• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    储层“源-径-汇-岩”系统分析的思路方法与应用

    姚光庆 姜平

    姚光庆, 姜平, 2021. 储层“源-径-汇-岩”系统分析的思路方法与应用. 地球科学, 46(8): 2934-2943. doi: 10.3799/dqkx.2020.327
    引用本文: 姚光庆, 姜平, 2021. 储层“源-径-汇-岩”系统分析的思路方法与应用. 地球科学, 46(8): 2934-2943. doi: 10.3799/dqkx.2020.327
    Yao Guangqing, Jiang Ping, 2021. Method and Application of Reservoir 'Source-Route-Sink-Rock' System Analysis. Earth Science, 46(8): 2934-2943. doi: 10.3799/dqkx.2020.327
    Citation: Yao Guangqing, Jiang Ping, 2021. Method and Application of Reservoir "Source-Route-Sink-Rock" System Analysis. Earth Science, 46(8): 2934-2943. doi: 10.3799/dqkx.2020.327

    储层“源-径-汇-岩”系统分析的思路方法与应用

    doi: 10.3799/dqkx.2020.327
    基金项目: 

    “十三五”油气重大专项 2016ZX05024-006

    详细信息
      作者简介:

      姚光庆(1964-), 男, 教授, 博士, 主要从事油气储层地质学、油气开发地质学研究. ORCID: 0000-0002-4326-0641. E-mail: gqyao@cug.edu.cn

    • 中图分类号: P618.13

    Method and Application of Reservoir "Source-Route-Sink-Rock" System Analysis

    • 摘要: 复杂油气储层非均质性强、“甜点”成因控制因素复杂,面对精细表征与预测要求,储层研究需要在研究思路与方法体系上有所改进.基于盆地沉积学发展起来的“源-汇”系统分析为复杂储层系统研究提供了新思路.经过多年实践,本文提出了储层系统研究的“源-径-汇-岩”(source-route-sink-rock,SRSR)系统分析思路与方法,强调开展基于沉积物(岩)的四个子系统研究,即“源——沉积物物质组成与来源”、“径——沉积物搬运过程与路径”、“汇——沉积物汇聚堆积环境与变化”、“岩——沉积物埋藏成岩过程与成岩相”.介绍了各个子系统要素构成,认为四个子系统共同决定宏观和微观非均质性,共同决定储层质量.在源汇分区、沉积相分区及成岩相分区基础上,用甜度RSI指标划分区域储层“甜点”等级,并在乌石凹陷低渗储层评价中加以应用,取得良好效果.储层SRSR系统分析是复杂“甜点”储层成因研究的新思路,是复杂非均质储层精细表征的技术遵循,为开展复杂常规储层、致密储层、非常规泥页岩储层定量化评价预测提供了新的理论和方法支持.

       

    • 图  1  储层“源-径-汇-岩”系统要素结构图

      Fig.  1.  Factor chart of reservoir "source-route-sink-rock" system

      图  2  储层甜点评价系统要素结构图

      Fig.  2.  Factor chart of reservoir sweet spot evaluation system

      图  3  从陆地到海洋全流域“源-径-汇”系统地貌图

      Sømme et al.(2009)林畅松等(2015)改编

      Fig.  3.  Schematic map showing the distribution of regional geomorphologic units in the "source-route-sink" system from the continent to ocean basin

      图  4  储层“源-径-汇-岩”各系统全要素构成

      Fig.  4.  The total elements of each system constitute of reservoir"source-route-sink-rock"system

      图  5  玛曲段黄河干流及支流河型变化

      据百度地图,https://map.baidu.com/@11368525.64,3997524.09,13z/maptype%3DB_SATELLITE_MAP

      Fig.  5.  The variations of the main stream and tributary of the Yellow River

      图  6  南美Altiplano高原河流“径”子系统随时间、空间变化

      Li et al.(2014). C1为1975年,C2为1985年,C3为1987年,C4为1994年,C5为1997年

      Fig.  6.  Reconstruction of the abandoned channel Routes subsystem of Altiplano Plateau in South America

      图  7  渤海海域辽东走滑带源-汇控砂模式反映“径”子系统随时间、空间变化(平面及剖面图)(据徐长贵,2013

      Fig.  7.  The source-sink sand control model of Liaodong strike-slip belt in Bohai Sea reflecting the variation of Routes subsystem with time and space (plane and profile) (modified from Xu, 2013)

      图  8  储层“源-径-汇-岩”系统分析评价流程

      Fig.  8.  A comprehensive evaluation of reservoir "source-route-sink-rock" system

      图  9  乌石凹陷储层“源-径-汇-岩”系统评价四联平面图

      a.源-汇分区平面图;b.成岩相平面图;c.孔隙相平面图;d.储层甜点平面图

      Fig.  9.  Quad maps of reservoir "source-route-sink-rock" system in Wushi Depression

      表  1  乌石凹陷储层甜点类型分级特征

      Table  1.   The classification characteristics of reservoir sweet spot types in Wushi Depression

