• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于PMGRA气体地球化学测量在辽东浅覆盖区找矿的可行性

    林成贵 程志中 姚晓峰 颜廷杰 李阳 王伟 郭强

    林成贵, 程志中, 姚晓峰, 颜廷杰, 李阳, 王伟, 郭强, 2020. 基于PMGRA气体地球化学测量在辽东浅覆盖区找矿的可行性. 地球科学, 45(11): 4038-4053. doi: 10.3799/dqkx.2020.263
    引用本文: 林成贵, 程志中, 姚晓峰, 颜廷杰, 李阳, 王伟, 郭强, 2020. 基于PMGRA气体地球化学测量在辽东浅覆盖区找矿的可行性. 地球科学, 45(11): 4038-4053. doi: 10.3799/dqkx.2020.263
    Lin Chenggui, Cheng Zhizhong, Yao Xiaofeng, Yan Tingjie, Li Yang, Wang Wei, Guo Qiang, 2020. Feasibility of Prospecting Based on PMGRA Gas Geochemical Survey in Shallow Covered Area of Liaodong Area. Earth Science, 45(11): 4038-4053. doi: 10.3799/dqkx.2020.263
    Citation: Lin Chenggui, Cheng Zhizhong, Yao Xiaofeng, Yan Tingjie, Li Yang, Wang Wei, Guo Qiang, 2020. Feasibility of Prospecting Based on PMGRA Gas Geochemical Survey in Shallow Covered Area of Liaodong Area. Earth Science, 45(11): 4038-4053. doi: 10.3799/dqkx.2020.263

    基于PMGRA气体地球化学测量在辽东浅覆盖区找矿的可行性

    doi: 10.3799/dqkx.2020.263
    基金项目: 

    国家重点研发计划项目 2018YFC0603806

    中国地质调查局二级项目 DD20190166

    详细信息
      作者简介:

      林成贵(1990-), 男, 工程师, 硕士, 主要从事勘查地球化学及找矿预测研究.ORCID:0000-0002-3336-4260.E-mail:linchenggui1991@163.com

      通讯作者:

      程志中, E-mail:chengzhizhong69@163.com

    • 中图分类号: P593

    Feasibility of Prospecting Based on PMGRA Gas Geochemical Survey in Shallow Covered Area of Liaodong Area

    • 摘要: 气体能携带深部矿化信息沿着岩石裂隙和断裂带迁移至地表,因此气体地球化学方法可以用于寻找覆盖层以下的隐伏断裂和矿体.基于便携式多组分气体快速分析仪(PMGRA),应用气体地球化学方法对辽东地区五龙金矿区和青城子地区开展了探索性的试验研究,并辅以相应的土壤地球化学测量进行对比.结果显示,异常区气体的浓度衬值非常大;在部分气体异常区,沿着构造倾向方向,具有CO2异常峰值出现在H2S、SO2和CH4之前的特点.在辽东浅覆盖区,气体和土壤地球化学测量均能反映隐伏构造和矿体;而在覆盖较厚地区,气体地球化学测量对断裂和矿体反映更明显,受覆盖层的类型和厚度影响较小.本次试验结果初步显示了基于PMGRA气体地球化学测量方法在浅覆盖区具有一定的可行性.

       

