• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地壳生长及深部物质架构研究与问题:以中亚造山带(北疆地区)为例

    王涛 黄河 宋鹏 吴欢欢 张建军 童英 杜開明 秦切

    王涛, 黄河, 宋鹏, 吴欢欢, 张建军, 童英, 杜開明, 秦切, 2020. 地壳生长及深部物质架构研究与问题:以中亚造山带(北疆地区)为例. 地球科学, 45(7): 2326-2344. doi: 10.3799/dqkx.2020.172
    引用本文: 王涛, 黄河, 宋鹏, 吴欢欢, 张建军, 童英, 杜開明, 秦切, 2020. 地壳生长及深部物质架构研究与问题:以中亚造山带(北疆地区)为例. 地球科学, 45(7): 2326-2344. doi: 10.3799/dqkx.2020.172
    Wang Tao, Huang He, Song Peng, Wu Huanhuan, Zhang Jianjun, Tong Ying, Du Kaiming, Qin Qie, 2020. Studies of Crustal Growth and Deep Lithospheric Architecture and New Issues: Exemplified by the Central Asian Orogenic Belt (Northern Xinjiang). Earth Science, 45(7): 2326-2344. doi: 10.3799/dqkx.2020.172
    Citation: Wang Tao, Huang He, Song Peng, Wu Huanhuan, Zhang Jianjun, Tong Ying, Du Kaiming, Qin Qie, 2020. Studies of Crustal Growth and Deep Lithospheric Architecture and New Issues: Exemplified by the Central Asian Orogenic Belt (Northern Xinjiang). Earth Science, 45(7): 2326-2344. doi: 10.3799/dqkx.2020.172

    地壳生长及深部物质架构研究与问题:以中亚造山带(北疆地区)为例

    doi: 10.3799/dqkx.2020.172
    基金项目: 

    国家重点基础研究发展计划 2017YFC0601301

    国家重点基础研究发展计划 2018YFC0603702

    国家重点基础研究发展计划 2019YFA0708604

    国家自然科学基金 41830216

    国家自然科学基金 41802074

    国家自然科学基金 U1403291

    中国地质调查局项目 DD20190001

    中国地质调查局项目 DD20190370

    中国地质调查局项目 DD20190685

    详细信息
      作者简介:

      王涛(1959-), 男, 研究员, 构造地质学专业, 主要从事构造地质、花岗岩与大地构造研究.ORCID:0000-0002-7268-8671.E-mail:taowang@cags.ac.cn

    • 中图分类号: P541;P548

    Studies of Crustal Growth and Deep Lithospheric Architecture and New Issues: Exemplified by the Central Asian Orogenic Belt (Northern Xinjiang)

    • 摘要: 岩浆岩区域多元同位素示踪填图是探索地球深部物质组成架构、研究地壳生长的重要途径.中亚造山带作为全球最大、最典型的显生宙增生型造山带,发育巨量岩浆岩,是研究造山带深部物质组成架构及地壳生长的天然实验室.介绍了在中亚造山带西段的北疆地区同位素示踪填图的成果,并探讨了存在和需要研究的新问题.阿尔泰-准噶尔-天山的花岗岩同位素廊带填图初步揭示,阿尔泰中部深部物质较老,准噶尔年轻,东天山-北山更老,这种物质组成结构是同造山水平生长和后造山垂向生长的结果.西天山及邻区Hf同位素填图揭示了同一微陆块内部复杂的新老地壳组成架构,提出周期性地壳生长/再循环模式.同位素填图揭示的深部物质组成类型——尤其是年轻地壳的组成类型——仍需进一步探索.需要探索多元同位素示踪、填图结果的异同、关联性及其影响因素,并与地球物理探测、岩石学实验模拟结果相结合,最终构建以岩石探针和同位素示踪填图为核心的,结合地球物理探测、深部钻探和深部过程模拟的岩石圈三维物质与结构探测的理论和技术方法体系.

