• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    榆科油田东营组河流相储层构型与油藏单元研究

    孟玉净 赵彦超 熊山 刘洪平 李英联 李小明

    孟玉净, 赵彦超, 熊山, 刘洪平, 李英联, 李小明, 2021. 榆科油田东营组河流相储层构型与油藏单元研究. 地球科学, 46(7): 2481-2493. doi: 10.3799/dqkx.2020.226
    引用本文: 孟玉净, 赵彦超, 熊山, 刘洪平, 李英联, 李小明, 2021. 榆科油田东营组河流相储层构型与油藏单元研究. 地球科学, 46(7): 2481-2493. doi: 10.3799/dqkx.2020.226
    Meng Yujing, Zhao Yanchao, Xiong Shan, Liu Hongping, Li Yinglian, Li Xiaoming, 2021. Study on Reservoir Architecture and Reservoir Units of Fluvial Deposits of Dongying Formation in Yuke Oilfield. Earth Science, 46(7): 2481-2493. doi: 10.3799/dqkx.2020.226
    Citation: Meng Yujing, Zhao Yanchao, Xiong Shan, Liu Hongping, Li Yinglian, Li Xiaoming, 2021. Study on Reservoir Architecture and Reservoir Units of Fluvial Deposits of Dongying Formation in Yuke Oilfield. Earth Science, 46(7): 2481-2493. doi: 10.3799/dqkx.2020.226

    榆科油田东营组河流相储层构型与油藏单元研究

    doi: 10.3799/dqkx.2020.226
    基金项目: 

    国家重大专项项目 2016ZX05048-001-01-CS

    国家自然科学基金青年基金项目 41402117

    国家自然科学基金青年基金项目 41902147

    构造与油气资源教育部重点实验室开放基金项目 TPR-2015-11

    详细信息
      作者简介:

      孟玉净(1993-), 女, 博士研究生, 主要从事油气藏精细描述研究.ORCID: 0000-0003-0527-9330.E-mail: yjmeng@cug.edu.cn

      通讯作者:

      刘洪平, E-mail: hpliu17@cug.edu.cn

    • 中图分类号: P618.130

    Study on Reservoir Architecture and Reservoir Units of Fluvial Deposits of Dongying Formation in Yuke Oilfield

    • 摘要: 为解释榆科油田榆108和榆24断块东营组存在的油水关系复杂、注采不对应、注水开发效率差等问题.通过采用地质、地球物理及开发动态资料,开展沉积微相、单河道及点坝砂体储层构型研究,提出2类河流相砂体连通模式;结合生产动态,在研究区内河流相储层中,划分出4类油藏单元和5类油藏单元组合.给出3个实例,证明基于沉积微相和储层构型研究划分出的油藏单元,可用于解释油藏勘探开发中暴露的矛盾.该研究可为下一步油藏精细开发调整、提高油藏开发水平提供依据.

       

    • 图  1  冀中坳陷深县凹陷榆科油田构造井位及区域构造位置

      单位:m

      Fig.  1.  Structural well location and regional structural location map of Yuke oilfield in Shenxian Sag, Jizhong Depression

      图  2  榆科油田东营组油藏曲流河砂岩典型沉积构造

      Fig.  2.  Typical sedimentary structure of meandering river sandstone of Dongying Formation in Yuke oilfield

      图  3  榆科油田东营组河流相油藏单河道砂体识别的对比标志

      单位:m

      Fig.  3.  Comparison mark for identification of single channel sand body in fluvial facies reservoir of Dongying Formation in Yuke oilfield

      图  4  Ed1-Ⅰ-10地层切片Mean Amplitude属性图沉积解释

      Fig.  4.  Ed1-Ⅰ-10 stratigraphic section Mean Amplitude attribute diagram sediment interpretation

      图  5  Y25井废弃河道测井相

      Fig.  5.  Abandoned channel electrofacies in well Y25

      图  6  对子井法计算侧积层倾角β和侧积层间距ΔL

      a. 对子井法示意图;b. Ed2-Ⅱ-11小层对子井附近沉积微相平面分布图;c. Ed2-Ⅱ-11小层侧积层1和侧积层2;d. Ed2-Ⅱ-13小层侧积层3和侧积层4

      Fig.  6.  Paired wells method for calculating the angle β and spacing ΔL of lateral accretion surfaces

      图  7  多曲流河道叠加和单河道侧积体连通性评价

      Fig.  7.  Evaluation of multimeander channel superposition and single channel lateral integration connectivity

      图  8  榆科油田东营组曲流河油藏单元及组合的分类表(注水开发阶段)

