• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    扬子地块新元古代裂谷盆地莲沱组沉积分异及其物源分析

    杜秋定 王剑 汪正江 邓奇 杨菲

    杜秋定, 王剑, 汪正江, 邓奇, 杨菲, 2021. 扬子地块新元古代裂谷盆地莲沱组沉积分异及其物源分析. 地球科学, 46(7): 2529-2543. doi: 10.3799/dqkx.2020.280
    引用本文: 杜秋定, 王剑, 汪正江, 邓奇, 杨菲, 2021. 扬子地块新元古代裂谷盆地莲沱组沉积分异及其物源分析. 地球科学, 46(7): 2529-2543. doi: 10.3799/dqkx.2020.280
    Du Qiuding, Wang Jian, Wang Zhengjiang, Deng Qi, Yang Fei, 2021. Depositional Differentiation and Porvenance Analysis of Liantuo Formation in Neoproterozoic Rift Basin, Yangtze Block. Earth Science, 46(7): 2529-2543. doi: 10.3799/dqkx.2020.280
    Citation: Du Qiuding, Wang Jian, Wang Zhengjiang, Deng Qi, Yang Fei, 2021. Depositional Differentiation and Porvenance Analysis of Liantuo Formation in Neoproterozoic Rift Basin, Yangtze Block. Earth Science, 46(7): 2529-2543. doi: 10.3799/dqkx.2020.280

    扬子地块新元古代裂谷盆地莲沱组沉积分异及其物源分析

    doi: 10.3799/dqkx.2020.280
    基金项目: 

    国家自然科学基金项目“新元古代中期湘黔桂盆地重要变革期的沉积学响应研究” 41672108

    “扬子东南缘中新元古代沉积超覆界面性质及盆地转换过程研究” 41672112

    “鄂西裂陷槽在扬子古大陆裂解中的沉积响应及其油气地质意义” 41972121

    “扬子地块莲沱组沉积环境及其时代归属研究” 41302091

    中国石油-西南石油大学创新联合体科技合作项目 2020CX010000

    详细信息
      作者简介:

      杜秋定(1983-), 男, 副研究员, 主要从事沉积学和沉积盆地分析研究.ORCID: 0000-0003-4712-5735.E-mail: dqiuding@163.com

    • 中图分类号: P597

    Depositional Differentiation and Porvenance Analysis of Liantuo Formation in Neoproterozoic Rift Basin, Yangtze Block

    • 摘要: 扬子地块莲沱组及相当地层单元的划分和对比,一直是我国南华系(即Cryogenian)研究关键难题之一.新元古代裂谷盆地开启早期,构造-沉积分异作用,同裂谷相变很大,使得盆地边缘区地层序列不完整.过分依赖岩石地层单元对比,历存分歧,典型的就是关于莲沱组与板溪群地层对比、时代归属以及莲沱组的沉积环境问题.本文通过对扬子地块东南缘莲沱组沉积古环境分析和锆石U-Pb精确定年,认为莲沱组沉积时限为790~720 Ma,相当于板溪群中上部,是华南新元古代裂谷盆地沉积充填序列的第Ⅱ旋回.莲沱组顶部U-Pb最小年龄约720 Ma,制约了扬子地块Sturtian冰期的启动年龄≤720 Ma.通过对中扬子地块从北向南展布的莲沱组陆相-海陆过渡相-海相不同的沉积单元岩相组合的沉积特征观察研究,分析沉积环境并建立了沉积模式;莲沱组及休宁组碎屑锆石记录了莲沱组沉积时该盆地在780~760 Ma经历了持续热隆升与地层剥蚀,揭示了中国南方扬子和华夏地块聚合与裂解事件的重要信息.

       

    • 图  1  扬子地块莲沱组沉积结构对比(a); 南华裂谷盆地及剖面位置(b)

      Fig.  1.  Stratigraphic column of Liantuo Formation in Yangtze block (a); distribution of Nanhua rift and the section in Yangtze block (b)

      图  2  通山(a)和蓝田(b)区域地质及采样位置

      Fig.  2.  Geological map and the sampling location of Tongshan (a) and Lantian (b)

      图  3  通山莲沱组碎屑锆石阴极发光图

      Fig.  3.  Representative cathodoluminescence images for Liantuo Formation samples of Tongshan area

      图  4  蓝田休宁组碎屑锆石阴极发光图

      Fig.  4.  Representative cathodoluminescence images for Xiuning Formation samples of Lantian area

