• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    旋转地震学的研究进展

    孙丽霞 王赟 杨军 张毅博 王士成

    孙丽霞, 王赟, 杨军, 张毅博, 王士成, 2021. 旋转地震学的研究进展. 地球科学, 46(4): 1518-1536. doi: 10.3799/dqkx.2020.113
    引用本文: 孙丽霞, 王赟, 杨军, 张毅博, 王士成, 2021. 旋转地震学的研究进展. 地球科学, 46(4): 1518-1536. doi: 10.3799/dqkx.2020.113
    Sun Lixia, Wang Yun, Yang Jun, Zhang Yibo, Wang Shicheng, 2021. Progress in Rotational Seismology. Earth Science, 46(4): 1518-1536. doi: 10.3799/dqkx.2020.113
    Citation: Sun Lixia, Wang Yun, Yang Jun, Zhang Yibo, Wang Shicheng, 2021. Progress in Rotational Seismology. Earth Science, 46(4): 1518-1536. doi: 10.3799/dqkx.2020.113

    旋转地震学的研究进展

    doi: 10.3799/dqkx.2020.113
    基金项目: 

    国家自然科学基金项目 U1839208

    国家自然科学基金项目 41425017

    详细信息
      作者简介:

      孙丽霞(1993-), 女, 在读博士, 研究方向为旋转地震学.ORCID: 0000-0001-6744-2514.E-mail: lisaslx@foxmail.com

      通讯作者:

      王赟, ORCID: 0000-0002-3827-327X.E-mail: yunwang@mail.iggcas.ac.cn

    • 中图分类号: P315

    Progress in Rotational Seismology

    • 摘要: 系统调研了地震波旋转运动的理论研究、仪器研制、实际观测和应用,总结了地震波旋转运动的研究成果.首先介绍了旋转分量的定义及间接地通过平动分量求取旋转分量的方法,以及从不同应用角度对旋转分量展开的研究;其次介绍了旋转地震仪的分类及其原理,对比了不同类型旋转地震仪的优缺点及其目前可以达到的技术参数指标;最后讨论了旋转分量观测及其在天然地震以及勘探地震中的应用,包括建筑工程领域的尝试.调研发现国内外旋转运动的研究差距较大,国内仍处于探索阶段.其中,不同震源与介质类型所产生的各种地震波在旋转分量上的特征差异一直是领域关注的焦点;如何制造高精度、高灵敏度、宽频带的旋转地震仪是国外同行攻关的热点;如何在地震学及相关工程中应用旋转分量,联合平动分量反演地下介质精细结构和震源性质的新特性参数是旋转运动学发展的重点.

       

    • 图  1  位移场变化

      Fig.  1.  Changes of displacement field

      图  2  两点差分法示意图(吴其伟, 2013)

      Fig.  2.  Schematic diagram of two-point difference method

      图  3  视波速分解示意图

      Fig.  3.  Decomposition of apparent wave velocity

      图  4  三点差分法原理示意

      Fig.  4.  Principle of three-point difference method

      图  5  相速度峰值等值线图(a左列)和绕θ轴(b中)、φ轴(c右列)旋转的旋转率峰值等值线

      波传播方向与θφ组成两两正交的笛卡尔坐标系,其上、中、下3行分别为qP波、qS1波和qS2波的等值线图

      Fig.  5.  Example of the peak phase velocity in km/s (a) and peak rotation rate around two axes θ (b) and φ (c) in nr/s as a function of the wave propagation direction

      图  6  旋转地震仪简略图

      a.3DOF装置及原理图;b. 6DOF装置及原理图;c. Rotaphone-D

      Fig.  6.  Schematic diagrams of the Rotaphones and general views

      图  7  TAPS反向平行摆地震仪仪器原理图(a)和装置图(b)

      Fig.  7.  The TAPS rotational seismometer: (a) scheme; (b) general view

      图  8  HorizonTM MEMS角速率传感器HZ1-200-100装置图(a)和装置原理图(b)