    • 图  1  五龙金矿区地质简图

      Yu et al.(2018)修改

      Fig.  1.  The geological sketch map of Wulong gold deposit

      图  2  青城子地区地质简图

      据丹东青城子矿业有限公司(2010).辽宁省凤城市青城子铅锌矿接替资源勘查报告

      Fig.  2.  The geological sketch map of Qingchengzi area

      图  3  研究区断裂和矿体野外照片

      a.鸡心岭断裂的断层泥及断层角砾;b.鸡心岭断裂的断层泥;c.163号脉附近闪长岩上的石英脉及黄铁矿集合体;d.蚂蚁山附近的尖山子断裂

      Fig.  3.  Field photographs of fractures and orebodies in the study area

      图  4  PMGRA简易装置示意

      Fig.  4.  Schematic diagram of PMGRA simple device

      图  5  五龙金矿P1地球化学综合剖面

      Fig.  5.  Comprehensive geochemical profile of P1 in Wulong gold deposit

      图  6  五龙金矿P2地球化学综合剖面

      Fig.  6.  Comprehensive geochemical profile of P2 in Wulong gold deposit

      图  7  青城子地区P3地球化学综合剖面

      Fig.  7.  Comprehensive geochemical profile of P3 in Qingchengzi area

      图  8  青城子地区P4地球化学综合剖面

      Fig.  8.  Comprehensive geochemical profile of P4 in Qingchengzi area

      表  1  P1剖面气体和土壤数据参数统计

      Table  1.   Parameter statistics of gas and soil geochemical data in P1 profile

      元素 样品数 最小值 最大值 背景值 平均值 标准离差 异常下限 富集系数 变异系数 衬值
      H2S 24 0.009 0.515 0.036 0.083 0.124 0.07 2.31 1.48 14.31
      SO2 24 0.289 3.729 0.654 0.953 0.877 1.28 1.46 0.92 5.70
      CH4 24 550 2 200 1 113 1 113 456.9 2 027 1.00 0.41 1.98
      CO2 24 6 000 99 000 17 434 20 833 18 788 35 240 1.19 0.90 5.68
      Au 17 1.9 233 18.6 38 59.8 55.1 44.70 1.58 12.53
      Ag 17 0.021 4.781 0.218 0.648 1.192 0.60 10.80 1.84 21.93
      As 17 3.2 121 37.124 37.1 35.2 107.47 8.44 0.95 3.26
      Hg 17 24 50 34.529 35 7 48.12 2.88 0.20 1.45
      Cu 17 9.3 17.3 12.824 12.8 2.7 18.23 0.75 0.21 1.35
      Pb 17 30.4 52.1 40 40.4 6.3 53.1 2.13 0.16 1.30
      Zn 17 36.2 66.8 49 49.5 9.1 67.8 0.73 0.18 1.36
      W 17 0.96 6.7 2.7 2.9 1.46 4.99 3.10 0.49 2.48
      Sn 17 0.2 7.5 0.69 1.7 2.1 1.6 0.80 1.28 10.87
      Mo 17 0.23 3.39 0.59 0.97 0.94 1.08 1.56 0.97 5.75
      Bi 17 0.21 28.5 0.63 3.34 7.66 1.08 18.5 2.30 45.24
      Mn 17 96 425 256 256 97 450 0.44 0.38 1.66
      Cr 17 67.2 116 89.4 89.4 14.2 117.9 1.94 0.16 1.30
      Co 17 5.2 13.1 7.6 7.9 2.1 10.9 0.79 0.26 1.72
      Ni 17 29.3 57.4 39.0 40.1 6.7 49.5 1.61 0.17 1.47
      B 17 19 114 61.8 62 26 113.6 2.90 0.42 1.84
      F 17 330 947 629 629 157 942 1.30 0.25 1.51
      注:背景值为剔除特异值后的平均值,异常下限为背景值加两倍标准离差,气体的富集系数为平均值与背景值的比值,元素的富集系数为平均值与中国东部元素丰度(迟清华和鄢明才,2007)的比值,变异系数为标准离差与平均值的比值,气体或元素的衬值为最大值与背景值的比值.气体的浓度单位为10-6;土壤数据中除Au、Hg的含量单位为10-9,其余元素的含量单位为10-6.
      下载: 导出CSV