      图  5  通山地区莲沱组碎屑锆石U-Pb谐合曲线图和碎屑锆石U-Pb年龄统计直方图

      Fig.  5.  Detrital zircon data U-Pb concordia diagrams and histogram of from the Liantuo Formation

      图  6  蓝田地区休宁组碎屑锆石U-Pb谐合曲线图、碎屑锆石U-Pb年龄统计直方图

      Fig.  6.  Detrital zircon data U-Pb concordia diagrams and histogram of from the Xiuning Formation

      图  7  莲沱组图版

      a. 莲沱组与双桥山群接触关系;b. 莲沱组底部含砾石英砂岩;c. 莲沱组砾石叠瓦状排列;d. 莲沱组块状杂砾岩;e. 莲沱组斜层理,水流方向从左向右;f. 莲沱组石英砂岩发育平行层理;g. 莲沱组发育透镜状、波状潮汐层理;h.莲沱组灰绿色细粒沉积物

      Fig.  7.  Plate of Liantuo Formation

      图  8  中扬子地块莲沱组沉积期古地理格局及沉积模式

      Fig.  8.  Schematic diagram illustrating the tectonic-sedimentary model of Liantuo Formation in Mid-Yangtze block

      图  9  (a)莲沱组、休宁组样品锆石年龄谱;(b)2 000 Ma以来超大陆旋回与地幔柱喷发事件耦合图(Li et al., 2019

      Fig.  9.  (a)Histogram of from the Liantuo and Xiuning formations; (b) Supercontinent cycle (Nuna, Rodinia and Pangaea) since 2 000 Ma ago, coupled to a slightly phase-shifted ~600 Ma plume frequency cycle(Li et al., 2019)

      图  10  (a~c)北印度、南极洲、西澳大利亚新元古代地层锆石年谱曲线(Wang et al., 2018);(d)扬子东缘沉积岩前寒武纪碎屑锆石年龄谱(李献华等,2012);(e)莲沱组、休宁组样品锆石年龄谱

      Fig.  10.  (a~c)zircon U-Pb ages from this study and for other locations: northern India, Antarctica, western Australia(Wang et al., 2018); (d) Detrital zircon age histograms for Precambrian sedimentary form eastern Yangtze block(Li et al. 2012); (e) histogram of from the Liantuo and Xiuning formations