       

    • 图  1  造山带类型划分为3个相互关联的端元类型:碰撞、增生和克拉通内部造山带(Cawood et al., 2009

      Fig.  1.  Classification of orogenic belt types into three interrelated end-members: coalitional, accretionary and intracratonic(modified from Cawood et al., 2009)

      图  2  全球部分主要造山带不同年龄地壳分布区

      可见:中亚造山带是最大、最年轻的区域;北美、格陵兰、欧洲标出的年轻地壳年龄都在1.9~1.7 Ga;中亚造山带地壳年龄比这些标出的年轻地壳更为年轻(很多为显生宙); 据Patchett(2003)

      Fig.  2.  Distribution of the crust with different ages around the world

      图  3  中亚造山带花岗岩

      同位素填图鉴别出准噶尔-西南蒙古为最大的年轻地壳区(主体 < 0.8 Ga,个别地带含古老物质信息);据Wang et al.(2017a)

      Fig.  3.  Distribution map of granitoids in the Central Asian orogenic belt

      图  4  阿尔泰-准噶尔-北山花岗岩的εNd(t)值图(a)、Nd同位素模式年龄剖面(b)和Hf同位素模式年龄剖面(c)

      王涛和侯增谦(2018)

      Fig.  4.  Isotopic map of Altai-Junggar-Beishan granitoids in north Xinjiang, China(a) and profiles of whole rock Nd(b) and zircon Hf model age section(c)

      图  5  中亚造山带北疆及邻区花岗岩质岩石Nd模式年龄

      Fig.  5.  Nd model ages for granitoids in north Xinjiang and adjacent regions, Central Asian orogenic belts

      图  6  阿尔泰-东准噶尔花岗岩类εHf(t)值图和TDMC

      Song et al.(2019)

      Fig.  6.  εHf(t) values and Hf model ages for the granitoids in the Altai and East Junggar regions

      图  7  阿尔泰-东准噶尔及邻区古生代中酸性岩浆岩中识别的捕获/继承锆石年龄分布(据Zhang et al., 2017).

      Fig.  7.  Ages of xenocrystic/inherited zircon grains from granitoid rocks and felsic volcanic rocks in the Chinese Altai, East Junggar and nearby regions(modified from Zhang et al., 2017)

      图  8  阿尔泰-东准噶尔及邻区岩浆岩捕获/继承锆石年龄省示意图(据Zhang et al., 2017

      Fig.  8.  The inferred framework of old zircon xenocryst provinces, based on the variations in spatial characteristics of age and Hf isotopic compositions (tDMC) of xenocrystic zircons within Palaeozoic felsic igneous rocks(modified from Zhang et al., 2017)

      图  9  新疆西天山花岗岩和长英质火山岩的Hf同位素模式年龄等值线图

      图中ABCD折线为Hf同位素剖面位置;b.穿过北天山和伊犁地块的Hf同位素(模式年龄)剖面(详情见正文)(Huang et al., 出版中); 根据各岩体和火山岩单元的锆石Hf同位素的中位数值生成

      Fig.  9.  Hf isotope contour map showing the spatial variation of crustal Hf model ages for the Paleozoic granitoid rocks and felsic volcanic rocks in some areas of the West Tianshan

      图  10  新疆西天山伊犁地块北缘(a)和南缘(b)古生代长英质岩石的年龄-到缝合带距离图解

      据Huang et al.(出版中)

      Fig.  10.  U-Pb rock age versus distance to the suture of Paleozoic granitoid intrusions and felsic volcanic suites in the (a) northern and (b) southern parts of the Yili Block, showing development and migration of continental arc and back-arc magmatism

      图  11  库鲁克塔格-虎拉山-中天山一带εHf(t)和二阶段Hf模式年龄随纬度变化图(左图);花岗质岩体的二阶段Hf模式年龄(TDMC)填图(右图)

      Fig.  11.  Cross section of Hf isotopic data [εHf(t) and TDMC] across the northern Quruqtagh-Hulashan-Central Tianshan (left) and Hf isotopic map showing crustal model ages of granitoids

    • Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., et al., 2010. The Growth of the Continental Crust:Constraints from Zircon Hf-Isotope Data. Lithos, 119(3/4):457-466. https://doi.org/10.1016/j.lithos.2010.07.024
      Castro, A., Gerya, T., Garcia-Casco, A., et al., 2010. Melting Relations of MORB-Sediment Melanges in Underplated Mantle Wedge Plumes; Implications for the Origin of Cordilleran-Type Batholiths. Journal of Petrology, 51(6):1267-1295. https://doi.org/10.1093/petrology/egq019
      Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2013. The Continental Record and the Generation of Continental Crust. Geological Society of America Bulletin, 125(1/2):14-32. https://doi.org/10.1130/b30722.1
      Cawood, P. A., Kröner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 318(1):1-36. https://doi.org/10.1144/sp318.1
      Chen, B., Jahn, B. M., 2004. Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China:Nd-Sr Isotope and Trace Element Evidence. Journal of Asian Earth Sciences, 23(5):691-703. https://doi.org/10.1016/s1367-9120(03)00118-4
      Collins, W. J., Belousova, E. A., Kemp, A. I. S., et al., 2011. Two Contrasting Phanerozoic Orogenic Systems Revealed by Hafnium Isotope Data. Nature Geoscience, 4(5):333-337. https://doi.org/10.1038/ngeo1127
      Condie, K. C., 1998. Episodic Continental Growth and Supercontinents:A Mantle Avalanche Connection?. Earth and Planetary Science Letters, 163(1/2/3/4):97-108. https://doi.org/10.1016/s0012-821x(98)00178-2
      Couzinié, S., Laurent, O., Moyen, J. F., et al., 2016. Post-Collisional Magmatism:Crustal Growth not Identified by Zircon Hf-O Isotopes. Earth and Planetary Science Letters, 456:182-195. https://doi.org/10.1016/j.epsl.2016.09.033
      Deng, J., Wang, C. M., Bagas, L., et al., 2018. Crustal Architecture and Metallogenesis in the South-Eastern North China Craton. Earth-Science Reviews, 182:251-272. https://doi.org/10.1016/j.earscirev.2018.05.001
      Deng, J. F., Su, S. G., Mo, X. X., et al., 2004. The Sequence of Magmatic-Tectonic Events and Orogenic Processes of the Yanshan Belt, North China. Acta Geologica Sinica-English Edition, 78(1):260-266. https://doi.org/10.1111/j.1755-6724.2004.tb00698.x
      DePaolo, D. J., 1988. Age Dependence of the Composition of Continental Crust:Evidence from Nd Isotopic Variations in Granitic Rocks. Earth and Planetary Science Letters, 90(3):263-271. https://doi.org/10.1016/0012-821x(88)90130-6
      DePaolo, D. J., Linn, A. M., Schubert, G., 1990. The Continental Crustal Age Distribution:Methods of Determining Mantle Separation Ages from Sm-Nd Isotopic Data and Application to the Southwestern United States. Journal of Geophysical Research, 96(B2):2071. https://doi.org/10.1029/90jb02219
      Dhuime, B., Hawkesworth, C., Cawood, P., 2011. When Continents Formed. Science, 331(6014):154-155. https://doi.org/10.1126/science.1201245
      Dickin, A. P., McNutt, R. H., 1989. Nd Model Age Mapping of the Southeast Margin of the Archean Foreland in the Grenville Province of Ontario. Geology, 17(4):299. https://doi.org/10.1130/0091-7613(1989)017 < 0299:nmamot > 2.3.co; 2 doi: 10.1130/0091-7613(1989)017<0299:nmamot>2.3.co;2
      Dickin, A. P., McNutt, R. H., 2003. An Application of Nd Isotope Mapping in Structural Geology:Delineating an Allochthonous Grenvillian Terrane at North Bay, Ontario. Geological Magazine, 140(5):539-548. https://doi.org/10.1017/s0016756803008070
      Dobretsov, N. L., Buslov, M. M., 2011. Problems of Geodynamics, Tectonics, and Metallogeny of Orogens. Russian Geology and Geophysics, 52(12):1505-1515. https://doi.org/10.1016/j.rgg.2011.11.012
      Griffin, W. L., Begg, G. C., O'Reilly, S. Y., 2013. Continental-Root Control on the Genesis of Magmatic Ore Deposits. Nature Geoscience, 6(11):905-910. https://doi.org/10.1038/ngeo1954
      Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICP MS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