      Fig.  8.  Horizon TM MEMS angular rate sensor: (a) HZ1-200-100; (b) scheme of operation

      图  9  电化学旋转地震仪

      a.三明治夹心状电极结构的旋转地震计原理; b.电容位移换能式结构的旋转地震计原理; c.R-1装置

      Fig.  9.  The electrochemical rotational seismometer

      图  10  空间光学扭秤式旋转地震计

      Fig.  10.  Space optical torsion scale rotational seismometer

      图  11  环形激光旋转地震仪环形激光地震仪原理(a)和G-ring装置图(b)

      Fig.  11.  The ring laser rotational seismometer: (a) scheme; (b) G-ring

      图  12  旋转光纤地震计

      a. FOSREM光纤旋转地震计; b. 商用的BlueSeis-3A型三轴旋转地震计; c. 研发中的BlueSeis-1X型单轴旋转地震计

      Fig.  12.  Rotational seismometers based on FOG

      图  13  直接测量的旋转分量(黑线)与平动台阵组合换算得到的旋转分量(灰线)相关性(灰色点线为等高线)

      a.理论合成与平动分量换算的旋转运动相关性;b.直接观测与间接观测旋转分量的相关性

      Fig.  13.  Vertical component of rotation rate (black lines) and array-derived rotation rate (gray lines) calculated

      图  14  旋转率与横向加速度曲线

      Fig.  14.  Rotation rate (red, right axis) and transverse acceleration (black, left axis) and maximum normalized (zero-lag) cross-correlation (black line) and a smoothed average (red line)

      图  15  第335站去面波图

      a.Z分量;b.X分量;c.Ry分量

      Fig.  15.  Three-component receiver gather at station #335 of the Kettleman data set before and after attenuation of the slow ground-roll signal using the three-component ground-roll polarization signature

      图  16  3个旋转分量角速度峰值随震中距的衰减拟合曲线

      Fig.  16.  Attenuation fitting curve of peak angular velocity of three rotational components with epicenter distance