    • Borg, G., Karner, K., Buxton, M., et al., 2003. Geology of the Skorpion Supergene Zinc Deposit, Southern Namibia. Economic Geology, 98(4): 749-771. https://doi.org/10.2113/gsecongeo.98.4.749
      Cai, X.F., Ye, Q., Xiao, M.Y., 2018. Some Opinions Concerning the Understanding of CIA Cold Climate of the Liantuo Formation of Nanhua System: Exemplified by the Nanhua System from Shennongjia in Western Hubei and Western Hunan. Acta Petrologica et Mineralogica, 37(4): 621-636 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW201804008.htm
      Cawood, P. A., Wang, W., Zhao, T. Y., et al., 2020. Deconstructing South China and Consequences for Reconstructing Nuna and Rodinia. Earth-Science Reviews, 204(1): 103-169. https://doi.org/10.1016/j.earscirev.2020.103169
      Cawood, P. A., Zhao, G. C., Yao, J. L., et al., 2018. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186(5-6): 173-194. https://doi.org/10.1016/j.earscirev.2017.06.001
      Du, Q. D., Wang, Z. J., Wang, J., et al., 2013. Geochronology and Paleoenvironment of the Pre-Sturtian Glacial Strata: Evidence from the Liantuo Formation in the Nanhua Rift Basin of the Yangtze Block, South China. Precambrian Research, 233(3-5): 118-131. https://doi.org/10.1016/j.precamres.2013.04.012
      Du, Q.D., Wang, Z.J., Wang, J., et al., 2013. LA-ICP-MS U-Pb Ages of Detrital Zircons from the Neoproterozoic Chang'an Formation in Central Hunan and Its Geological Implicatons. Geological Review, 59(2): 332-344 (in Chinese with English abstract). http://www.researchgate.net/publication/281095298_LA-ICP-MS_U-Pb_ages_of_detrital_zircons_from_the_Neoproterozoic_Chang'an_Formation_in_Central_Huanan_and_its_geological_implications
      Feng, L.J., Chu, X.L., Zhang, Q.R., et al., 2004. New Evidence of Deposition under Cold Climate for the Xieshuihe Formation of the Nanhua System in Northwestern Hunan, China. Chinese Science Bulletin, 49(2): 1172-1178 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/kxtb-e200413019
      Frimmel, H. E., Klötzli, U. S., Siegfried, P. R., 1996. New Pb-Pb Single Zircon Age Constraints on the Timing of Neoproterozoic Glaciation and Continental Break-Up in Namibia. The Journal of Geology, 104(4): 459-469. https://doi.org/10.1086/629839
      Hofmann, M., Linnemann, U., Rai, V., et al., 2011. The India and South China Cratons at the Margin of Rodinia: Synchronous Neoproterozoic Magmatism Revealed by LA-ICP-MS Zircon Analyses. Lithos, 123(1/2/3/4): 176-187. https://doi.org/10.1016/j.lithos.2011.01.012
      Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50-57. https://doi.org/10.1016/j.sab.2012.09.007
      Huang, J., Feng, L. J., Lu, D. B., et al., 2014. Multiple Climate Cooling Prior to Sturtian Glaciations: Evidence from Chemical Index of Alteration of Sediments in South China. Scientific Reports, 4(1): 1-6. https://doi.org/10.1038/srep06868
      Jiang, X.S., Wang, J., Cui, X.Z., et al., 2012. Zircon SHRIMP U-Pb Geochronology of the Neoproterozoic Chengjiang Formation in Central Yunnan Province (SW China) and Its Geological Significance. Science China: Earth Sciences, 42(10): 1496-1507 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-JDXK201210005.htm
      Key, R. M., Liyungu, A. K., Njamu, F. M., et al., 2001. The Western Arm of the Lufilian Arc in NW Zambia and its Potential for Copper Mineralization. Journal of African Earth Sciences, 33(3/4): 503-528. https://doi.org/10.1016/s0899-5362(01)00098-7
      Lan, Z. W., Li, X. H., Zhu, M. Y., et al., 2015. Revisiting the Liantuo Formation in Yangtze Block, South China: SIMS U-Pb Zircon Age Constraints and Regional and Global Significance. Precambrian Research, 263: 123-141. https://doi.org/10.1016/j.precamres.2015.03.012
      Li, W. X., Li, X. H., Li, Z. X., et al., 2008. Obduction-Type Granites within the NE Jiangxi Ophiolite: Implications for the Final Amalgamation between the Yangtze and Cathaysia Blocks. Gondwana Research, 13(3): 288-301. https://doi.org/10.1016/j.gr.2007.12.010
      Li, W. X., Li, X. H., Li, Z. X., 2010. Ca. 850 Ma Bimodal Volcanic Rocks in Northeastern Jiangxi Province, South China: Initial Extension during the Breakup of Rodinia? American Journal of Science, 310(9): 951-980. https://doi.org/10.2475/09.2010.08