      Gray, D. R., Foster, D. A., 2004. Tectonic Evolution of the Lachlan Orogen, Southeast Australia:Historical Review, Data Synthesis and Modern Perspectives. Australian Journal of Earth Sciences, 51(6):773-817. https://doi.org/10.1111/j.1400-0952.2004.01092.x
      Hacker, B. R., Kelemen, P. B., Behn, M. D., 2011. Differentiation of the Continental Crust by Relamination. Earth and Planetary Science Letters, 307(3/4):501-516. https://doi.org/10.1016/j.epsl.2011.05.024
      Hacker, B. R., Kelemen, P. B., Behn, M. D., 2015. Continental Lower Crust. Annual Review of Earth and Planetary Sciences, 43(1):167-205. https://doi.org/10.1146/annurev-earth-050212-124117
      Hall, R., 2017. Southeast Asia:New Views of the Geology of the Malay Archipelago. Annual Review of Earth and Planetary Sciences, 45(1):331-358. https://doi.org/10.1146/annurev-earth-063016-020633
      Han, B. F., He, G. Q., Wang, S. G., 1999. Postcollisional Mantle-Derived Magmatism, Underplating and Implications for Basement of the Junggar Basin. Science in China Series D: Earth Sciences, 42(2):113-119. https://doi.org/10.1007/bf02878509
      Han, B. F., Wang, S. G., Jahn, B. M., et al., 1997. Depleted-Mantle Source for the Ulungur River A-Type Granites from North Xinjiang, China:Geochemistry and Nd-Sr Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Chemical Geology, 138(3/4):135-159. https://doi.org/10.1016/s0009-2541(97)00003-x
      Han, B. F., He, G. Q., Wang, S. G., et al, 1998. Postcollisional Mantle-Derived Magmatism and Vertical Growth of the Continental Crust in North Xinjiang. Geological Review, 44:396-409(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800070242
      Han, B. F., Ji, J. Q., Song B., et al, 2006. Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China (Part I):Timing of Post-Collisional Plutonism. Acta Petrologica Sinica. 22:1077-1086(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200605003.htm
      Hawkesworth, C., Cawood, P., Dhuime, B., 2013. Continental Growth and the Crustal Record. Tectonophysics, 609:651-660. https://doi.org/10.1016/j.tecto.2013.08.013
      Hawkesworth, C. J., Kemp, A. I. S., 2006. Evolution of the Continental Crust. Nature, 443(7113):811-817. https://doi.org/10.1038/nature05191
      Hawkesworth, C. J., Cawood, P. A., Dhuime, B., et al., 2017. Earth's Continental Lithosphere through Time. Annual Review of Earth and Planetary Sciences, 45(1):169-198. https://doi.org/10.1146/annurev-earth-063016-020525
      Hong, D. W., Wang, S. G., Xie, X. L., et al, 2000. Genesis of Positive Ε(Nd, T) Granitoids in the Da Hinggan Mts. Mongolia Orogenic Belt and Growth Continental Crust. Earth Science Frontiers, 7(2):441-456(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dxqy200002016.htm
      Hong, D. W., Wang, S. G., Xie, X. L., et al, 2003. The Relationship between Supercontinent Evolution and Continental Crustal Growth from the Positive ΕNd Granites in Central Asia. ActaGeologicaSinica, 77(2):203-209 (in Chinese).
      Hong, D. W., Zhang, J. S., Wang, T., et al., 2004. Continental Crustal Growth and the Supercontinental Cycle:Evidence from the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 23(5):799-813. https://doi.org/10.1016/s1367-9120(03)00134-2
      Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      Hu, A. Q., Jahn, B. M., Zhang, G. X., et al., 2000. Crustal Evolution and Phanerozoic Crustal Growth in Northern Xinjiang:Nd Isotopic Evidence. Part I. Isotopic Characterization of Basement Rocks. Tectonophysics, 328(1/2):15-51. https://doi.org/10.1016/s0040-1951(00)00176-1
      Huang, H., Wang, T., Tong, Y., et al., 2020. Rejuvenation of Ancient Micro-Continents during Accretionary Orogenesis: Insights from the Yili Block and Adjacent Regions of the SW Central Asian Orogenic Belt. Earth-Science Reviews, 103255. https://doi.org/10.1016/j.earscirev.2020.103255