      表  2  P2剖面气体和土壤数据参数统计

      Table  2.   Parameter statistics of gas and soil geochemical data in P2 profile

      元素 数据个数 最小值 最大值 背景值 平均值 标准离差 异常下限 富集系数 变异系数 衬值
      H2S 16 0.011 > 1 0.082 0.188 0.334 0.23 2.29 1.78 12.20
      SO2 16 0.379 > 4 0.93 1.44 1.58 2.0 1.55 1.09 4.30
      CH4 16 495 3 600 1 164 1 317 819 2 298 1.13 0.62 3.09
      CO2 16 13 000 96 000 30 733 34 812 20 334 55 855 1.13 0.58 3.12
      Au 16 0.9 4.6 2.62 2.6 1.1 4.8 3.10 0.41 1.76
      Ag 16 0.038 0.204 0.076 0.088 0.044 0.134 1.47 0.50 2.68
      As 16 8.1 21.5 12.3 12.8 3.6 18.2 2.90 0.28 1.75
      Hg 16 38 70 49 51 9 65 4.20 0.18 1.43
      Cu 16 7 13.7 10.1 10.1 2 14.1 0.60 0.20 1.36
      Pb 16 19.4 35.4 27.6 27.6 4.3 36. 1 1.45 0.15 1.28
      Zn 16 45.2 78.5 56.5 57.8 9.3 72.3 0.85 0.16 1.39
      W 16 1.6 2.98 2.2 2.18 0.45 3.1 2.20 0.21 1.35
      Sn 16 1 3.3 1.9 2 0.7 3.3 0.95 0.34 1.74
      Mo 16 0.28 1.71 0.8 0.8 0.48 1.8 1. 30 0.60 2.14
      Bi 16 0.28 0.86 0.52 0.52 0.17 0.87 2.91 0.33 1.65
      Mn 16 165 456 305 305 82 469 0.53 0.27 1.50
      Cr 16 58.7 102 75 77.1 11.5 95 1.68 0.15 1.36
      Co 16 5.2 12.8 8.2 8.5 1.9 11.4 0.85 0.22 1.56
      Ni 16 20.6 44.2 28.6 29.5 7.1 40.9 1.18 0.24 1.55
      B 16 9 28 13.0 16 6 18.9 0.75 0.36 2.15
      F 16 400 543 480 481 48 576 0.99 0.10 1.13
      注:背景值、异常下限、富集系数、变异系数、衬值的计算方法同表 1;气体的浓度和元素的含量单位同表 1.
      下载: 导出CSV

      表  3  P3剖面气体和土壤数据参数统计

      Table  3.   Parameter statistics of gas and soil geochemical data in P3 profile

      元素 样品数 最小值 最大值 背景值 平均值 标准离差 异常下限 富集系数 变异系数 衬值
      H2S 57 0.012 0.804 0.145 0.199 0.13 0.40 1.37 1.02 5.54
      SO2 57 0.407 > 5 1.744 1.857 1.07 3.88 1.06 0.65 2.87
      CH4 57 907.7 3 622.3 1 947.15 1 947.15 708.65 3 364.45 1.00 0.36 1.86
      CO2 57 800 19 900 2 914.4 4 901.1 1 623.01 6 160.37 1.68 0.96 6.83
      Au 43 0.6 263 11.44 22.6 17.26 45.95 26.57 2.38 11.64
      Ag 43 0.02 4.07 0.32 0.61 0.38 1.08 10.10 1.57 6.67
      As 43 9.5 200 31.65 43.3 22.01 75.68 9.84 1.03 4.62
      Hg 43 35 77 51.37 51 10.97 73.32 4.28 0.21 1.51
      Cu 43 13.3 66.4 22.16 23.5 4.57 31.29 1.38 0.35 2.83
      Pb 43 19.1 98.6 37.23 38.7 9.95 57.13 2.03 0.35 2.55
      Zn 43 43.3 177 67.39 71.3 10.19 87.77 1.05 0.30 2.48
      W 43 2.64 22.7 4.1 5.09 1.08 6.25 5.25 0.77 4.46
      Sn 43 0.2 6.5 1.36 1.7 1.01 3.37 0.79 0.90 3.82
      Mo 43 0.14 2.95 0.38 0.54 0.24 0.87 0.88 1.12 5.46
      Bi 43 0.26 1.16 0.48 0.5 0.09 0.67 2.75 0.28 2.32
      Mn 43 228 751 439.51 440 122.25 684.00 0.76 0.28 1.71
      Cr 43 56.9 91.8 73.91 73.9 8.81 91.53 1.61 0.12 1.24
      Co 43 8.9 19.4 14.15 14.2 2.15 18.45 1.42 0.15 1.37
      Ni 43 39.5 65.3 49.25 49.6 5.03 59.32 1.98 0.11 1.32
      B 43 23 162 62.3 70 23.72 109.74 3.35 0.48 2.31
      F 43 359 971 620.44 620 137.59 895.62 1.28 0.22 1.13
      注:背景值、异常下限、富集系数、变异系数、衬值的计算方法同表 1;气体的浓度和元素的含量单位同表 1.
      下载: 导出CSV