      PB. 点坝;ACH. 末期/废弃河道;CCH. 决口水道;CVS. 决口扇;OB. 越岸沉积;FP. 泛滥平原(河漫);CHB. 心滩;L. 侧积层延伸长度;h. 河道满岸深度

      Fig.  8.  Classification table of the units and combinations of the curved liuhe reservoir of Dongying Formation, Yuke Oilfield (waterflood development stage)

      图  9  榆科油田东营组油藏Ⅳ油组3小层油藏单元平面图和剖面

      海拔单位:m

      Fig.  9.  Plan and section map of reservoir unit of the Ⅳ-3 layer of Dongying Formation, Yuke Oilfield

      图  10  A4型油藏单元中注采关系、沉积微相、储层构型及示踪剂综合分析图

      a. Ed1-Ⅱ-11小层Y108-10注采井组断层构造-沉积微相-储层构型-油藏单元分布图;b. 注水井(Y108-10)及采油井(Y108-27和Y108-17)注水曲线及生产曲线;c. 注采井组示踪剂分析成果表

      Fig.  10.  Comprehensive analysis diagram of injection-production relationship, sedimentary microfacies, reservoir configuration and tracer in A4 reservoir unit

      图  11  Ⅰ油组8和9小层不同点坝纵向深切型油藏单元(A1)

      a. Ed1-Ⅰ-8+9小层油藏单元平面图;b. Ed1-Ⅰ-8+9小层隔夹层等厚图;c. 构型剖面;d. 油藏剖面;e. 开发曲线;海拔单位(m)

      Fig.  11.  Reservoir units with deep longitudinal cutting at different point bars in the eighth and ninth small layer of the Ⅰ oil group (A1)

      表  1  单河道砂体和点坝构型单元定量经验公式

      Table  1.   Quantitative empirical formula for single sand body and point bar architecture element