      图  17  频率范围

      Fig.  17.  Frequency range diagram

      表  1  各种旋转地震观测仪器的性能对比

      Table  1.   Performance comparison of various rotational seismometers

      技术分类 测量等效分辨率 动态范围(dB) 测量频带(Hz) 装置型号 研究机构
      阵列间接测量法 1.67×10-8 r/s 100 1~100 3DOF 捷克查理大学
      2.16×10-9 r/s 120 2~60 6DOF 捷克查理大学
      1.1×10-6 r/s@0.5 Hz 80 0.2~25.0 S-5-SR 俄罗斯科学院
      非光学直接测量 电磁换能式 10-7 r/s 120 0.7~50.0 TAPS 波兰华沙军事科学院
      机电结构电容式 6×10-8 r/s/rtHz 110 0.03~50.00 R2 德国慕尼黑大学
      55 mr/s@1 Hz
      230 mr/s@4 Hz
      1~25 LQ.RP.P.H2O 加州圣克鲁斯地质勘探局地震科学中心
      57 mr/s@1 Hz
      22 mr/s@4 Hz
      1~35 LQS.RP.P.HH2O 加州圣克鲁斯地质勘探局地震科学中心
      光学直接测量 光学扭秤式 10-7 r/s/rtHz@10 mHz 0.01~10.00 IFRS 美国华盛顿大学
      激光陀螺仪 9×10-11 r/s/rtHz 280 0.003~10.000 G-Ring 德国慕尼黑工业大学
      10-11 r/s@0.01~1 Hz 300s~5 GINGERino 意大利核子物理国家研究院
      光纤陀螺仪 2×10-8 r/s/rtHz 180 DC~328.12 FOSREM 波兰华沙军事科学院
      2×10-8 r/s/rtHz 135 0.01~60.00 blueSeis-3A 法国ixBlue公司
      1×10-9 r/s/rtHz 0.01~100.00 blueSeis-1X 法国ixBlue公司
      ~1×10-9 r/s 北京航空航天大学
      ~5×10-9 r/s ~10-3~10 北京大学
      下载: 导出CSV
    • Barak, O., Herkenhoff, F., Dash, R., et al., 2014. Six-Component Seismic Land Data Acquired with Geophones and Rotation Sensors: Wave-Mode Selectivity by Application of Multicomponent Polarization Filtering. The Leading Edge, 33(11): 1224-1232. doi: 10.1190/tle33111224.1
      Båth, M., 1979. Introduction to Seismology. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5283-8
      Belfi, J., Beverini, N., Carelli, G., et al., 2012. Horizontal Rotation Signals Detected by "G-Pisa" Ring Laser for the Mw=9.0, March 2011, Japan Earthquake. Journal of Seismology, (16): 767-776. https://doi.org/10.1007/s10950-012-9276-9
      Bernauer, F., Wassermann, J., Igel, H., 2012. Rotational Sensors: A Comparison of Different Sensor Types. Journal of Seismology, 16(4): 595-602. https://doi.org/10.1007/s10950-012-9286-7
      Bernauer, M., Fichtner, A., Igel, H., 2009. Inferring Earth Structure from Combined Measurements of Rotational and Translational Ground Motions. Geophysics, 74(6): WCD41-WCD47. https://doi.org/10.1190/1.3211110
      Brokešová, J., Málek, J., 2013. Rotaphone, a Self-Calibrated Six-Degree-of-Freedom Seismic Sensor and Its Strong-Motion Records. Seismological Research Letters, 84(5): 737-744. https://doi.org/10.1785/0220120189
      Brokešová, J., Málek, J., 2015. Six-Degree-of-Freedom Near-Source Seismic Motions II: Examples of Real Seismogram Analysis and S-Wave Velocity Retrieval. Journal of Seismology, 19(2): 511-539. https://doi.org/10.1007/s10950-015-9480-5
      Brokešová, J., Málek, J., Kolínský, P., 2012. Rotaphone, a Mechanical Seismic Sensor System for Field Rotation Rate Measurements and Its In Situ Calibration. Journal of Seismology, 16(4): 603-621. https://doi.org/10.1007/s10950-012-9274-y
      Cai, N.C., Fu, Z.Z., 2009. Manufacture of Rotation Seismograph. Acta Seismologica Sinica, 31(3): 347-352(in Chinese with English abstract). http://adsabs.harvard.edu/abs/2009BuSSA..99.1443J
      Chen, Q.J., Yin, J.M., Yang, Y.S., 2014. Time-Frequency Characteristic Analysis of Six-Degree-Freedom Ground Motion Records. Chinese Quarterly of Mechanics, 35(3): 499-506(in Chinese with English abstract).