      表  4  P4剖面气体地球化学数据参数统计

      Table  4.   Parameter statistics of gas geochemical data in P4 profile

      元素 样品数 最小值 最大值 背景值 平均值 标准离差 异常下限 富集系数 变异系数 衬值
      H2S 23 0.005 > 1 0.03 0.09 0.02 0.07 3.00 2.31 33.33
      SO2 23 0.123 > 5 0.54 0.73 0.33 1.19 1.35 1.35 9.26
      CH4 23 683.8 4 550 1 415.47 1 678.34 399.05 2 213.58 1.19 0.57 3.21
      CO2 23 4 000 75 000 15 400 21 304.35 7 653.00 30 706.00 1.38 0.82 4.87
      注:背景值、异常下限、富集系数、变异系数、衬值的计算方法同表 1;气体的浓度单位同表 1.
      下载: 导出CSV
    • Cameron, E. M., Hamilton, S. M., Leybourne, M. I., et al., 2004. Finding Deeply Buried Deposits Using Geochemistry. Geochemistry:Exploration, Environment, Analysis, 4(1):7-32. https://doi.org/10.1144/1467-7873/03-019
      Chi, Q. H., Yan, M. C., 2007. Handbook of Elemental Abundance for Applied Geochemistry. Geological Publishing House, Beijing, 1-148 (in Chinese).
      Fridman, A. I., 1990. Application of Naturally Occurring Gases as Geochemical Pathfinders in Prospecting for Endogenetic Deposits. Journal of Geochemical Exploration, 38(2):1-11. https://doi.org/10.1016/0375-6742(90)90090-W
      Gosar, M., Šajn, R., Teršič, T., 2016. Distribution Pattern of Mercury in the Slovenian Soil:Geochemical Mapping Based on Multiple Geochemical Datasets. Journal of Geochemical Exploration, 167:38-48. https://doi.org/10.1016/j.gexplo.2016.05.005
      Güleç , N., Hilton, D. R., 2016. Turkish Geothermal Fields as Natural Analogues of CO2 Storage Sites:Gas Geochemistry and Implications for CO2 Trapping Mechanisms. Geothermics, 64:96-110. https://doi.org/10.1016/j.geothermics.2016.04.008
      Hale, M., 2010. Gas Geochemistry and Deeply Buried Mineral Deposits:The Contribution of the Applied Geochemistry Research Group, Imperial College of Science and Technology, London. Geochemistry:Exploration, Environment, Analysis, 10(3):261-267. https://doi.org/10.1144/1467-7873/09-236
      Han, Z. X., Liao, J. G., Zhang, Y. L., et al., 2017. Review of Deep-Penetrating Geochemical Exploration Methods. Advances in Earth Science, 32(8):828-838 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXJZ201708006.htm
      Hinkle, M. E., Ryder, J. L., Sutley, S. J., et al., 1990. Production of Sulfur Gases and Carbon Dioxide by Synthetic Weathering of Crushed Drill Cores from the Santa Cruz Porphyry Copper Deposit near Casa Grande, Pinal County, Arizona. Journal of Geochemical Exploration, 38(1/2):43-67. https://doi.org/10.1016/0375-6742(90)90092-o
      Hou, Z. Q., Zheng, Y. C., Geng, Y. S., 2015. Metallic Refertilization of Lithosphere along Cratonic Edges and Its Control on Au, Mo and REE Ore Systems. Mineral Deposits, 34(4):641-674 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201504001.htm
      Li, D. D., Wang, Y. W., Zhang, Z. C., et al., 2019, Characteristics of Metallotectonics and Ore-Forming Structural Plane in Baiyun Gold Deposit, Liaoning. Journal of Geomechanics, 25(Suppl.1):10-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX2019S1003.htm
      Li, W., Liu, C. H., He, G. W., et al., 2017. The Application of Soil Mercury Survey Method to the Exploration of Concealed Mineral Resources in Yinnao, Yudu Area. Geophysical and Geochemical Exploration, 41(5):840-845 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH201705008.htm
