• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    深部碳循环的锌同位素示踪研究进展

    王照雪 刘盛遨 李孟伦 李曙光

    王照雪, 刘盛遨, 李孟伦, 李曙光, 2020. 深部碳循环的锌同位素示踪研究进展. 地球科学, 45(6): 1967-1976. doi: 10.3799/dqkx.2020.159
    引用本文: 王照雪, 刘盛遨, 李孟伦, 李曙光, 2020. 深部碳循环的锌同位素示踪研究进展. 地球科学, 45(6): 1967-1976. doi: 10.3799/dqkx.2020.159
    Wang Zhaoxue, Liu Sheng'ao, Li Menglun, Li Shuguang, 2020. Advances on Application of Zinc Isotope as a Tracer for Deep Carbon Cycles. Earth Science, 45(6): 1967-1976. doi: 10.3799/dqkx.2020.159
    Citation: Wang Zhaoxue, Liu Sheng'ao, Li Menglun, Li Shuguang, 2020. Advances on Application of Zinc Isotope as a Tracer for Deep Carbon Cycles. Earth Science, 45(6): 1967-1976. doi: 10.3799/dqkx.2020.159

    深部碳循环的锌同位素示踪研究进展

    doi: 10.3799/dqkx.2020.159
    基金项目: 

    国家自然科学基金重点项目 41730214

    优秀青年基金项目 41622303

    详细信息
      作者简介:

      王照雪(1996-), 女, 硕士研究生, 主要从事锌同位素地球化学研究

      通讯作者:

      刘盛遨

    • 中图分类号: P597.2

    Advances on Application of Zinc Isotope as a Tracer for Deep Carbon Cycles

    • 摘要: 深部碳循环和地球表层的碳循环一起构成了全球的碳循环.因为地球超过90%的碳都位于深部,深部碳循环研究对于理解地球长期的气候变化具有重要的科学意义.深部碳循环研究涉及多个科学问题,其中最重要的科学问题之一是如何准确识别地幔中的碳是再循环的地表碳.锌作为亲石元素,广泛存在于岩浆岩、地幔和碳酸盐岩中.地幔和地表沉积碳酸盐岩之间锌同位素组成存在显著的差异,而板块俯冲脱水、地幔部分熔融和岩浆结晶分异等过程导致的锌同位素分馏较为有限,因此锌同位素具有示踪深部碳循环的潜力.系统阐述了锌同位素示踪深部碳循环的原理,回顾了目前应用锌同位素示踪深部碳循环取得的阶段性成果,并指出锌、镁同位素联合示踪有望成为未来深部碳循环研究的主流.

       

    • 图  1  地幔橄榄岩、碳酸盐岩和中国东部 < 110 Ma玄武岩的锌同位素组成

      数据来源:碳酸盐岩(Pichat et al., 2003Liu et al., 2017bSweere et al., 2018Wang et al., 2018a);中国东部玄武岩(Liu et al., 2016Wang et al., 2017);地幔(Wang et al., 2017Sossi et al., 2018);大洋玄武岩(Chen et al., 2013Wang et al., 2017)

      Fig.  1.  The zinc isotope compositions of mantle peridotites, carbonatites, and basalts of eastern China (< 110 Ma)