      Cochard, A., Igel, H., Schuberth, B., et al., 2009.Rotational Motions in Seismology: Theory, Observation, Simulation. In: Teisseyre, R., Takeo, M., Majewski, E., eds., Earthquake Source Asymmetry, Structural Media and Rotation Effects. Springer-Verlag, Berlin Heidelberg, 391-412.
      Driel, M.V., Wassermann, J., Nader, M.F., et al., 2012. Strain Rotation Coupling and Its Implications on the Measurement of Rotational Ground Motions. Journal of Seismology, 16(4): 657-668. https://doi.org/10.1007/s10950-012-9296-5
      Droste, Z., Teisseyre, R., 1976. Rotational and Displacemental Components of Ground Motion as Deduced from Data of the Azimuth System of Seismograph. Publ. Inst. Geophys. Pol. Acad. Sci. 97: 157-167. http://www.researchgate.net/publication/291981429_Rotational_and_displacemental_components_of_ground_motion_as_deduced_from_data_of_the_azimuth_system_of_seismograph
      Dunn, R.W., Mahdi, H.H., Al-Shukri, H.J., 2009. Design of a Relatively Inexpensive Ring Laser Seismic Detector. Bulletin of the Seismological Society of America, 99(2B): 1437-1442. https://doi.org/10.1785/0120080092
      Evans, J.R., Kozak, J.T., Jedlicka, P., et al., 2016. Developments in New Fluid Rotational Seismometers: Instrument Performance and Future Directions. Bulletin of the Seismological Society of America, 106(6): 2865-2876. https://doi.org/10.1785/0120150265
      Feng, X., Fehler, M., Brown, S., et al., 2018. Short-Period Nonlinear Viscoelastic Memory of Rocks Revealed by Copropagating Longitudinal Acoustic Waves. Journal of Geophysical Research: Solid Earth, 123(5): 3993-4006. https://doi.org/10.1029/2017jb015012
      Ferrari, G., 2006. Note on the Historical Rotation Seismographs, in Earthquake Source Asymmetry, Structural Media and Rotation Effects. Springer Verlag, Heidelberg, 367-376.
      Fichtner, A., Igel, H., 2009. Sensitivity Densities for Rotational Ground-Motion Measurements. Bulletin of the Seismological Society of America, 99(2B): 1302-1314. http://dx.doi.org/10.1785/0120080064
      Graizer, V.M., 1991. Inertial Seismometry Methods. Izvestiya of the USSR Academy of Sciences. Physics of the Solid Earth, 27(1): 51-61. http://ci.nii.ac.jp/naid/10020498703
      Gu, H. D., Chen, Y. T., 1988. Significance of Rotation in Seismology. Northeastern Seismological Research, 1(2): 1-9(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DDYJ198802000.htm
      Guyer, R. A., McCall, K. R., Boitnott, G. N., 1995. Hysteresis, Discrete Memory, and Nonlinear Wave Propagation in Rock: A New Paradigm. Physical Review Letters, 74(17): 3491-3494. https://doi.org/10.1103/physrevlett.74.3491
      He, C., Luo, Q. F., Hong, Z., 2011. Brief Discussion on the Study of the Seismic Rotational Components. Journal of Seismological Research, 34(1): 81-87(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZYJ201101014.htm
      Hong, Z., Cui, T.C., 2012. Research of Rotation Component of Ground Motion. Shanxi Architecture, 38(8): 39-40(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-jzsx201208023.htm
      Hu, D. S., 1989. The Theory of Elastic Dynamics. Geological Publishing House, Beijing(in Chinese).
      Igel, H., Cochard, A., Wassermann, J., et al., 2007. Broad-Band Observations of Earthquake-Induced Rotational Ground Motions. Geophysical Journal International, 168(1): 182-196. https://doi.org/10.1111/j.1365-246x.2006.03146.x