      Liu, J., Wang, S. L., Li, T. G., et al., 2018. Geochronology and Isotopic Geochemical Characteristics of Wulong Gold Deposit in Liaoning Province. Mineral Deposits, 37(4):712-728 (in Chinese with English abstract).
      Lombardi, S., Voltattorni, N., 2010. Rn, He and CO2 Soil Gas Geochemistry for the Study of Active and Inactive Faults. Applied Geochemistry, 25(8):1206-1220. https://doi.org/10.1016/j.apgeochem.2010.05.006
      Ma, Y. B., Bagas, L., Xing, S. W., et al., 2016. Genesis of the Stratiform Zhenzigou Pb-Zn Deposit in the North China Craton:Rb-Sr and C-O-S-Pb Isotope Constraints. Ore Geology Reviews, 79:88-104. https://doi.org/10.1016/j.oregeorev.2016.05.009
      Mann, A. W., Birrell, R. D., Fedikow, M. A. F., et al., 2005. Vertical Ionic Migration:Mechanisms, Soil Anomalies, and Sampling Depth for Mineral Exploration. Geochemistry:Exploration, Environment, Analysis, 5(3):201-210. https://doi.org/10.1144/1467-7873/03-045
      Mann, A. W., Birrell, R. D., Mann, A. T., et al., 1998. Application of the Mobile Metal Ion Technique to Routine Geochemical Exploration. Journal of Geochemical Exploration, 61(1):87-102. https://doi.org/10.1016/S0375-6742(97)00037-X
      McCarthy, J. H., Lambe, R. N., Dietrich, J. A., 1986. A Case Study of Soil Gases as an Exploration Guide in Glaciated Terrain; Crandon Massive Sulfide Deposit, Wisconsin. Economic Geology, 81(2):408-420. https://doi.org/10.2113/gsecongeo.81.2.408
      Oakes, B. W., Hale, M., 1987. Dispersion Patterns of Carbonyl Sulphide above Mineral Deposits. Journal of Geochemical Exploration, 28(1/2/3):235-249. https://doi.org/10.1016/0375-6742(87)90050-1
      Polito, P. A., Clarke, J. D. A., Bone1, Y., et al., 2002. A CO2-O2-Light Hydrocarbon-Soil-Gas Anomaly above the Junction Orogenic Gold Deposit:A Potential, Alternative Exploration Technique. Geochemistry:Exploration, Environment, Analysis, 2(4):333-344. https://doi.org/10.1144/1467-787302-035
      Reid, A. R., Rasmussen, J. D., 1990. The Use of Soil-Gas CO2 in the Exploration for Sulfide-Bearing Breccia Pipes in Northern Arizona. Journal of Geochemical Exploration, 38(1/2):87-101. https://doi.org/10.1016/0375-6742(90)90094-q
      Wan, W., Chen, Z. Y., Cheng, Z. Z., et al., 2019. Pilot Study of CO2 Gas Measurement Method for Mineral Exploration in Hilly Areas. Geophysical and Geochemical Exploration, 43(1):70-76 (in Chinese with English abstract).
      Wang, M. Q., Gao, Y. Y., Zhang, D. E., et al., 2006. Breakthrough in Mineral Exploration Using Geogas Survey in the Basin Area of Northern Qilian Region and Its Significance. Geophysical & Geochemical Exploration, 30(1):7-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH200601002.htm
      Wang, M. Z., Ji, Z. J., Liang, Q. F., et al., 2011. Ore-Controlling Structure Characteristics and Ore Prospecting in Wulong Gold Deposit, Liaoning Province. Geology and Mineral Resources of South China, 27(3):191-196 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HNKC201103004.htm
      Wang, X. Q., 1998. Deed Penetration Exploration Geochemistry. Geophysical & Geochemical Exploration, 22(3):166-169 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH199803001.htm
      Wang, X. Q., Ye, R., 2011. Findings of Nanoscale Metal Particles:Evidence for Deep-Penetrating Geochemistry. Acta Geoscientica Sinica, 32(1):7-12 (in Chinese with English abstract). http://www.oalib.com/paper/1560340