      Li, X.H., Li, W.X., He, B., 2012. Building of the South China Block and Its Relevance to Assembly and Breakup of Rodinia Supercontinent: Observations, Interpretations and Tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31: 543-559 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201206001.htm
      Li, X. H., Li, W. X., Li, Q. L., et al., 2010. Petrogenesis and Tectonic Significance of the ~850 Ma Gangbian Alkaline Complex in South China: Evidence from in Situ Zircon U-Pb Dating, Hf-O Isotopes and Whole-Rock Geochemistry. Lithos, 114(1/2): 1-15. https://doi.org/10.1016/j.lithos.2009.07.011
      Li, Z. X., Mitchell, R. N., Spencer, C. J., et al., 2019. Decoding Earth's Rhythms: Modulation of Supercontinent Cycles by Longer Superocean Episodes. Precambrian Research, 323: 1-5. https://doi.org/10.1016/j.precamres.2019.01.009
      Li, Z. X., Wartho, J. A., Occhipinti, S., et al., 2007. Early History of the Eastern Sibao Orogen (South China) during the Assembly of Rodinia: New Mica 40Ar/39Ar Dating and SHRIMP U-Pb Detrital Zircon Provenance Constraints. Precambrian Research, 159(1/2): 79-94. https://doi.org/10.1016/j.precamres.2007.05.003
      Lin, S.J., 1995. Correlation for Liantuo Formation to Banxi Group and Boundary between the Presinian and Sinian in Eastern Guizhou. Guizhou Geology, 12(1): 23-29 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZDZ501.001.htm
      Liu, H.Y., 1991. The System in China. Science Press, Beijing, 1-388(in Chinese).
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Ma, G.G., Zhang Z.C., Li, H.Q., et al., 1989. A Geochronostratigraphical Study of the Simian System in Yangtze Platform. Bull. Yichang Inst. Geol. Mineral Resources, CAGA, 14: 83-124 (in Chinese with English abstract).
      Wang J., Pan, G.T., 2009. Neoproterozoic South China Palaeocontinents: An Overview. Acta Sedimentologica Sinica, 27(5): 818-825 (in Chinese with English abstract). http://www.researchgate.net/publication/280949693_Neoproterozoic_South_China_Palaeocontinents_An_overview
      Wang, D., Wang, X. L., Zhou, J. C., et al., 2013. Unraveling the Precambrian Crustal Evolution by Neoproterozoic Conglomerates, Jiangnan Orogen: U-Pb and Hf Isotopes of Detrital Zircons. Precambrian Research, 233(9): 223-236. https://doi.org/10.1016/j.precamres.2013.05.005
      Wang, J., 2005. New advances in the study of "the Nanhuaan System": with Particular Reference to the Stratigraphic Division and Correlation of the Nanhuaan System, South China. Geological Bulletin of China, 24(6): 491-495 (in Chinese with English abstract). http://www.researchgate.net/publication/281025564_New_advances_in_the_study_of_the_Nanhuaan_System-With_particular_reference_to_the_stratigraphic_division_and_correlation_of_the_Nanhuaan_System_South_China
      Wang, J., Li Z. X, 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-Up. Precambrian Research, 122(1/2/3/4): 141-158. https://doi.org/10.1016/s0301-9268(02)00209-7
      Wang, W., Zeng, M. F., Zhou, M. F., et al., 2018. Age, Provenance and Tectonic Setting of Neoproterozoic to Early Paleozoic Sequences in Southeastern South China Block: Constraints on its Linkage to Western Australia-East Antarctica. Precambrian Research, 309(1): 290-308. https://doi.org/10.1016/j.precamres.2017.03.002
      Wang, Z.J., 2008. A Proposal to Establish the Banxi System and Discussion on Its Foundations-Based Mainly on Studies in Eastern Guizhou Area. Geological Review, 54(3): 296-306 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/OA000004486
      Wang, Z.Q., Yin, C.Y., Gao, L.Z., et al., 2006a. Chemostratigraphic Studies to Explain Neoproterozoic Stratigraphic Division and Correlation. Earth Science Frontiers, 13(6): 268-279 (in Chinese with English abstract). http://www.researchgate.net/publication/285504331_Chemostratigraphic_studies_to_explain_Neoproterozoic_stratigraphic_division_and_correlation
      Wang, Z.Q., Yin, C.Y., Gao, L.Z., et al., 2006b. The Character of the Chemical Index of Alteration and Discussion of Subdivision and Correlation of the Nanhua System in Yichang Area. Geological Review, 52(5): 577-585 (in Chinese with English abstract). http://www.researchgate.net/publication/291448584_The_character_of_the_chemical_index_of_alteration_and_discussion_of_subdivision_and_correlation_of_the_Nanhua_System_in_Yichang_Area