    • Aubaud, C., Pineau, F., Hékinian, R., et al., 2005.Degassing of CO2 and H2O in Submarine Lavas from the Society Hotspot.Earth and Planetary Science Letters, 235(3-4):511-527. https://doi.org/10.1016/j.epsl.2005.04.047
      Beunon, H., Mattielli, N., Doucet, L.S., et al., 2020.Mantle Heterogeneity through Zn Systematics in Oceanic Basalts:Evidence for a Deep Carbon Cycling.Earth-Science Reviews, 103174. https://doi.org/10.1016/j.earscirev.2020.103174
      Caroff, M., Maury, R.C., Guille, G., et al., 1997.Partial Melting below Tubuai (Austral Islands, French Polynesia).Contributions to Mineralogy and Petrology, 127(4):369-382. https://doi.org/10.1007/s004100050286
      Chen, C.F., Liu, Y.S., Feng, L.P., et al., 2018.Calcium Isotope Evidence for Subduction-Enriched Lithospheric Mantle under the Northern North China Craton.Geochimica et Cosmochimica Acta, 238:55-67. https://doi.org/10.1016/j.gca.2018.06.038
      Chen, H., Savage, P.S., Teng, F.Z., et al., 2013.Zinc Isotope Fractionation during Magmatic Differentiation and the Isotopic Composition of the Bulk Earth.Earth and Planetary Science Letters, 369-370:34-42. https://doi.org/10.1016/j.epsl.2013.02.037
      Dasgupta, R., Hirschmann, M.M., 2010.The Deep Carbon Cycle and Melting in Earth's Interior.Earth and Planetary Science Letters, 298(1-2):1-13. https://doi.org/10.1016/j.epsl.2010.06.039
      Dasgupta, R., Hirschmann, M.M., Smith, N.D., 2007.Partial Melting Experiments of Peridotite + CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts.Journal of Petrology, 48(11):2093-2124. https://doi.org/10.1093/petrology/egm053
      Deines, P., 2002.The Carbon Isotope Geochemistry of Mantle Xenoliths.Earth-Science Reviews, 58(3-4):247-278. https://doi.org/10.1016/s0012-8252(02)00064-8
      Dong, S.F., Wasylenki, L.E., 2016.Zinc Isotope Fractionation during Adsorption to Calcite at High and Low Ionic Strength.Chemical Geology, 447:70-78. https://doi.org/10.1016/j.chemgeo.2016.10.031
      Doucet, L.S., Mattielli, N., Ionov, D.A., et al., 2016.Zn Isotopic Heterogeneity in the Mantle:A Melting Control? Earth and Planetary Science Letters, 451:232-240. https://doi.org/10.1016/j.epsl.2016.06.040
      Frey, F.A., Green, D.H., Roy, S.D., 1978.Integrated Models of Basalt Petrogenesis:A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data.Journal of Petrology, 19(3):463-13. https://doi.org/10.1093/petrology/19.3.463
      Fujii, T., Moynier, F., Pons, M.L., et al., 2011.The Origin of Zn Isotope Fractionation in Sulfides.Geochimica et Cosmochimica Acta, 75(23):7632-7643. https://doi.org/10.1016/j.gca.2011.09.036
      Hazen, R.M., Schiffries, C.M., 2013.Why Deep Carbon? Reviews in Mineralogy and Geochemistry, 75(1):1-6. https://doi.org/10.2138/rmg.2013.75.1
      Helz, R.T., 1987.Differentiation Behaviour of Kilauea Iki Lava Lake, Kilauea Volcano, Hawaii:An Overview of Past and Current Work.Magmatic Processes:Physicochemical Principles, (1):241-258.
      Huang, J., Li, S.G., Xiao, Y.L., et al., 2015.Origin of Low δ26Mg Cenozoic Basalts from South China Block and Their Geodynamic Implications.Geochimica et Cosmochimica Acta, 164:298-317. https://doi.org/10.1016/j.gca.2015.04.054
      Huang, J., Zhang, X.C., Chen, S., et al., 2018.Zinc Isotopic Systematics of Kamchatka-Aleutian Arc Magmas Controlled by Mantle Melting.Geochimica et Cosmochimica Acta, 238:85-101. https://doi.org/10.1016/j.gca.2018.07.012
      Huang, S.C., Farkaš, J., Jacobsen, S.B., 2011.Stable Calcium Isotopic Compositions of Hawaiian Shield Lavas:Evidence for Recycling of Ancient Marine Carbonates into the Mantle.Geochimica et Cosmochimica Acta, 75(17):4987-4997. https://doi.org/10.1016/j.gca.2011.06.010