      公式序号 学者 经验公式 备注
      1 Schumm et al.(1960) F=255M-1.08 F:河道宽深比,无量纲;
      M:粉泥质含量(%);
      H:满岸河道深度(m);
      hm:平均交错沙丘厚度(m);
      a:参数,无量纲;
      Sm:平均交错层厚度(m);
      h:平均砂体厚度(m);
      Wm:满岸宽度(m);
      WL:侧积体宽度(m);
      β:侧积倾角(°);
      Wc:单一曲流带宽度(m);
      Wd:点坝长度(m);
      Wa:侧积层最大宽度(m)
      2 Bridge et al.(1972) H=6hma=Sm/(1.8hm);hm= 2.22a1.332
      3 Leeder(1973) Wm=6.8H1.54
      4 Wm=1.5H/tanβ
      5 WL= 2Wm/3
      6 Bridge and Mackey(1993) Wm=59.9h1.8
      7 Lorenz et al.(1985) Wc=7.44Wm1.01
      8 岳大力等(2018) Wd=3.631 9Wm+40.612
      下载: 导出CSV
    • Bridge, J. S., Diemer, J. A., Schumm, S. A., et al., 1972. Experimental Study of Channel Patterns. Geological Society of America Bulletin, 83(6): 1755. https://doi.org/10.1130/0016-7606(1972)83[1755:esocp]2.0.co;2
      Bridge, J.S., Mackey, S.D., 1993. A Theoretical Study of Fluvial Sandstone Body Dimensions. In: Flint, S.S., Bryant, I.D., eds., The Geological Modelling of Hydrocarbon Reservoirs and Outcrop Analogues: International Association of Sedimentologists, Special Publication 15, New York, 213-236.
      Huang, H., 2011. The Study on the Sedimentary Microfacies of Dongying Formation of Yuke Oil Field of Shenxian Depression (Dissertation). China University of Petroleum, East China, Qingdao(in Chinese with English abstract).
      Leeder, M. R., 1973. Fluviatile Fining-Upwards Cycles and the Magnitude of Palaeochannels. Geological Magazine, 110(3): 265-276. https://doi.org/10.1017/s0016756800036098
      Li, J.G., 2018. Sedimentary Model of Fine-Grained Dryland Meandering River Terminus Systems in a Semi-Arid or Arid Endorheic Basin. Earth Science, 43(S1): 268-280 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1023.htm
      Li, S. L., Yu, X. H., Jiang, T., et al., 2017. Meander-Braided Transition Features and Abandoned Channel Patterns in Fluvial Environment. Acta Sedimentologica Sinica, (1): 3-11 (in Chinese). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-sedimentologica-sinica_thesis/0201251718311.html
      Liang, F. K., Liu, L. P., Yu, X. H., et al., 2013. Structural Accommodation Zones in the Main Extension Period and their Effects on Depositional System in the Shenxian Sag, Jizhong Depression. Chinese Journal of Geology, 48(1): 254-262 (in Chinese with English abstract). http://www.researchgate.net/publication/287267469_Structural_accommodation_zones_in_the_main_extension_period_and_their_effects_on_depositional_system_in_the_Shenxian_Sag_Jizhong_Depression
      Liu, X. L., 2014. Controlling Factors of Complex Oil-Water Relationship in High Porosity and Permeability Sandstone Reservoirs: Taking Lower Member Reservoir of Guantao Formation in Block Zhuang 11, Changdi Oilfield as an Example. Fault-Block Oil & Gas Field, 21(2): 142-146 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKYT201402002.htm
      Lorenz, J. C., Clark, J. A., Heinze, D. M., et al., 1985. Determination of Widths of Meander-Belt Sandstone Reservoirs from Vertical Down Hole Data, Mesaverde Group, Piceance Creek Basin, Colorado. AAPG Bulletin, 69(5): 710-721. https://doi.org/10.1306/ad4627ef-16f7-11d7-8645000102c1865d
      Ma, S. Z., Sun, Y., Fan, G. J., et al., 2008. The Method for Studying Thin Interbed Architecture of Burial Meandering Channel Sandbody. Acta Sedimentologica Sinica, 26(4): 632-639 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=27888105
      Palmer, M., 2015. A High-Resolution 3-D Architecture of a Cretaceous Point Bar Using Terrestrial Laser Scanning of Multiple Exposures: A Far More Complex Model of Bar Growth at the Scale of a Steam Chamber than Previously Thought. Dissertations & Theses-Gradworks, 10(1): 125. http://www.zhangqiaokeyan.com/academic-degree-foreign_mphd_thesis/02061567504.html
      Schumm, S. A., 1960. The Shape of Alluvial Channels in Relation to Sediment Type. U.S. Geol. Surv. Prof. Pap., New York, 352-b. http://www.researchgate.net/publication/248008453_The_Shape_of_Alluvial_Channels_in_Relation_to_Sediment_Type
      Sun, T. J., Li, S. L., Xu, L., et al., 2012. Architectural Analysis of Meandering River Reservoirs in Fuyu Oil Layer, C107 Block, Changchunling Oil Field. Earth Science Frontiers, 19(2): 126-132 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy201202018
      Sun, X. C., Yang, C. S., Yu, X. H., et al., 2014. Characteristics and Controlling Factors of Sandstone Reservoir of Dongying Formation in Shenxian Depression, Jizhong Sub-Basin. Marine Geology & Quaternary Geology, (4): 127-132 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201404019.htm
      Sun, Y., D., Yi, M., Wang, J. P., et al., 2016. Distribution Patterns of Single Sand Body in Fuyu Oil Layer in the Northern Honggang Area, Songliao Basin. Lithologic Reservoirs, 28(4): 9-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YANX201604002.htm
