• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    一维流动条件下PCE链式降解中PRB厚度解析及影响

    陈华丽 胡成 陈刚 王挺 吴礼光

    陈华丽, 胡成, 陈刚, 王挺, 吴礼光, 2021. 一维流动条件下PCE链式降解中PRB厚度解析及影响. 地球科学, 46(8): 3012-3018. doi: 10.3799/dqkx.2020.296
    引用本文: 陈华丽, 胡成, 陈刚, 王挺, 吴礼光, 2021. 一维流动条件下PCE链式降解中PRB厚度解析及影响. 地球科学, 46(8): 3012-3018. doi: 10.3799/dqkx.2020.296
    Chen Huali, Hu Cheng, Chen Gang, Wang Ting, Wu Liguang, 2021. PRB Thickness and Influence Based on 1D PCE Chain Degradation. Earth Science, 46(8): 3012-3018. doi: 10.3799/dqkx.2020.296
    Citation: Chen Huali, Hu Cheng, Chen Gang, Wang Ting, Wu Liguang, 2021. PRB Thickness and Influence Based on 1D PCE Chain Degradation. Earth Science, 46(8): 3012-3018. doi: 10.3799/dqkx.2020.296

    一维流动条件下PCE链式降解中PRB厚度解析及影响

    doi: 10.3799/dqkx.2020.296
    基金项目: 

    国家自然科学基金青年基金项目 41401539

    详细信息
      作者简介:

      陈华丽(1978-), 女, 副教授, 博士, 主要从事地下水污染处理及数值模拟研究.ORCID: 0000-0002-8907-1715.E-mail: hualichen@zjgsu.edu.cn

      通讯作者:

      胡成, E-mail: hu_cheng@cug.edu.cn

    • 中图分类号: X523

    PRB Thickness and Influence Based on 1D PCE Chain Degradation

    • 摘要: 可渗透反应墙(Permeable Reactive Barrier,PRB)技术是原位地下水或者土壤修复中最受瞩目的技术之一,该技术设计和安装的首要关键问题就是反应墙的厚度计算.现有的反应墙设计方法大部分只考虑了单一污染物或者反应墙本身,很少考虑多种污染物的存在以及含水层水力性质的实际情况.聚焦于可渗透反应墙中的PCE(四氯乙烯)链式降解过程,基于可渗透反应墙-含水层的多域多组分污染物的体系建立了一维条件下的对流弥散方程,通过借鉴相关文献提出的转换算法得出方程解析解,并由此推导出适合多组分污染物体系的反应墙厚度公式,利用软件COMSOL建立了数值模型验证了其正确性.对比已有的Rabideau模型发现:计算反应墙厚度时不能完全忽略含水层的自然衰减反应,尤其当达标面远离反应墙出口处时;对于多种组分皆来源于同一种母源反应物的污染物,计算反应墙厚度时边界条件十分关键.本文模型的解析解可以为可渗透反应墙的设计和安装提供建设性的意见,还可以快速分析多组分污染物的分布和预测,为地下水的修复工程、风险评估、后期监测控制提供了计算的支撑.

       

    • 图  1  一维流动条件下的PRB-含水层多域体系结构示意图

      Fig.  1.  Schematic diagram of PRB-aquifer multi-domain system in 1D flow

      图  2  本算法与数值解的对比

      Fig.  2.  Comparison of the results from the presented solution scheme against numerical solutions obtained

      图  3  标准浓度-反应墙厚度关系曲线(与Rabideau模型比较)

      Fig.  3.  The normalized concentrations of multiple species at the PRB exit face with varying PRB thickness (compared to previously developed model of Rabideau)