      Inglis, E.C., Debret, B., Burton, K.W., et al., 2017.The Behavior of Iron and Zinc Stable Isotopes Accompanying the Subduction of Mafic Oceanic Crust:A Case Study from Western Alpine Ophiolites.Geochemistry, Geophysics, Geosystems, 18(7):2562-2579. https://doi.org/10.1002/2016gc006735
      John, S.G., Rouxel, O.J., Craddock, P.R., et al., 2008.Zinc Stable Isotopes in Seafloor Hydrothermal Vent Fluids and Chimneys.Earth and Planetary Science Letters, 269(1):17-28. https://doi.org/10.1016/j.epsl.2007.12.011
      Le Roux, V., Lee, C.T.A., Turner, S.J., 2010.Zn/Fe Systematics in Mafic and Ultramafic Systems:Implications for Detecting Major Element Heterogeneities in the Earth's Mantle.Geochimica et Cosmochimica Acta, 74(9):2779-2796. https://doi.org/10.1016/j.gca.2010.02.004
      Lee, C.A., Shen, B., Slotnick, B.S., et al., 2013.Continental Arc-Island Arc Fluctuations, Growth of Crustal Carbonates, and Long-Term Climate Change.Geosphere, 9(1):21-36. https://doi.org/10.1130/ges00822.1
      Li, J.L., Klemd, R., Gao, J., et al., 2014.Compositional Zoning in Dolomite from Lawsonite-Bearing Eclogite (SW Tianshan, China):Evidence for Prograde Metamorphism during Subduction of Oceanic Crust.American Mineralogist, 99(1):206-217. https://doi.org/10.2138/am.2014.4507
      Li, S.G., Wang, Y., 2018.Formation Time of the Big Mantle Wedge beneath Eastern China and a New Lithospheric Thinning Mechanism of the North China Craton:Geodynamic Effects of Deep Recycled Carbon.Science China Earth Sciences, 61(7):853-868. https://doi.org/10.1007/s11430-017-9217-7
      Li, S.G., Yang, W., Ke, S., et al., 2017.Deep Carbon Cycles Constrained by a Large-Scale Mantle Mg Isotope Anomaly in Eastern China.National Science Review, 4(1):111-120. https://doi.org/10.1093/nsr/nww070
      Liu, D., Zhao, Z.D., Zhu, D.C., et al., 2015.Identifying Mantle Carbonatite Metasomatism through Os-Sr-Mg Isotopes in Tibetan Ultrapotassic Rocks.Earth and Planetary Science Letters, 430:458-469. https://doi.org/10.1016/j.epsl.2015.09.005
      Liu, F., Li, X., Wang, G.Q., et al., 2017a.Marine Carbonate Component in the Mantle beneath the Southeastern Tibetan Plateau:Evidence from Magnesium and Calcium Isotopes.Journal of Geophysical Research:Solid Earth, 122(12):9729-9744. https://doi.org/10.1002/2017jb014206
      Liu, S.A., Wu, H., Shen, S., et al., 2017b.Zinc Isotope Evidence for Intensive Magmatism Immediately before the End-Permian Mass Extinction.Geology, 45(4):343-346. https://doi.org/10.1130/g38644.1
      Liu, S.A., Li, S.G., 2019.Tracing the Deep Carbon Cycle Using Metal Stable Isotopes:Opportunities and Challenges.Engineering, 5(3):448-457. https://doi.org/10.1016/j.eng.2019.03.007
      Liu, S.A., Liu, P.P., Lü, Y., et al., 2019.Cu and Zn Isotope Fractionation during Oceanic Alteration:Implications for Oceanic Cu and Zn Cycles.Geochimica et Cosmochimica Acta, 257:191-205. https://doi.org/10.1016/j.gca.2019.04.026
      Liu, S.A., Wang, Z.Z., Li, S.G., et al., 2016.Zinc Isotope Evidence for a Large-Scale Carbonated Mantle beneath Eastern China.Earth and Planetary Science Letters, 444:169-178. https://doi.org/10.1016/j.epsl.2016.03.051
      Lundstrom, C.C., 2000.Rapid Diffusive Infiltration of Sodium into Partially Molten Peridotite.Nature, 403(6769):527. https://doi.org/10.1038/35000546
      Mavromatis, V., González, A.G., Dietzel, M., et al., 2019.Zinc Isotope Fractionation during the Inorganic Precipitation of Calcite-Towards a New pH Proxy.Geochimica et Cosmochimica Acta, 244:99-112. https://doi.org/10.1016/j.gca.2018.09.005