      Wang, J. H., Zhou, J. Y., Yang, X. H., et al., 2018. Sedimentary Characteristics and Geneses of Pebbly Meandering River: A Case from Dashihe River in Qinghuangdao Area. Earth Science, 43(S1): 277-286 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1024.htm
      Wu, S. H., Yue, D. L., Liu, J. M., et al., 2008. Hierarchy Modeling of Subsurface Palaeochannel Reservoir Architecture. Science in China Series D: Earth Sciences, 51(2S): 126-137 (in Chinese with English abstract). doi: 10.1007/s11430-008-0624-0
      Xu, L. H., Liu, J., Gong, L. P., et al., 2015. The Mechanism of Differential Distribution of the Water Oil Contact in Block 438 of Shuanghe Oilfield. Marine Geology Frontiers, (7): 42-46 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDT201507006.htm
      Yue, D. L., Wu, S. H., Liu, J. M., 2007. An Accurate Method for Anatomizing Architecture of Subsurface Reservoir in Point Bar of Meandering River. Acta Petrolei Sinica, 28(4): 99-103 (in Chinese with English abstract). http://www.researchgate.net/publication/287874999_Accurate_method_for_anatomizing_architecture_of_subsurface_reservoir_in_point_bar_of_meandering_river
      Yue, D.L., Hu, G.Y., Li, W., et al., 2018. Meandering Fluvial Reservoir Architecture Characterization Method and Application by Combining Well Log and Seismic Data: A Case Study of QHD32-6 Oilfield. China Offshore Oil and Gas, 30(1): 9-109 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_china-offshore-oil-gas_thesis/0201218909301.html
      Zhang, R. F., Li, X. P., Yu, X. H., et al., 2011. The Response of Petroleum Trap Types to the Structural: Depositional Pattern in Shenxian Depression, Jizhong Sub-Basin. Geoscience, 25(1): 62-69 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201101008.htm
      Zhao, H. Q., Fu, Z. G., Lv, Xiao, G., 2004. Reservoir Type Analysis and Model Prediction Description Method. Petroleum Geology & Oilfield Development in Daqing, (5): 74-77+124 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQSK200405018.htm
      Zhao, R. S., 2016. The Architectural Structure of Meandering Point Bar-Use North Second District SⅢ of Lamadian Oilfield as Example (Dissertation). Northeast Petroleum University, Daqing (in Chinese with English abstract).
      Zhou, Y. B., Wu, S. H., Ji, B. Y., et al., 2011. Research Progress on the Characterization of Fluvial Reservoir Architecture. Advances in Earth Science, 26(07): 695-702 (in Chinese with English abstract). http://www.researchgate.net/publication/292017120_Research_program_on_the_characterization_of_fluvial_reservoir_architecture
      黄晖, 2011. 深县凹陷榆科油田东营组沉积微相研究(博士毕业论文). 青岛: 中国石油大学.
      李嘉光, 2018. 干旱湖盆曲流河末端细粒沉积体系及沉积模式. 地球科学, 43(增刊1): 268-280. doi: 10.3799/dqkx.2018.525
      李胜利, 于兴河, 姜涛, 等, 2017. 河流辫——曲转换特点与废弃河道模式. 沉积学报, (1): 3-11. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201701001.htm
      梁富康, 刘丽萍, 于兴河, 等, 2013. 冀中坳陷深县凹陷主伸展期的构造调节带及其对沉积环境的控制作用. 地质科学, 48(1): 254-262. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201301017.htm
      刘西雷, 2014. 高孔高渗砂岩油藏复杂油水关系主控因素——以长堤油田桩11块馆下段油藏为例. 断块油气田, 21(2): 142-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201402002.htm
      马世忠, 孙雨, 范广娟, 等, 2008. 地下曲流河道单砂体内部薄夹层建筑结构研究方法. 沉积学报, 26(4): 632-639. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200804014.htm
      孙天建, 李胜利, 许磊, 等, 2012. 长春岭油田C107区块扶余油层密井网曲流河储层构型分析. 地学前缘, 19(2): 126-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201202019.htm
      孙相灿, 杨传胜, 于兴河, 等, 2014. 冀中坳陷深县凹陷东营组砂岩储层特征及影响因素. 海洋地质与第四纪地质, (4): 127-132. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201404019.htm
      孙雨, 董毅明, 王继平, 等, 2016. 松辽盆地红岗北地区扶余油层储层单砂体分布模式. 岩性油气藏, 28(4): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201604002.htm
      王家豪, 周江羽, 杨香华, 等, 2018. 砾质曲流河的沉积特点及成因: 以秦皇岛大石河为例. 地球科学, 43(S1): 277-286. doi: 10.3799/dqkx.2018.197
      许宏龙, 刘建, 龚刘凭, 等, 2015. 双河油田438块构造油藏油水界面差异分布的主导因素. 海洋地质前沿, (7): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201507006.htm
      岳大力, 胡光义, 李伟, 等, 2018. 井震结合的曲流河储层构型表征方法及其应用——以秦皇岛32-6油田为例. 中国海上油气, 30(1): 99-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201801012.htm
      岳大力, 吴胜和, 刘建民, 2007. 曲流河点坝地下储层构型精细解剖方法. 石油学报, 28(4): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200704019.htm
      张锐锋, 李先平, 于兴河, 等, 2011. 冀中坳陷深县凹陷构造沉积格局与圈闭类型响应关系. 现代地质, 25(1): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201101008.htm
      赵翰卿, 付志国, 吕晓光, 2004. 储层层次分析和模式预测描述法. 大庆石油地质与开发, (5): 74-77+124. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK200405018.htm
      赵容生, 2016. 曲流点坝砂体建筑结构研究及应用(博士毕业论文). 大庆: 东北石油大学.
      周银邦, 吴胜和, 计秉玉, 等, 2011. 曲流河储层构型表征研究进展. 地球科学进展, 26(7): 695-702. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201107004.htm
    • 加载中
    图(11) / 表(1)
    计量
    • 文章访问数:  1061
    • HTML全文浏览量:  1062
    • PDF下载量:  33
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-07-31
    • 刊出日期:  2021-07-15

    目录

      /

      返回文章
      返回