      Jahn, B. M., 2010. Accretionary Orogen and Evolution of the Japanese Islands:Implications from a Sr-Nd Isotopic Study of the Phanerozoic Granitoids from SW Japan. American Journal of Science, 310(10):1210-1249. https://doi.org/10.2475/10.2010.02
      Jahn, B. M., Usuki, M., Usuki, T., et al., 2014. Generation of Cenozoic Granitoids in Hokkaido (Japan):Constraints from Zircon Geochronology, Sr-Nd-Hf Isotopic and Geochemical Analyses, and Implications for Crustal Growth. American Journal of Science, 314(2):704-750. https://doi.org/10.2475/02.2014.09
      Jahn, B. M., Wu, F. Y., Hong, D. W., 2000a. Important Crustal Growth in the Phanerozoic:Isotopic Evidence of Granitoids from East-Central Asia. Journal of Earth System Science, 109(1):5-20. https://doi.org/10.1007/bf02719146
      Jahn, B. M., Wu, F. Y., Chen, B., 2000b. Massive Granitoid Generation in Central Asia:Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 23(2):82-92. https://doi.org/10.18814/epiiugs/2000/v23i2/001
      Jahn, B. M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1):73-100. https://doi.org/10.1144/gsl.sp.2004.226.01.05
      Kemp, A. I. S., Hawkesworth, C. J., 2009. Generation and Secular Evolution of the Continental Crust. The Crust, 3:349.
      Kovalenko, V. I., Yarmolyuk, V. V., Kovach, V. P., et al., 2004. Isotope Provinces, Mechanisms of Generation and Sources of the Continental Crust in the Central Asian Mobile Belt:Geological and Isotopic Evidence. Journal of Asian Earth Sciences, 23(5):605-627. https://doi.org/10.1016/s1367-9120(03)00130-5
      Kröner, A., Kovach, V., Alexeiev, D., et al., 2017. No Excessive Crustal Growth in the Central Asian Orogenic Belt:Further Evidence from Field Relationships and Isotopic Data. Gondwana Research, 50:135-166. https://doi.org/10.1016/j.gr.2017.04.006
      Kröner, A., Kovach, V., Belousova, E., et al., 2014. Reassessment of Continental Growth during the Accretionary History of the Central Asian Orogenic Belt. Gondwana Research, 25(1):103-125. https://doi.org/10.1016/j.gr.2012.12.023
      Kröner, A., Kovach, V. P., Kozakov, I. K., et al., 2015. Zircon Ages and Nd-Hf Isotopes in UHT Granulites of the Ider Complex:A Cratonic Terrane within the Central Asian Orogenic Belt in NW Mongolia. Gondwana Research, 27(4):1392-1406. https://doi.org/10.1016/j.gr.2014.03.005
      Lee, C. T. A., Morton, D. M., Kistler, R. W., et al., 2007. Petrology and Tectonics of Phanerozoic Continent Formation:From Island Arcs to Accretion and Continental Arc Magmatism. Earth and Planetary Science Letters, 263(3/4):370-387. https://doi.org/10.1016/j.epsl.2007.09.025
      Li, P. F., Sun, M., Shu, C. T., et al., 2019. Evolution of the Central Asian Orogenic Belt along the Siberian Margin from Neoproterozoic-Early Paleozoic Accretion to Devonian Trench Retreat and a Comparison with Phanerozoic Eastern Australia. Earth-Science Reviews, 198:102951. https://doi.org/10.1016/j.earscirev.2019.102951
      Maruyama, S., 1997. Pacific-Type Orogeny Revisited:Miyashiro-Type Orogeny Proposed. The Island Arc, 6(1):91-120. https://doi.org/10.1111/j.1440-1738.1997.tb00042.x
      McCulloch, M. T., Bennett, V. C., 1994. Progressive Growth of the Earth's Continental Crust and Depleted Mantle:Geochemical Constraints. Geochimica et Cosmochimica Acta, 58(21):4717-4738. https://doi.org/10.1016/0016-7037(94)90203-8
      Mo, X. X. 2011. Magma and Magmatic Rocks:"Probes" and Evolution Records in the Deep Earth. Journal of Nature, 33 (5):255-259 (in Chinese).
      Mole, D. R., Fiorentini, M. L., Cassidy, K. F., et al., 2013. Crustal Evolution, Intra-Cratonic Architecture and the Metallogeny of an Archaean Craton. Geological Society, London, Special Publications, 393(1):23-80. https://doi.org/10.1144/sp393.8
      Moyen, J. F., Laurent, O., Chelle-Michou, C., et al., 2017. Collision Vs. Subduction-Related Magmatism:Two Contrasting Ways of Granite Formation and Implications for Crustal Growth. Lithos, 277:154-177. https://doi.org/10.1016/j.lithos.2016.09.018