      McCoy-West, A.J., Fitton, J.G., Pons, M.L., et al., 2018.The Fe and Zn Isotope Composition of Deep Mantle Source Regions:Insights from Baffin Island Picrites.Geochimica et Cosmochimica Acta, 238:542-562. https://doi.org/10.1016/j.gca.2018.07.021
      McDonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      Moynier, F., Vance, D., Fujii, T., et al., 2017.The Isotope Geochemistry of Zinc and Copper.Reviews in Mineralogy and Geochemistry, 82(1):543-600. https://doi.org/10.2138/rmg.2017.82.13
      O'Hara, M.J., Yoder, H.S., 1967.Formation and Fractionation of Basic Magmas at High Pressures.Scottish Journal of Geology, 3(1):67-117. https://doi.org/10.1144/sjg03010067
      Pichat, S., Douchet, C., Albarède, F., 2003.Zinc Isotope Variations in Deep-Sea Carbonates from the Eastern Equatorial Pacific over the Last 175 ka.Earth and Planetary Science Letters, 210(1-2):167-178. https://doi.org/10.1016/s0012-821x(03)00106-7
      Pilet, S., Baker, M.B., Stolper, E.M., 2008.Metasomatized Lithosphere and the Origin of Alkaline Lavas.Science, 320(5878):916-919. https://doi.org/10.1126/science.1156563
      Pons, M.L., Debret, B., Bouilhol, P., et al., 2016.Zinc Isotope Evidence for Sulfate-Rich Fluid Transfer across Subduction Zones.Nature Communications, 7:13794. https://doi.org/10.1038/ncomms13794
      Reeder, R.J., Lamble, G.M., Northrup, P.A., 1999.XAFS Study of the Coordination and Local Relaxation around Co2+, Zn2+, Pb2+, and Ba2+ Trace Elements in Calcite.American Mineralogist, 84(7-8):1049-1060. https://doi.org/10.2138/am-1999-7-807
      Richter, F.M., Watson, E.B., Mendybaev, R.A., et al., 2008.Magnesium Isotope Fractionation in Silicate Melts by Chemical and Thermal Diffusion.Geochimica et Cosmochimica Acta, 72(1):206-220. https://doi.org/10.1016/j.gca.2007.10.016
      Shen, J., Li, W.Y., Li, S.G., et al., 2019.Crust-Mantle Interactions at Different Depths in the Subduction Channel:Magnesium Isotope Records of Ultramafic Rocks from the Mantle Wedges.Earth Science, 44(12):4102-4111(in Chinese with English abstract).
      Shields, W.R., Murphy, T.J., Garner, E.L., 1964.Absolute Isotopic Abundance Ratio and the Atomic Weight of a Reference Sample of Copper.Journal of Research of the National Bureau of Standards Section A:Physics and Chemistry, 68A:589-592. https://doi.org/10.6028/jres.068a.056
      Sossi, P.A., Nebel, O., O'Neill, H.S.C., et al., 2018.Zinc Isotope Composition of the Earth and Its Behaviour during Planetary Accretion.Chemical Geology, 477:73-84. https://doi.org/10.1016/j.chemgeo.2017.12.006
      Sun, Y., Teng, F.Z., Ying, J.F., et al., 2017.Magnesium Isotopic Evidence for Ancient Subducted Oceanic Crust in LOMU-Like Potassium-Rich Volcanic Rocks.Journal of Geophysical Research:Solid Earth, 122(10):7562-7572. https://doi.org/10.1002/2017jb014560
      Sweere, T.C., Dickson, A.J., Jenkyns, H.C., et al., 2018.Isotopic Evidence for Changes in the Zinc Cycle during Oceanic Anoxic Event 2 (Late Cretaceous).Geology, 46(5):463-466. https://doi.org/10.1130/g40226.1
      Tang, Y.J., Zhang, H.F., Ying, J.F., 2006.Asthenosphere-Lithospheric Mantle Interaction in an Extensional Regime:Implication from the Geochemistry of Cenozoic Basalts from Taihang Mountains, North China Craton.Chemical Geology, 233(3-4):309-327. https://doi.org/10.1016/j.chemgeo.2006.03.013
      Tian, H.C., Yang, W., Li, S.G., et al., 2016.Origin of Low δ26Mg Basalts with EM-I Component:Evidence for Interaction between Enriched Lithosphere and Carbonated Asthenosphere.Geochimica et Cosmochimica Acta, 188:93-105. https://doi.org/10.1016/j.gca.2016.05.021