      Jaroszewicz, L., Kurzych, A., Krajewski, Z., et al., 2016. Review of the Usefulness of Various Rotational Seismometers with Laboratory Results of Fibre-Optic Ones Tested for Engineering Applications. Sensors (Basel), 16(12): 2161. https://doi.org/10.3390/s16122161
      Jaroszewicz, L.R., Krajewski, Z., Teisseyre, K.P., 2012. Usefulness of AFORS-Autonomous Fibre-Optic Rotational Seismograph for Investigation of Rotational Phenomena. Journal of Seismology, 16(4): 573-586. https://doi.org/10.1007/s10950-011-9258-3
      Jaroszewicz, L.R., Krajewski, Z., Teisseyre, R., et al., 2005. Usefulness of the Fiber-Optic Interferometer for the Investigation of the Seismic Rotation Waves. Optica Applicata, 34(2): 383-394. https://doi.org/10.1016/0165-2370(94)00841-n
      Kharin, D.A., Simonov, L.I., 1969. VBPP Seismometer for Sepa- Rate Registration of Translational Motion and Rotations. Seismic Instruments, 5: 51-66 (in Russian).
      Kurzych, A., Jaroszewicz, L.R., Krajewski, Z., et al., 2014. Fibre Optic System for Monitoring Rotational Seismic Phenomena. Sensors (Basel), 14(3): 5459-5469. https://doi.org/10.3390/s140305459
      Kurzych, A., Jaroszewicz, L.R., Krajewski, Z.J., et al., 2018. Fibre-Optic Sagnac Interferometer in a FOG Minimum Configuration as Instrumental Challenge for Rotational Seismology. Journal of Lightwave Technology, 36 (4): 879-884. https://doi.org/10.1109/jlt.2017.2769136
      Langston, C.A., Lee, W.H.K., Lin, C.J., et al., 2009. Seismic-Wave Strain, Rotation, and Gradiometry for the 4 March 2008 TAIGER Explosions. Bulletin of the Seismological Society of America, 99(2B): 1287-1301. http://dx.doi.org/10.1785/0120080200
      Lai, X. L., Sun, Y., 2017. Three Component Rotational Ground Motion Obtained from Explosive Source Data. Earth Science, 42(4): 645-651(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201704014.htm
      Lee, C.E.B., Celebi, M., Todorovska, M.I., et al., 2007.Rotational Seismology and Engineering Applications—Proceedings for the First International Workshop, Menlo Park, California, U.S.A.-September 18 to 19, 2007. United States Geological Survey-Publications, Palo Alto, California.
      Lee, W.H.K., Igel, H., Trifunac, M.D., 2009. Recent Advances in Rotational Seismology. Seismological Research Letters, 80 (3): 479-490. http://dx.doi.org/10.1785/gssrl.80.3.479
      Li, X.P., 2012. Determination Method and Engineering Characteristics of Rotational Component in Earthquake Ground Motion. Chongqing University, Chongqing(in Chinese with English abstract).
      Li, Y., Luo, R., Chen, F., et al., 2016. A Fiber Optic Gyroscope Prototype with High Bias Stability for Rotational Seismology Phenomena Measurement. 4th IWGoRS Workshop, Germany.
      Lin, C., Huang, H., Dinh, P.N., et al., 2011. Rotational Motions for Teleseismic Surface Waves. Geophysical Research Letters, 38(15): 532-560. https://doi.org/10.1029/2011gl047959
      Liu, L.F., Chen, G., Jin, G.L., 2007. Principle and Classification of Optic Fiber Gyroscope. Modern Defence Technology, 35(2): 59-64(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDFJ200702014.htm
      Lyubushin, A.A., Kaláb, Z., Lednická, M., et al., 2015. Coherence Spectra of Rotational and Translational Components of Mining Induced Seismic Events. Acta Geodaetica et Geophysica, 50(4): 391-402. https://doi.org/10.1007/s40328-015-0099-3