      Wang, X. Q., Zhang, B. M., Xin, L., et al., 2016. Geochemical Challenges of Diverse Regolith-Covered Terrains for Mineral Exploration in China. Ore Geology Reviews, 73:417-431. doi: 10.1016/j.oregeorev.2015.08.015
      Wang, Y. W., Xie, H. J., Li, D. D., et al., 2017. Prospecting Prediction of Ore Concentration Area Exemplified by Qingchengzi Pb-Zn-Au-Ag Ore Concentration Area, Eastern Liaoning Province. Mineral Deposits, 36(1):1-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201701001.htm
      Xiao, S. Y., Zhu, G., Zhang, S., et al., 2018. Structural Processes and Dike Emplacement Mechanism in the Wulong Gold Field, Eastern Liaoning. Chinese Science Bulletin, 63(28):3022-3036 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-KXTB2018Z2011.htm
      Xu, L., Yang, J. H., Zeng, Q. D., et al., 2020. Pyrite Rb-Sr, Sm-Nd and Fe Isotopic Constraints on the Age and Genesis of the Qingchengzi Pb-Zn Deposits, Northeastern China. Ore Geology Reviews, 117:103324. https://doi.org/10.1016/j.oregeorev.2020.103324
      Yang, Y. C., Li, Y. J., He, J. P., et al., 2017. Application of Geochemical Soil Survey in the Gongpoquan Gold Deposit at Mazongshan, Gansu Province. Geology and Exploration, 53(4):715-730 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201704011.htm
      Yu, B., Zeng, Q. D., Frimmeld, H. E., et al., 2018. Genesis of the Wulong Gold Deposit, Northeastern North China Craton:Constraints from Fluid Inclusions, H-O-S-Pb Isotopes, and Pyrite Trace Element Concentrations. Ore Geology Reviews, 102:313-337. https://doi.org/10.1016/j.oregeorev.2018.09.016
      Zeng, Q. D., Chen, R. Y., Yang, J. H., et al., 2019. The Metallogenic Characteristics and Exploring Ore Potential of the Gold Deposits in Eastern Liaoning Province. Acta Petrologica Sinica, 35(7):1939-1963 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.07.01
      Zeng, X., Chen, Y. R., Lin, L. B., et al., 2016. The Feasibility of Applying Integrated Hydrocarbon and Mercury Method to Ore Prospecting in Alluvial Coverage Area. Geology in China, 43(2):607-616 (in Chinese with English abstract). http://www.researchgate.net/publication/311434079_The_feasibility_of_applying_integrated_hydrocarbon_and_mercury_method_to_ore_prospecting_in_alluvial_coverage_area
      Zhang, B. M., Wang, X. Q., 2018. Theory and Technology of Nanogeochemistry for Mineral Exploration. Earth Science, 43(5):1503-1517 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201805012.htm
      Zhang, J., Cheng, Z. Z., Lun, Z. Y., et al., 2016. Soil Air Carbon Dioxide, Sulphur Dioxide and Hydrogen Sulfide Measurements as a Guide to Concealed Mineralization. Geological Science and Technology Information, 35(4):12-17 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201604003.htm
      Zhang, P., Kou, L. L., Zhao, Y., et al., 2020. Genesis of the Wulong Gold Deposit, Liaoning Province, NE China:Constrains from Noble Gases, Radiogenic and Stable Isotope Studies. Geoscience Frontiers, 11(2):547-563. https://doi.org/10.1016/j.gsf.2019.05.012
      Zhang, P., Zhao, Y., Kou, L. L., et al., 2019. Zircon U-Pb Ages, Hf Isotopes and Geological Significance of Mesozoic Granites in Dandong Area, Liaodong Peninsula. Earth Science, 44(10):3297-3313 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910010.htm