      Murphy, J. B., Nance, R. D., 2002. Sm-Nd Isotopic Systematics as Tectonic Tracers:An Example from West Avalonia in the Canadian Appalachians. Earth-Science Reviews, 59(1/2/3/4):77-100. https://doi.org/10.1016/s0012-8252(02)00070-3
      Niu, Y. L., Zhao, Z. D., Zhu, D. C., et al., 2013. Continental Collision Zones are Primary Sites for Net Continental Crust Growth:A Testable Hypothesis. Earth-Science Reviews, 127:96-110. https://doi.org/10.1016/j.earscirev.2013.09.004
      Patchett, 2003. Ages and Growth of the Continental Crust from Radiogenic Isotopes. Treatise on Geochemistry, Volume 3: 321-34.
      Robinson, P. T., Trumbull, R. B., Schmitt, A., et al., 2015. The Origin and Significance of Crustal Minerals in Ophiolitic Chromitites and Peridotites. Gondwana Research, 27(2):486-506. https://doi.org/10.1016/j.gr.2014.06.003
      Royden, L. H., 1993. The Tectonic Expression Slab Pull at Continental Convergent Boundaries. Tectonics, 12(2):303-325. https://doi.org/10.1029/92tc02248
      Rudnick, R. L., 1995. Making Continental Crust. Nature, 378(6557):571-578. https://doi.org/10.1038/378571a0
      Rudnick, R., Gao S., 2003. The Role of Lower Crustal Recycling in Continent Formation. Geochmica Et Cosmochimica Acta.
      Safonova, I., 2017. Juvenile Versus Recycled Crust in the Central Asian Orogenic Belt:Implications from Ocean Plate Stratigraphy, Blueschist Belts and Intra-Oceanic Arcs. Gondwana Research, 47:6-27. https://doi.org/10.1016/j.gr.2016.09.003
      Safonova, I. Y., Santosh, M., 2014. Accretionary Complexes in the Asia-Pacific Region:Tracing Archives of Ocean Plate Stratigraphy and Tracking Mantle Plumes. Gondwana Research, 25(1):126-158. https://doi.org/10.1016/j.gr.2012.10.008
      Scholl, D. W., von Huene, R., 2009. Implications of Estimated Magmatic Additions and Recycling Losses at the Subduction Zones of Accretionary (Non-Collisional) and Collisional (Suturing) Orogens. Geological Society, London, Special Publications, 318(1):105-125. https://doi.org/10.1144/sp318.4
      Seltmann, R., Konopelko, D., Biske, G., et al., 2011. Hercynian Post-Collisional Magmatism in the Context of Paleozoic Magmatic Evolution of the Tien Shan Orogenic Belt. Journal of Asian Earth Sciences, 42(5):821-838. https://doi.org/10.1016/j.jseaes.2010.08.016
      Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435):299-307. https://doi.org/10.1038/364299a0
      Sisson, V. B., Roeske, S., Pavlis, T. L. (Editors), 2003. Geology of a Transpressional Orogen Developed During Ridge-Trench Interaction along the North Pacific Margin. Geological Society of America Special Paper 371. Geological Society of America, Boulder, Colorado: 375.
      Song, P., Wang, T., Tong, Y., et al., 2019. Contrasting Deep Crustal Compositions between the Altai and East Junggar Orogens, SW Central Asian Orogenic Belt: Evidence from Zircon Hf Isotopic Mapping. Lithos, 328-329: 297-311. https://doi.org/10.1016/j.lithos.2018.12.039
      Spencer, C. J., Roberts, N. M. W., Santosh, M., 2017. Growth, Destruction, and Preservation of Earth's Continental Crust. Earth-Science Reviews, 172:87-106. https://doi.org/10.1016/j.earscirev.2017.07.013
      Stern, R. J., Ali, K. A., Liegeois, J. P., et al., 2010. Distribution and Significance of Pre-Neoproterozoic Zircons in Juvenile Neoproterozoic Igneous Rocks of the Arabian-Nubian Shield. American Journal of Science, 310(9):791-811. https://doi.org/10.2475/09.2010.02
      Stern, R. J., Scholl, D. W., 2010. Yin and Yang of Continental Crust Creation and Destruction by Plate Tectonic Processes. International Geology Review, 52(1):1-31. https://doi.org/10.1080/00206810903332322
      Sun, M., Yuan, C., Xiao, W. J., et al., 2008. Zircon U-Pb and Hf Isotopic Study of Gneissic Rocks from the Chinese Altai:Progressive Accretionary History in the Early to Middle Palaeozoic. Chemical Geology, 247(3/4):352-383. https://doi.org/10.1016/j.chemgeo.2007.10.026
