyan Geology, 21(3):1-26 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl200103001
      Patiño Douce, A. E., Harris, N., 1998. Experimental Constraints on Himalayan Anatexis. Journal of Petrology, 39(4):689-710. https://doi.org/10.1093/petroj/39.4.689
      Regis, D., Warren, C. J., Mottram, C. M., et al., 2016. Using Monazite and Zircon Petrochronology to Constrain the P-T-t Evolution of the Middle Crust in the Bhutan Himalaya. Journal of Metamorphic Geology, 34(6):617-639. https://doi.org/10.1111/jmg.12196
      Rubatto, D., Chakraborty, S., Dasgupta, S., 2013. Timescales of Crustal Melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) Inferred from Trace Element-Constrained Monazite and Zircon Chronology. Contributions to Mineralogy and Petrology, 165(2):349-372. https://doi.org/10.1007/s00410-012-0812-y
      Sawyer, E.W., 2008. Atlas of Migmatites. NRC Research Press, Ottawa.
      Searle, M. P., Godin, L., 2003. The South Tibetan Detachment and the Manaslu Leucogranite:A Structural Reinterpretation and Restoration of the Annapurna-Manaslu Himalaya, Nepal. The Journal of Geology, 111(5):505-523. https://doi.org/10.1086/376763
      Streule, M. J., Searle, M. P., Waters, D. J., et al., 2010. Metamorphism, Melting, and Channel Flow in the Greater Himalayan Sequence and Makalu Leucogranite:Constraints from Thermobarometry, Metamorphic Modeling, and U-Pb Geochronology. Tectonics, 29:TC5011. https://doi.org/10.1029/2009tc002533
      Wang, J. M., Zhang, J. J., Wang, X. X., 2013. Structural Kinematics, Metamorphic P-T Profiles and Zircon Geochronology across the Greater Himalayan Crystalline Complex in South-Central Tibet:Implication for a Revised Channel Flow. Journal of Metamorphic Geology, 31(6):607-628. https://doi.org/10.1111/jmg.12036
      Wang, J. M., Rubatto, D., Zhang, J. J., 2015. Timing of Partial Melting and Cooling across the Greater Himalayan Crystalline Complex (Nyalam, Central Himalaya):In-Sequence Thrusting and Its Implications. Journal of Petrology, 56(9):1677-1702. https://doi.org/10.1093/petrology/egv050
      Wang, J. M., Zhang, J. J., Liu, K., et al., 2016. Spatial and Temporal Evolution of Tectonometamorphic Discontinuities in the Central Himalaya:Constraints from P-T Paths and Geochronology. Tectonophysics, 679:41-60. https://doi.org/10.1016/j.tecto.2016.04.035
      Wang, L.Q., Pan, G.T., Li, D.M., et al., 2000. The Evolution and Mineralization of the Jomda-Weixi Continental Marginal Volcanic Arc, Southwestern China. Sedimentary Geology and Tethyan Geology, 20(2):1-17 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl200002001
      Waters, D. J., 2001. The Significance of Prograde and Retrograde Quartz-bearing Intergrowth Microstructures in Partially Melted Granulite-Facies Rocks. Lithos, 56(1):97-110. https://doi.org/10.1016/s0024-4937(00)00061-x
      Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589
      Vannay, J. C., Hodges, K. V., 1996. Tectonometamorphic Evolution of the Himalayan Metamorphic Core between the Annapurna and Dhaulagiri, Central Nepal. Journal of Metamorphic Geology, 14(5):635-656. https://doi.org/10.1046/j.1525-1314.1996.00426.x
      Viskupic, K., Hodges, K. V., Bowring, S. A., 2005. Timescales of Melt Generation and the Thermal Evolution of the Himalayan Metamorphic Core, Everest Region, Eastern Nepal. Contributions to Mineralogy and Petrology, 149(1):1-21. https://doi.org/10.1007/s00410-004-0628-5
      Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Zeiger, K., Gordon, S. M., Long, S. P., et al., 2015. Timing and Conditions of Metamorphism and Melt Crystallization in Greater Himalayan Rocks, Eastern and Central Bhutan:Insight from U-Pb Zircon and Monazite Geochronology and Trace-Element Analyses. Contributions to Mineralogy and Petrology, 169(5):47. https://doi.org/10.1007/s00410-015-1143-6
      Zhang, L.K., Zhang, Z., Li, G.M., et al., 2018. Rock Assemblage, Structural Characteristics and Genesis Mechanism of the Cuonadong Dome, Tethys Himalaya. Earth Science, 43(8):2664-2683 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201808010
      Zhang, Z.M., Dong, X., Ding, H.X., et al., 2017. Metamorphism and Partial Melting of the Himalayan Orogen. Acta Petrologica Sinica, 33(8):2313-2341 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201708001.htm
      Zhang, Z.M., Kang, D.Y., Ding, H.X., et al., 2018. Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites. Earth Science, 43(1):82-98 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201801005
      崔浩杰, 苟正彬, 刘函, 等, 2019.拉萨地块西段尼雄地区早白垩世晚期花岗闪长岩的成因及构造意义.沉积与特提斯地质, 39(1):1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl201901001
      丁慧霞, 张泽明, 李梦梅, 等, 2017.喜马拉雅造山带东段错那地区高喜马拉雅结晶岩系的变质作用与构造意义.岩石学报, 33(8):2357-2376. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201708003
      付建刚, 李光明, 王根厚, 等, 2018.北喜马拉雅E-W向伸展变形时限:来自藏南错那洞穹隆Ar-Ar年代学证据.地球科学, 43(8):2638-2650. doi: 10.3799/dqkx.2018.530
      李旺超, 张泽明, 向华, 等, 2015.喜马拉雅造山带核部的变质作用与部分熔融:亚东地区高压泥质麻粒岩的岩石学与年代学研究.岩石学报, 31(5):1219-1234. http://d.old.wanfangdata.com.cn/periodical/ysxb98201505003
      潘桂棠, 王立全, 李兴振, 等, 2001.青藏高原区域构造格局及其多岛弧盆系的空间配置.沉积与特提斯地质, 21(3):1-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl200103001
      王立全, 潘桂棠, 李定谋, 等, 2000.江达-维西陆缘火山弧的形成演化及成矿作用.沉积与特提斯地质, 20(2):1-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl200002001
      吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200416002
      张林奎, 张志, 李光明, 等, 2018.特提斯喜马拉雅错那洞穹隆的岩石组合、构造特征与成因.地球科学, 43(8):2664-2683. doi: 10.3799/dqkx.2018.141
      张泽明, 董昕, 丁慧霞, 等, 2017.喜马拉雅造山带的变质作用与部分熔融.岩石学报, 33(8):2313-2341. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201708001
      张泽明, 康东艳, 丁慧霞, 等, 2018.喜马拉雅造山带的部分熔融与淡色花岗岩成因机制.地球科学, 43(1):82-98. doi: 10.3799/dqkx.2018.005
    • dqkx-45-8-2894-Table1-2.doc
    • 加载中
    图(6)
    计量
    • 文章访问数:  1279
    • HTML全文浏览量:  1168
    • PDF下载量:  71
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-04-13
    • 刊出日期:  2020-08-15

    目录

      /

      返回文章
      返回