      Zhang, Z. Q., Wang, G., Carranza, E. J. M., et al., 2019. Metallogenic Model of the Wulong Gold District, China, and Associated Assessment of Exploration Criteria Based on Multi-Scale Geoscience Datasets. Ore Geology Reviews, 114:103138. https://doi.org/10.1016/j.oregeorev.2019.103138
      Zhou, S. C., Liu, X. H., Tong, C. H., et al., 2014. Application Research of Geogas Survey in Prospecting Concealed Ore. Acta Geologica Sinica, 88(4):736-754 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201404025.htm
      迟清华, 鄢明才, 2007.应用地球化学元素丰度数据手册.北京:地质出版社, 1-148.
      韩志轩, 廖建国, 张聿隆, 等, 2017.穿透性地球化学勘查技术综述与展望.地球科学进展, 32(8):828-838. http://www.cqvip.com/QK/94287X/20178/673453133.html
      侯增谦, 郑远川, 耿元生, 2015.克拉通边缘岩石圈金属再富集与金-钼-稀土元素成矿作用.矿床地质, 34(4):641-674. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ201504001.htm
      李德东, 王玉往, 张志超, 等, 2019.辽宁白云金矿床成矿构造与成矿结构面特征浅析.地质力学学报, 25(S1):10-12. http://www.cqvip.com/main/zcps.aspx?c=1&id=68907688504849578349484851
      李伟, 刘翠辉, 贺根文, 等, 2017.壤中汞气测量在于都营脑隐伏矿产勘查中的应用.物探与化探, 41(5):840-845. http://www.cqvip.com/QK/95670X/201705/673300033.html
      刘军, 王树岭, 李铁刚, 等, 2018.辽宁省五龙金矿床成岩成矿年代学及同位素地球化学特征.矿床地质, 37(4):712-728. http://www.kcdz.ac.cn/kcdzen/ch/reader/view_abstract.aspx?file_no=20180402&flag=1
      万卫, 陈振亚, 程志中, 等, 2019. CO2气体测量方法在低山丘陵区隐伏矿勘查的试验研究.物探与化探, 43(1):70-76. http://d.old.wanfangdata.com.cn/Periodical_wtyht201901008.aspx
      汪明启, 高玉岩, 张得恩, 等, 2006.地气测量在北祁连盆地区找矿突破及其意义.物探与化探, 30(1):7-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200601002
      王明志, 纪兆家, 梁群峰, 等, 2011.辽宁五龙金矿控矿构造分析及找矿方向.华南地质与矿产, 27(3):191-196. http://d.wanfangdata.com.cn/Periodical/hndzykc201103003
      王学求, 1998.深穿透勘查地球化学.物探与化探, 22(3):166-169. http://www.cnki.com.cn/Article/CJFDTotal-WTYH199803001.htm
      王学求, 叶荣, 2011.纳米金属微粒发现——深穿透地球化学的微观证据.地球学报, 32(1):7-12. http://d.wanfangdata.com.cn/Periodical/dqxb201101002
      王玉往, 解洪晶, 李德东, 等, 2017.矿集区找矿预测研究:以辽东青城子铅锌-金-银矿集区为例.矿床地质, 36(1):1-24. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ201701001.htm
      肖世椰, 朱光, 张帅, 等, 2018.辽东五龙金矿区成矿期构造过程与岩脉就位机制.科学通报, 63(28):3022-3036. http://www.cnki.com.cn/Article/CJFDTotal-KXTB2018Z2011.htm
      杨永春, 李元家, 何建平, 等, 2017.土壤地球化学测量在马鬃山公婆泉东金矿的应用.地质与勘探, 53(4):715-730. http://www.cnki.com.cn/Article/CJFDTotal-DZKT201704011.htm
      曾庆栋, 陈仁义, 杨进辉, 等, 2019.辽东地区金矿床类型、成矿特征及找矿潜力.岩石学报, 35(7):1939-1963. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201907001.htm
      曾旭, 陈远荣, 林立保, 等, 2016.烃汞综合气体测量法在冲洪积覆盖区找矿的可行性探讨.中国地质, 43(2):607-616. http://www.cqvip.com/QK/90050X/20162/668599244.html
      张必敏, 王学求, 2018.矿产勘查的纳米地球化学理论与方法.地球科学, 43(5):1503-1517. doi: 10.3799/dqkx.2018.409
      张洁, 程志中, 伦知颍, 等, 2016.土壤中CO2、SO2和H2S气体测量:一种适用于覆盖区找矿的化探方法.地质科技情报, 35(4):12-17. http://www.cqvip.com/qk/93477a/201604/669489689.html
      张朋, 赵岩, 寇林林, 等, 2019.辽东半岛丹东地区中生代花岗岩锆石U-Pb年龄、Hf同位素特征及其地质意义.地球科学, 44(10):3297-3313. doi: 10.3799/dqkx.2019.129
      周四春, 刘晓辉, 童纯菡, 等, 2014.地气测量技术及在隐伏矿找矿中的应用研究.地质学报, 88(4):736-754. http://www.cnki.com.cn/Article/CJFDTotal-DZXE201404025.htm
    • 加载中
    图(8) / 表(4)
    计量
    • 文章访问数:  1283
    • HTML全文浏览量:  495
    • PDF下载量:  49
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-06-23
    • 刊出日期:  2020-11-15

    目录

      /

      返回文章
      返回