      Tang, G. J., Chung, S. L., Hawkesworth, C. J., et al., 2017. Short Episodes of Crust Generation during Protracted Accretionary Processes:Evidence from Central Asian Orogenic Belt, NW China. Earth and Planetary Science Letters, 464:142-154. doi: 10.1016/j.epsl.2017.02.022
      Van Staal, C. R., Barr, S. M., Murphy, J. B., 2012. Provenance and Tectonic Evolution of Ganderia:Constraints on the Evolution of the Iapetus and Rheic Oceans. Geology, 40(11):987-990. https://doi.org/10.1130/g33302.1
      Wang, T., Li, W. P., Li, J. B., et al., 2008. Increase of Juvenal Mantle-Derived Composition from Syn-Orogenic to Post-Orogenic Granites of the East Part of the Eastern Tianshan(China) and Implications for Continental Vertical Growth:Sr and Nd Isotopic Evidence. Acta Geologica Sinica, 24(4):762-772 (in Chinese).
      Wang, T., Jahn, B. M., Kovach, V. P., et al., 2009. Nd-Sr Isotopic Mapping of the Chinese Altai and Implications for Continental Growth in the Central Asian Orogenic Belt. Lithos, 110(1/2/3/4):359-372. https://doi.org/10.1016/j.lithos.2009.02.001
      Wang, T., Tong, Y., Zhang, L., et al., 2017a. Phanerozoic Granitoids in the Central and Eastern Parts of Central Asia and their Tectonic Significance. Journal of Asian Earth Sciences, 145:368-392. https://doi.org/10.1016/j.jseaes.2017.06.029
      Wang, T., Gladkochub, D., Hou Z. Q., et al., 2017b.Orogenic Architecture and Crustal Growth from Accretion to Collision. IGCP Application (IGCP-662 Project).
      Wang, T., Wang, X. X, Guo, L., et al. 2017. Granite and Tectonics. Acta PetrologicaS inica, 33 (05):1459-1478 (in Chinese).
      Wang, T., and Hou Z. Q., 2018. Isotopic Mapping and Deep Material Probing(Ⅰ):Revealing the Compositional Evolution of the Lithosphere and Crustal Growth Processes. Earth Science Frontiers, 25(6):1-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201806003.htm
      Wang, X. X., Wang, T., Castro, A., et al., 2015. Proterozoic Rapakivi Granites from the North Qaidam Orogen, NW China:Implications for Basement Attribution. Gondwana Research, 28(4):1516-1529. https://doi.org/10.1016/j.gr.2014.09.018
      Wang, X. X., Wang, T., Ke, C. H., et al., 2015. Nd-Hf Isotopic Mapping of Late Mesozoic Granitoids in the East Qinling Orogen, Central China:Constraint on the Basements of Terranes and Distribution of Mo Mineralization. Journal of Asian Earth Sciences, 103:169-183. https://doi.org/10.1016/j.jseaes.2014.07.002
      Wang, Z. Q., Yan, Q. R., Yan, Z., et al. 2009. New Division of Main Tectonic Units in the Qinling Orogenic Belt. Acta Geologica Sinica, 83 (11):1527-1546 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200911001
      Wilhem, C., Windley, B. F., Stampfli, G. M., 2012. The Altaids of Central Asia:A Tectonic and Evolutionary Innovative Review. Earth-Science Reviews, 113(3/4):303-341. https://doi.org/10.1016/j.earscirev.2012.04.001
      Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1):31-47. https://doi.org/10.1144/0016-76492006-022
      Wu, F. Y., Jahn, B. M., Wilde, S., et al., 2000. Phanerozoic Crustal Growth:U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China. Tectonophysics, 328(1/2):89-113. https://doi.org/10.1016/s0040-1951(00)00179-7
      Wu, Y.B., 2019. Paleozoic Magmatism in the Qinling Orogen and Its Geodynamic Significance. Earth Science, 44(12):4173-4177(in Chinese with English abstract).
      Xiao, W. J., Windley, B. F., Han, C. M., et al., 2017. Late Paleozoic to Early Triassic Multiple Roll-Back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186:94-128. https://doi.org/10.1016/j.earscirev.2017.09.020
      Xiao, W. J., Windley, B. F., Sun, S., Li, et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia:Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1):477-507. https://doi.org/10.1146/annurev-earth-060614-105254