      Madziwa-Nussinov, T., Wagoner, K., Shore, P., et al., 2012. Characteristics and Response of a Rotational Seismometer to Seismic Signals. Bulletin of the Seismological Society of America, 102 (2): 563-573. http://dx.doi.org/10.1785/0120110166
      McLeod, D.P., Stedman, G.E., Webb, T.H., et al., 1998. Comparison of Standard and Ring Laser Rotational Seismograms. Bulletin of the Seismological Society of America, 88(6): 1495-1503.
      Newmark, N.M., Rosenblueth, E., 1971. Fundamentals of Earthquake Engineering. Journal of Applied Mechanics, 39(2): 366. https://doi.org/10.1115/1.3422685
      Nigbor, R., 1994. Six-Degree-of-Freedom Ground-Motion Measurement. Bulletin of the Seismological Society of America, 84(5): 1665-1669. https://doi.org/10.1016/0148-9062(95)93429-s
      Nigbor, R.L., Evans, J.R., Hutt, C.R., 2009. Laboratory and Field Testing of Commercial Rotational Seismometers. Bulletin of the Seismological Society of America, 99(2B): 1215-1227. https://doi.org/10.1785/0120080247
      Ning, I.L.C., Sava, P., 2017. High-Resolution Multicomponent Distributed Acoustic Sensing. 2017 SEG International Exposition and Annual Meeting, Houston, Texas.
      Ning, I.L.C., Sava, P., 2018. Multicomponent Distributed Acoustic Sensing: Concept and Theory. Geophysics, 83(2): P1-P8. https://doi.org/10.1190/geo2017-0327.1
      Oliveira, C.S., Bolt, B.A., 1989. Rotational Components of Surface Strong Ground Motion. Earthquake Engineering & Structural Dynamics, 18(4): 517-526. https://doi.org/10.1002/eqe.4290180406
      Pham, N.D., Igel, H., Puente, J.D.L., et al., 2010. Rotational Motions in Homogeneous Anisotropic Elastic Media. Geophysics, 75(5): D47-D56. https://doi.org/10.1190/1.3479489
      Reinwald, M., Bernauer, M., Igel, H., et al., 2016. Improved Finite-Source Inversion through Joint Measurements of Rotational and Translational Ground Motions: A Numerical Study. Solid Earth, 7(5): 1467-1477. doi: 10.5194/se-7-1467-2016
      Renaud, G., Le Bas, P.Y., Johnson, P.A., 2012. Revealing Highly Complex Elastic Nonlinear (Anelastic) Behavior of Earth Materials Applying a New Probe: Dynamic Acoustoelastic Testing. Journal of Geophysical Research (Solid Earth), 117(B6): B06202. https://doi.org/10.1029/2011jb009127.
      Sbaa, S., Hollender, F., Perron, V., et al., 2017. Analysis of Rotation Sensor Data from the SINAPS @ Kefalonia (Greece) Post‑Seismic Experiment-Link to Surface Geology and Wavefield Characteristics. Earth Planets and Space, 69: 124-129. https://doi.org/10.1186/s40623-017-0711-6
      Schreiber, K.U., Hautmann, J.N., Velikoseltsev, A., et al., 2009. Ring Laser Measurements of Ground Rotations for Seismology. Bulletin of the Seismological Society of America, 99(2B): 1190-1198. http://dx.doi.org/10.1785/0120080171
      Simonelli, A., Belfi, J., Beverini, N., et al., 2016. First Deep Underground Observation of Rotational Signals from an Earthquake at Teleseismic Distance Using a Large Ring Laser Gyroscope. Annals of Geophysics, 59: 1-6. http://dx.doi.org/10.4401/ag-6970
      Solarz, L., Krajewski, Z., Jaroszewicz, L.R., 2004. Analysis of seismic Rotations Detected by Two Antiparallel Seismometers: Spine Function Approximation of Rotation and Displacement Velocities. Acta Geophysica Polonica, 52(2): 198-217. http://www.researchgate.net/publication/266594038_Analysis_of_seismic_rotations_detected_by_two_antiparallel_seismometers_Spline_function_approximation_of_rotation_and_displacement_velocities