      Tian, H.C., Yang, W., Li, S.G., et al., 2018.Low δ26Mg Volcanic Rocks of Tengchong in Southwestern China:A Deep Carbon Cycle Induced by Supercritical Liquids.Geochimica et Cosmochimica Acta, 240:191-219. https://doi.org/10.1016/j.gca.2018.08.032
      Turekian, K.K., Wedepohl, K.H., 1961.Distribution of the Elements in Some Major Units of the Earth's Crust.Geological Society of America Bulletin, 72(2):175-192. doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2
      Walter, M.J., Bulanova, G.P., Armstrong, L.S., et al., 2008.Primary Carbonatite Melt from Deeply Subducted Oceanic Crust.Nature, 454(7204):622-625. https://doi.org/10.1038/nature07132
      Wang, X., Liu, S.A., Wang, Z.R., et al., 2018a.Zinc and Strontium Isotope Evidence for Climate Cooling and Constraints on the Frasnian-Famennian (~372 Ma) Mass Extinction.Palaeogeography, Palaeoclimatology, Palaeoecology, 498:68-82. https://doi.org/10.1016/j.palaeo.2018.03.002
      Wang, Z.Z., Liu, S.A., Chen, L.H., et al., 2018b.Compositional Transition in Natural Alkaline Lavas through Silica-Undersaturated Melt-Lithosphere Interaction.Geology, 46(9):771-774. https://doi.org/10.1130/g45145.1
      Wang, Z.Z., Liu, S.A., Liu, J.G., et al., 2017.Zinc Isotope Fractionation during Mantle Melting and Constraints on the Zn Isotope Composition of Earth's Upper Mantle.Geochimica et Cosmochimica Acta, 198:151-167. https://doi.org/10.1016/j.gca.2016.11.014
      Wang, Z.Z., Liu, S.A., Liu, Z.C., et al., 2020.Extreme Mg and Zn Isotope Fractionation Recorded in the Himalayan Leucogranites.Geochimica et Cosmochimica Acta, 278:305-321. https://doi.org/10.1016/j.gca.2019.09.026
      Yang, C., Liu, S.A., 2019.Zinc Isotope Constraints on Recycled Oceanic Crust in the Mantle Sources of the Emeishan Large Igneous Province.Journal of Geophysical Research:Solid Earth, 124(12):12537-12555. https://doi.org/10.1029/2019jb017405
      Yang, W., Li, S.G., 2008.Geochronology and Geochemistry of the Mesozoic Volcanic Rocks in Western Liaoning:Implications for Lithospheric Thinning of the North China Craton.Lithos, 102(1-2):88-117. https://doi.org/10.1016/j.lithos.2007.09.018
      Yang, W., Teng, F.Z., Zhang, H.F., et al., 2012.Magnesium Isotopic Systematics of Continental Basalts from the North China Craton:Implications for Tracing Subducted Carbonate in the Mantle.Chemical Geology, 328:185-194. https://doi.org/10.1016/j.chemgeo.2012.05.018
      Zhang, G.L., Chen, L.H., Jackson, M.G., et al., 2017.Evolution of Carbonated Melt to Alkali Basalt in the South China Sea.Nature Geoscience, 10(3):229-235. https://doi.org/10.1038/ngeo2877
      Zhang, H.M., Li, S.G., 2012.Deep Carbon Recycling and Isotope Tracing:Review and Prospect.Science China:Earth Sciences, 42(10):1459-1472(in Chinese).
      Zhu, H.L., Liu, F., Li, X., et al., 2020.Significant δ44/40Ca Variations between Carbonate-and Clay-Rich Marine Sediments from the Lesser Antilles Forearc and Implications for Mantle Heterogeneity.Geochimica et Cosmochimica Acta, 276:239-257. https://doi.org/10.1016/j.gca.2020.02.033
      沈骥, 李王晔, 李曙光, 等, 2019.俯冲隧道内不同深度的壳幔相互作用:地幔楔超镁铁质岩的镁同位素记录.地球科学, 44(12):4102-4111. doi: 10.3799/dqkx.2019.286
      张洪铭, 李曙光, 2012.深部碳循环及同位素示踪:回顾与展望.中国科学:地球科学, 42(10):1459-1472.
    • 加载中
    图(1)
    计量
    • 文章访问数:  1908
    • HTML全文浏览量:  517
    • PDF下载量:  152
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-01-15
    • 刊出日期:  2020-06-15

    目录

      /

      返回文章
      返回