      Xu, X. W., Li, X. H., Jiang, N., et al., 2015. Basement Nature and Origin of the Junggar Terrane:New Zircon U-Pb-Hf Isotope Evidence from Paleozoic Rocks and their Enclaves. Gondwana Research, 28(1):288-310. https://doi.org/10.1016/j.gr.2014.03.011
      Yang, Q. D., Wang, T., Guo, L., et al., 2017. Nd Isotopic Variation of Paleozoic-Mesozoic Granitoids from the Da Hinggan Mountains and Adjacent Areas, NE Asia:Implications for the Architecture and Growth of Continental Crust. Lithos, 272-273:164-184. https://doi.org/10.1016/j.lithos.2016.11.015
      Yan, Z., Wang, Z. Q, Li, J. L., et al., 2012. Tectonic Properties of the Western Qinling Wedge and Their Accretionary OrogenicProcesses. Acta Petrologica Sinica, 28 (06):1808-1828 (in Chinese).
      Zhang, J., Wang, T., Tong, Y., et al., 2017. Tracking Deep Ancient Crustal Components by Xenocrystic/inherited Zircons of Palaeozoic Felsic Igneous Rocks from the Altai-East Junggar Terrane and Adjacent Regions, Western Central Asian Orogenic Belt and its Tectonic Significance. International Geology Review, 59(16):2021-2040. https://doi.org/10.1080/00206814.2017.1308841
      Zhang, J. J., Wang, T., Zhang, L., et al., 2015. Tracking Deep Crust by Zircon Xenocrysts within Igneous Rocks from the Northern Alxa, China:Constraints on the Southern Boundary of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 108:150-169. https://doi.org/10.1016/j.jseaes.2015.04.019
      Zheng, Y.F., Chen, Y.X, 2019. Crust-Mantle Interaction in Continental Subduction Zones. Earth Science, 44(12): 3961-3983(in Chinese with English abstract).
      Zhou, J. B., Wilde, S. A., Zhao, G. C., et al., 2018. Nature and Assembly of Microcontinental Blocks within the Paleo-Asian Ocean. Earth-Science Reviews, 186:76-93. https://doi.org/10.1016/j.earscirev.2017.01.012
      Zhou, X. H., Chen, W. J. 2001. Sr-Nd-Pb Isotope Mapping of the Late Mesozoic Volcanic Rocks in the Northern Margin of the North China Craton and Its Tectonic Significance. Geochemistry, 30 (1):10-23 (in Chinese).
      Zimmermann, S., Hall, R., 2016. Provenance of Triassic and Jurassic Sandstones in the Banda Arc:Petrography, Heavy Minerals and Zircon Geochronology. Gondwana Research, 37:1-19. https://doi.org/10.1016/j.gr.2016.06.001
      韩宝福, 何国琦, 王式洸, 等, 1998.新疆北部碰撞后幔源岩浆活动与陆壳纵向生长.地质论评, 44:396-409. doi: 10.3321/j.issn:0371-5736.1998.04.009
      韩宝福, 季建清, 宋彪, 等, 2006.新疆准噶尔晚古生代陆壳垂向生长(1)——后碰撞深成岩浆活动的时限.岩石学报, 22(5):1077-1086. http://d.wanfangdata.com.cn/periodical/ysxb98200605003
      洪大卫, 王式洸, 谢锡林, 等, 2000.兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长.地学前缘, 7(2):441-456. doi: 10.3321/j.issn:1005-2321.2000.02.012
      洪大卫, 王式光, 谢锡林, 等, 2003.从中亚正εNd值花岗岩看超大陆演化和大陆地壳生长的关系.地质学报, 77(2):203-209. doi: 10.3321/j.issn:0001-5717.2003.02.008
      莫宣学, 2011.岩浆与岩浆岩:地球深部"探针"与演化记录.自然杂志, 33(5):255-259. http://qikan.cqvip.com/Qikan/Article/Detail?id=39656172
      王涛, 李伍平, 李金宝, 等, 2008.东天山东段同造山到后造山花岗岩幔源组分的递增及陆壳垂向生长意义——Sr、Nd同位素证据.岩石学报, 24(04):762-772. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200804015
      王涛, 王晓霞, 郭磊, 等, 2017.花岗岩与大地构造.岩石学报, 33(5):1459-1478. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201705006
      王涛, 侯增谦.2018.同位素填图与深部物质探测(Ⅰ):揭示岩石圈组成演变与地壳生长.地学前缘, 25(6):1-19. http://d.wanfangdata.com.cn/periodical/dxqy201806003
      王宗起, 闫全人, 闫臻, 等, 2009.秦岭造山带主要大地构造单元的新划分.地质学报, 83(11):1527-1546. doi: 10.3321/j.issn:0001-5717.2009.11.001
      吴元保, 2019.秦岭造山带古生代岩浆作用及地球动力学意义.地球科学, 44(12):4173-4177. doi: 10.3799/dqkx.2019.266
      闫臻, 王宗起, 李继亮, 等, 2012.西秦岭楔的构造属性及其增生造山过程.岩石学报, 28(6):1808-1828. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201206008
      郑永飞, 陈伊翔, 2019.大陆俯冲带壳幔相互作用.地球科学, 44(12):3961-3983. doi: 10.3799/dqkx.2019.982
      周新华, 陈文寄. 2001.华北克拉通北缘晚中生代火山岩Sr-Nd-Pb同位素填图及其构造意义.地球化学, 30(1):10-23. doi: 10.3321/j.issn:0379-1726.2001.01.003
    • 加载中
    图(11)
    计量
    • 文章访问数:  1481
    • HTML全文浏览量:  898
    • PDF下载量:  193
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-06-23
    • 刊出日期:  2020-07-15

    目录

      /

      返回文章
      返回