      Sun, L., Zhang, Z., Wang, Y., 2018. Six-Component Elastic-Wave Simulation and Analysis. EGU General Assembly 2018, Geophysical Research Abstracts, 20.
      Suryanto, W., Igel, H., Wassermann, J., et al., 2006. First Comparison of Array-Derived Rotational Ground Motions with Direct Ring Laser Measurements. Bulletin of the Seismological Society of America, 96(6): 2059-2071. doi: 10.1785/0120060004
      Teisseyre, R., 2010. Tutorial on New Developments in the Physics of Rotational Motions. Translated World Seismology, 99(2B): 1028-1039. http://dx.doi.org/10.1785/0120080089
      Teisseyre, R., Suchcicki, J., Teisseyre, K.P., et al., 2003. Seismic Rotation Waves: Basic Elements of the Theory and Recordings. Annals of Geophysics, 46(4), 671-685. http://dx.doi.org/10.4401/ag-4375
      TenCate, J.A., Malcolm, A.E., Feng, X., et al., 2016. The Effect of Crack Orientation on the Nonlinear Interaction of a PWave with an S Wave. Geophysical Research Letters, 43(12): 6146-6152. http://dx.doi.org/10.1002/2016gl069219.
      Trifunac, M.D., 2009. Review: Rotations in Structural Response. Bulletin of the Seismological Society of America, 99(2B): 968-979. http://dx.doi.org/10.1785/0120080068
      Velikoseltsev, A., Schreiber, K. U., Yankovsky, A., et al., 2012. On the Application of Fiber Optic Gyroscopes for Detection of Seismic Rotations. Journal of Seismology, 16(4): 623-637. https://doi.org/10.1007/s10950-012-9282-y
      Wang, C., Wang, Y., 2017. Ground Roll Attenuation Using Polarization Analysis in the T-f-k Domain. Geophysical Journal International, 210(1): 240-254. https://doi.org/10.1093/gji/ggx152
      Wang, C., Wang, Y., Sun, P.Y., et al., 2019. Discussions on the Processing of the Multi-Component Seismic Vector Field. Applied Sciences, 9(9): 1770. https://doi.org/10.3390/app9091770
      Wang, C., Wang, Y., Wang, X.K., et al., 2016. Multicomponent Seismic Noise Attenuation with Multivariate Order Statistic Filers. Journal of Applied Geophysics, 133: 70-81. https://doi.org/10.1016/j.jappgeo.2016.07.023
      Wang, H. W., 2001. Optical Fiber Sensing Techniques and Applications. National Defense Industry Press, Beijing(in Chinese).
      Wang, J.J., 1995. The Effects of Tilts on Thin-Walled Cylindrical Shell Structure. Acta Seismologica Sinica, 17(2): 217-222(in Chinese).
      Wang, J.J., Hu, Y.X., 1991. A Study on Rotational Components of Surface Ground Motion. Earthquake Engineering and Engineering Vibration, 11(2): 1-10(in Chinese with English abstract).
      Wu, Q. W., 2013. Determination Method and Response to Structure of Tilt Component in Earthquake Ground Motion(Dissertation). Wuhan University of Technology, Wuhan(in Chinese with English abstract).
      Xun, C., Wang, C., Wang, Y., 2016. The Application of Multi-Directional Vector Media Filtering in Multi-Component Seismic Data. Geophysical Prospecting for Petroleum, 55(5): 703-710(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYWT201605011.htm
      Yan, Y. Y., 2017. Seismic Response Analysis of High-Rise Building under Different Types of Multi-Dimensional Earthquake Ground Motions(Dissertation). Wuhan University of Technology, Wuhan(in Chinese with English abstract).