      Xu, B., Xiao, S., Zou, H., et al., 2009. SHRIMP Zircon U-Pb Age Constraints on Neoproterozoic Quruqtagh Diamictites in NW China. Precambrian Research, 168(3/4): 247-258. https://doi.org/10.1016/j.precamres.2008.10.008
      Yin, C.Y., Liu, D.Y., Gao, L.Z., et al., 2003. Lower Boundary Age of the Nanhua System and the Gucheng Glacial Stage: Evidence from SHRIMPⅡ Dating. Chinese Science Bulletin, 48(16): 1721-1725 (in Chinese with English abstract). doi: 10.1360/csb2003-48-16-1721
      Zhao, G. C., Wang, Y. J., Huang, B. C., et al., 2018. Geological Reconstructions of the East Asian Blocks: From the Breakup of Rodinia to the Assembly of Pangea. Earth-Science Reviews, 186(2): 262-286. https://doi.org/10.1016/j.earscirev.2018.10.003
      Zheng, Y.F., 2003. Neoproterozoic Magmatic Activity and Global Change. Chinese Science Bulletin, 48: 1705-1720 (in Chinese with English abstract). doi: 10.1360/csb2003-48-16-1705
      Zheng, Y.F., Zhang, S.B., 2007. Formation and Evolution of Precambrian Continental Crust in South China. Chinese Science Bulletin, 52(1): 1-10 (in Chinese with English abstract). doi: 10.1007/s11434-007-0015-5
      Zhou, C.M., 2016. Neoproterozoic Lithostratigraphy and Correlation across the Yangtze Block, South China. Journal of Stratigraphy, 40(2): 120-135 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ201602002.htm
      Zhou, C. M., Tucker, R., Xiao, S. H., et al., 2004. New Constraints on the Ages of Neoproterozoic Glaciations in South China. Geology, 32(5): 437. https://doi.org/10.1130/g20286.1
      Zhou, J. C., Wang, X. L., Qiu, J. S., 2009. Geochronology of Neoproterozoic Mafic Rocks and Sandstones from Northeastern Guizhou, South China: Coeval Arc Magmatism and Sedimentation. Precambrian Research, 170(1/2): 27-42. https://doi.org/10.1016/j.precamres.2008.11.002
      蔡雄飞, 叶琴, 肖明元, 2018. 对南华系下统莲沱组CIA值寒冷气候认识的几点商榷——以鄂西神农架、湘西北南华系莲沱组为例. 岩石矿物学杂志, 37(4): 621-636. doi: 10.3969/j.issn.1000-6524.2018.04.008
      杜秋定, 汪正江, 王剑, 等, 2013. 湘中长安组碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义. 地质论评, 59(2): 332-344. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201302017.htm
      冯连君, 储雪蕾, 张启锐, 等, 2004. 湘西北南华系渫水河组寒冷气候成因的新证据. 科学通报, 49(2): 1172-1178. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200412012.htm
      江新胜, 王剑, 崔晓庄, 等, 2012. 滇中新元古代澄江组锆石SHRIMP U-Pb年代学研究及其地质意义. 中国科学: 地球科学, 42(10): 1496-1507. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201210005.htm
      李献华, 李武显, 何斌, 2012. 华南陆块的形成与Rodinia超大陆聚合——裂解, 观察、解释与检验. 矿石岩石地球化学通报, 31: 543-559. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201206001.htm
      林树基, 1995. 板溪群与莲沱组对比问题与震旦/前震旦界限. 贵州地质, 12(1): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ501.001.htm
      刘鸿允, 1991. 中国震旦系. 北京: 科学出版社, 1-388.
      马国干, 张自超, 李华芹, 等, 1989. 扬子地台震旦系同位素年代地层学研究. 中国地质科学院宜昌地质矿产研究所所刊, 14: 83-124. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198908001005.htm
      汪正江, 2008. 关于建立"板溪系"的建议及其基础的讨论. 地质论评, 54(3): 296-306. doi: 10.3321/j.issn:0371-5736.2008.03.002
      王剑, 2005. 华南"南华系"研究新进展——论南华系地层划分与对比. 地质通报, 24(6): 491-495. doi: 10.3969/j.issn.1671-2552.2005.06.001
      王剑, 潘桂堂, 2009. 中国南方古大陆研究进展与问题评述. 沉积学报, 27(5): 818-825. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200905007.htm
      王自强, 尹崇玉, 高林志, 等, 2006a. 用化学地层学研究新元古代地层划分和对比. 地学前缘, 13(6): 268-279. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200606035.htm
      王自强, 尹崇玉, 高林志, 等, 2006b. 宜昌三斗坪地区南华系化学蚀变指数特征及南华系划分、对比的讨论. 地质论评, 52(5): 577-585. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200605000.htm
      尹崇玉, 刘敦一, 高林志, 等, 2003. 南华系底界与古城冰期的年龄: SHRIMP Ⅱ定年证据. 科学通报, 48(16): 1721-1725. doi: 10.3321/j.issn:0023-074X.2003.16.002
      郑永飞, 2003. 新元古代岩浆活动与全球变化. 科学通报, 48: 1705-1720. doi: 10.3321/j.issn:0023-074X.2003.16.001
      郑永飞, 张少兵, 2007. 华南前寒武纪大陆地壳的形成和演化. 科学通报, 52(1): 1-10. doi: 10.3321/j.issn:0023-074X.2007.01.001
      周传明, 2016. 扬子区新元古代前震旦纪地层对比. 地层学杂志, 40(2): 120-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201602002.htm
    • 加载中
    图(10)
    计量
    • 文章访问数:  1299
    • HTML全文浏览量:  974
    • PDF下载量:  116
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-09-29
    • 刊出日期:  2021-07-15

    目录

      /

      返回文章
      返回