      表  1  模型所需参数

      Table  1.   Required model parameters

      参数 参数
      nB 0.5 nL 0.1
      uB (m/d) q/nB uL (m/d) q/nL
      DB (m2/d) 0.1uB C1b (mg/L) 100
      DL (m2/d) 10uL C2b (mg/L) 50
      B (m) 1 C3b (mg/L) 10
      q (m/d) 0.3 C4b (mg/L) 80
      λΒ1 (1/d) 3.61a yB1 1.0a
      λΒ2 (1/d) 5.73a yB2 0.4a
      λΒ3 (1/d) 2.97a yB3 0.02a
      λΒ4 (1/d) 3.61a yB4 0.01a
      λL1 (1/d) 0.005b yL1 1.0b
      λL2 (1/d) 0.003b yL2 0.792 0b
      λL3 (1/d) 0.002b yL3 0.737 7b
      λL4 (1/d) 0.001b yL4 0.644 5b
      注:上标a代表数据引自ETI (2005);上标b代表数据引自Alvarez and Illman (2006).
      下载: 导出CSV
    • Alvarez, P. J. J., Illman, W. A., 2006. Bioremediation and Natural Attenuation: Process Fundamentals and Mathematical Models. John Wiley & Sons, Hoboken. https://doi.org/10.1002/047173862x
      Clement, T. P., 2001. Generalized Solution to Multispecies Transport Equations Coupled with a First-Order Reaction Network. Water Resources Research, 37(1): 157-163. https://doi.org/10.1029/2000wr900239
      ETI, 2005. First-Order Kinetic Degradation Models. Technical Note 2.06. Environmental Technologies Inc., Waterloo.
      Eykholt, G. R., Elder, C. R., Benson, C. H., 1999. Effects of Aquifer Heterogeneity and Reaction Mechanism Uncertainty on a Reactive Barrier. Journal of Hazardous Materials, 68(1-2): 73-96. https://doi.org/10.1016/S0304-3894(99)00032-1
      Gavaskar, A. R., 1999. Design and Construction Techniques for Permeable Reactive Barriers. Journal of Hazardous Materials, 68(1-2): 41-71. https://doi.org/10.1016/s0304-3894(99)00031-x
      Gavaskar, A.R., Gupta, N., Sass, B.M., et al., 1998. Permeable Barriers for Groundwater Remediation: Design Construction and Monitoring. Battelle Press, Columbus. https://doi.org/10.21236/ada379980
      Huang, R.Z., Gao, Y.J., Liu, R., et al., 2016. Review of Permeable Reactive Barriers for Groundwater Remediation. Journal of Liaoning University of Technology (Natural Science Edition), 36(4): 240-244 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LNGX201604008.htm
      Li, J.J., Cai, W.T., Zhang, T., et al., 2019. Study on the Remediation of High Concentration Cr(Ⅵ) Contaminated Groundwater by Mixed Medium of Cast Iron and Coconut Shell Activated Carbon. Environmental Pollution & Control, 41(5): 551-555, 578 (in Chinese with English abstract).
      Park, E., Zhan, H. B., 2009. One-Dimensional Solute Transport in a Permeable Reactive Barrier-Aquifer System. Water Resources Research, 45(7): W07502. https://doi.org/10.1029/2008wr007155
      Rabideau, A. J., Suribhatla, R., Craig, J. R., 2005. Analytical Models for the Design of Iron-Based Permeable Reactive Barriers. Journal of Environmental Engineering, 131(11): 1589-1597. https://doi.org/10.1061/(asce)0733-9372(2005)131:11(1589)
      Sun, Y., Petersen, J. N., Clement, T. P., et al., 1999. Development of Analytical Solutions for Multispecies Transport with Serial and Parallel Reactions. Water Resources Research, 35(1): 185-190. https://doi.org/10.1029/1998wr900003
      Tan, Y., Liang, J., Zeng, G.M., et al., 2016. Effects of PRB Design Based on Numerical Simulation and Response Surface Methodology. Chinese Journal of Environmental Engineering, 10(2): 655-661 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJJZ201602023.htm
      Tratnyek, P. G., Johnson, T. L., Scherer, M. M., et al., 1997. Remediating Ground Water with Zero-Valent Metals: Chemical Considerations in Barrier Design. Groundwater Monitoring & Remediation, 17(4): 108-114. https://doi.org/10.1111/j.1745-6592.1997.tb01270.x
      van Genuchten, M.T., Alves, W.J., 1983. Analytical Solutions of the One-Dimensional Convective-Dispersive Solute Transport Equation. Technical Bulletin U.S. Department of Agriculture, 1661: 149. https://doi.org/10.1016/0378-3774(84)90020-9
      Wang, H.Q., 2020. Study on Permeable Reactive Barrier Technology for the Remediation of Polluted Groundwater. Journal of Environmental Engineering Technology, 10(2): 251-259 (in Chinese with English abstract).
      黄润竹, 高艳娇, 刘瑞, 等, 2016. 应用可渗透反应墙进行地下水修复的综述. 辽宁工业大学学报(自然科学版), 36(4): 240-244. https://www.cnki.com.cn/Article/CJFDTOTAL-LNGX201604008.htm
      李敬杰, 蔡五田, 张涛, 等, 2019. 铸铁和椰壳活性炭混合介质修复高浓度Cr(Ⅵ)污染地下水研究. 环境污染与防治, 41(5): 551-555, 578. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201905011.htm
      谭勇, 梁婕, 曾光明, 等, 2016. 基于数值模拟和响应面法的PRB设计影响研究. 环境工程学报, 10(2): 655-661. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201602023.htm
      王泓泉, 2020. 污染地下水可渗透反应墙(PRB)技术研究进展. 环境工程技术学报, 10(2): 251-259. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ202002020.htm
    • 加载中
    图(3) / 表(1)
    计量
    • 文章访问数:  716
    • HTML全文浏览量:  796
    • PDF下载量:  21
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-08-25
    • 网络出版日期:  2021-09-14
    • 刊出日期:  2021-08-15

    目录

      /

      返回文章
      返回