      Yang, Y.H., Wang, Z., Yi, X.S., et al., 2005. High Precision Fiber Optic Gyroscope Based on Er-Doped Superfluorescent Fiber Source. Journal of Beijing University of Aeronautics and Astronautics, 31(11): 1159-1162(in Chinese with English abstract). http://www.researchgate.net/publication/298474106_High_precision_fiber_optic_gyroscope_based_on_Er-doped_superfluorescent_fiber_source
      Zembaty, Z., Kokot, S., Bobra, P., 2013. Application of Rotation Rate Sensors in an Experiment of Stiffness Reconstruction. Smart Mater and Structures, 22(7): 077001. https://doi.org/10.1088/0964-1726/22/7/077001
      Zhang, J., Li, J.B., Ruan, A.G., et al., 2018. Application of Converted S-Waves from the Active-Source Ocean Bottom Seismometer Experiment. Earth Science, 43(10): 3778-3791(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201810037.htm
      Zhao, M.H., Du, F., Wang, Q., et al., 2018. Current Status and Challenges for Three-Dimensional Deep Seismic Survey in the South China Sea. Earth Science, 43(10): 3749-3761(in Chinese with English abstract). http://www.researchgate.net/publication/329984216_Current_Status_and_Challenges_for_Three-Dimensional_Deep_Seismic_Survey_in_the_South_China_Sea
      Zhu, Z.X., 1983. On the Nonlinear Strain Measures. Advances in Mechanics, 13(3): 259-272(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXJZ198303000.htm
      蔡乃成, 付子忠, 2009. 旋转地震仪的研制. 地震学报, 31(3): 347-352. doi: 10.3321/j.issn:0253-3782.2009.03.011
      陈清军, 殷建明, 杨永胜, 2014. 六分量地震动实测记录的时频特征分析. 力学季刊, 35(3): 499-506. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201403015.htm
      顾浩鼎, 陈运泰, 1988. 旋转在地震学中的意义. 东北地震研究, 1(2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYJ198802000.htm
      何超, 罗奇峰, 洪钟, 2011. 关于地震动转动分量的研究. 地震研究, 34(1): 81-87. doi: 10.3969/j.issn.1000-0666.2011.01.013
      洪钟, 崔太成, 2012. 地震动转动分量研究. 山西建筑, 38(8): 39-40. doi: 10.3969/j.issn.1009-6825.2012.08.023
      胡德绥, 1989. 弹性波动力学. 北京: 地质出版社.
      赖晓玲, 孙译, 2017. 利用爆炸震源资料获得三分量旋转地震动. 地球科学, 42(4): 645-651. doi: 10.3799/dqkx.2017.052
      李旭鹏, 2012. 地震动扭转分量的确定方法及工程特性研究(硕士学位论文). 重庆: 重庆大学.
      刘兰芳, 陈刚, 金国良, 2007. 光纤陀螺仪基本原理与分类. 现代防御技术, 35(2): 59-64. doi: 10.3969/j.issn.1009-086X.2007.02.015
      王惠文, 2001. 光纤传感技术与应用. 北京: 国防工业出版社.
      王君杰, 1995. 地震动扭转分量对薄壁柱壳结构的影响. 地震学报, 17(2): 217-222. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB502.010.htm
      王君杰, 胡聿贤, 1991. 地震动旋转分量的研究. 地震工程与工程振动, 11(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC199102000.htm
      吴其伟, 2013. 地震动摇摆分量的确定方法及对结构响应研究(硕士学位论文). 武汉: 武汉理工大学.
      寻超, 汪超, 王赟, 2016. 多方向矢量中值滤波在多分量地震数据中的应用. 石油物探, 55(5): 703-710. doi: 10.3969/j.issn.1000-1441.2016.05.009
      严艳艳, 2017. 不同类型多维地震动作用下高层建筑结构的地震响应分析(硕士学位论文). 武汉: 武汉理工大学.
      杨远洪, 王峥, 伊小素, 等, 2005, 基于掺铒超荧光光纤光源的高精度光纤陀螺. 北京航空航天大学学报, 31(11): 1159-1162. doi: 10.3969/j.issn.1001-5965.2005.11.001
      张洁, 李家彪, 阮爱国, 等, 2018. 海底地震仪(OBS)主动源转换横波的应用. 地球科学, 43(10): 3778-3791. doi: 10.3799/dqkx.2018.534
      赵明辉, 杜峰, 王强, 等, 2018. 南海海底地震仪三维深地震探测的进展及挑战. 地球科学, 43(10): 3749-3761. doi: 10.3799/dqkx.2018.573
      朱兆祥, 1983. 论非线性应变. 力学进展, 13(3): 259-272. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ198303000.htm
    • 加载中
    图(17) / 表(1)
    计量
    • 文章访问数:  2618
    • HTML全文浏览量:  1084
    • PDF下载量:  163
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-12-13
    • 刊出日期:  2021-04-15

    目录

      /

      返回文章
      返回