      储层甜点类型 储层甜点指数 主要孔隙相类型 孔隙度(%) 渗透率(10-3 μm2 FZI
      Ⅰ类 RSI > 300 A类,B类 16.07~16.17(16.12) 80.71~96.52(88.62) 2.12~8.83(4.59)
      Ⅱ类 200 < RSI < 300 B类 13.60~15.70(14.80) 27.91~68.49(47.27) 1.15~2.58(1.89)
      Ⅲ类 100 < RSI < 200 B类, C类 11.10~15.50(13.60) 7.60~33.09(20.00) 0.81~2.41(1.24)
      Ⅳ类 50 < RSI < 100 C类,D+E类 8.51~11.82(10.23) 0.47~8.18(3.49) 0.21~0.88(0.47)
      Ⅴ类 RSI < 50 D+E类,F类 8.51~9.49(9.07) 0.47~1.18(0.83) 0.21~0.68(0.37)
      注:孔隙度、渗透率和FZI的数值表达为:最小值-最大值(平均值).
      下载: 导出CSV
    • Allen, P., 2005. Striking a Chord. Nature, 434(7036): 961. doi: 10.1038/434961a
      Allen, P. A., 2008a. From Landscapes into Geological History. Nature, 451(7176): 274-276. https://doi.org/10.1038/nature06586
      Allen, P. A., 2008b. Time Scales of Tectonic Landscapes and Their Sediment Routing Systems. Geological Society, London, Special Publications, 296(1): 7-28. https://doi.org/10.1144/sp296.2
      Allen, P.A., 2017. Sediment Routing Systems-The Fate of Sediment from Source to Sink. Cambridge University Press, Cambridge.
      Gao, S., 2005. Comments on the "NSF Margins Program Science Plans 2004". Marine Geology & Quaternary Geology, 25(1): 119-123 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ20050100K.htm
      Garzanti, E., 2016. From Static to Dynamic Provenance Analysis-Sedimentary Petrology Upgraded. Sedimentary Geology, 336: 3-13. https://doi.org/10.1016/j.sedgeo.2015.07.010
      Garzanti, E., Andò, S., Padoan, M., et al., 2015. The Modern Nile Sediment System: Processes and Products. Quaternary Science Reviews, 130: 9-56. https://doi.org/10.1016/j.quascirev.2015.07.011
      Jia, C.Z., Zou, C.N., Li, J.Z., et al., 2012. Assessment Criteria, Main Types, Basic Features and Resource Prospects of the Tight Oil in China. Acta Petrolei Sinica, 33(3): 343-350 (in Chinese with English abstract). http://www.researchgate.net/publication/283961853_Assessment_criteria_main_types_basic_features_and_resource_prospects_of_the_tight_oil_in_China
      Jiang, P., Wang, Z.Z., Zou, M.S., et al., 2021. Development Characteristics of Carbonate Cement and Its Influence on Reservoir Quality in Sandstones from Zhuhai Formation in Wenchang A Depression. Earth Science, 46(2): 600-620 (in Chinese with English abstract).
      Kuzyk, Z. Z. A., Goñi, M. A., Stern, G. A., et al., 2008. Sources, Pathways and Sinks of Particulate Organic Matter in Hudson Bay: Evidence from Lignin Distributions. Marine Chemistry, 112(3-4): 215-229. https://doi.org/10.1016/j.marchem.2008.08.001
      Li, J. G., Donselaar, M. E., Hosseini Aria, S. E., et al., 2014. Landsat Imagery-Based Visualization of the Geomorphological Development at the Terminus of a Dryland River System. Quaternary International, 352: 100-110. https://doi.org/10.1016/j.quaint.2014.06.041
      Li, Z., Liu, J.Q., 2009. Key Problems and Research Trend of Diagenetic Geodynamic Mechanism and Spatio-Temporal Distribution in Sedimentary Basins. Acta Sedimentologica Sinica, 27(5): 837-848 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200905009.htm
      Lin, C.S., Xia, Q.L., Shi, H.S., et al., 2015. Geomorphological Evolution, Source to Sink System and Basin Analysis. Earth Science Frontiers, 22(1): 9-20 (in Chinese with English abstract). http://www.researchgate.net/publication/281751373_Geomorphological_evolution_source_to_sink_system_and_basin_analysis
      Pang, X., Peng, D.J., Chen, C.M., et al., 2007. Three Hierarchies "Source-Conduit-Sink" Coupling Analysis of the Pearl River Deep-Water Fan System. Acta Geologica Sinica, 81(6): 857-864 (in Chinese with English abstract). http://www.researchgate.net/publication/291751019_Three_hierarchies_source-conduit-sink_coupling_analysis_of_the_Pearl_River_Deep-water_Fan_System?ev=auth_pub
      Pulliam, H. R., 1988. Sources, Sinks, and Population Regulation. The American Naturalist, 132(5): 652-661. https://doi.org/10.1086/284880
      Shanmugam, G., 2016. Submarine Fans: A Critical Retrospective (1950-2015). Journal of Palaeogeography, 5(2): 110-184. https://doi.org/10.1016/j.jop.2015.08.011
      Sømme, T.O., Helland-Hansen, W., Martinsen, O.J., et al., 2009. Relationships between Morphological and Sedimentological Parameters in Source-to-Sink Systems: A Basis for Predicting Semi-Quantitative Characteristics in Subsurface Systems. Basin Research, 21(4): 361-387. https://doi.org/10.1111/j.1365-2117.2009.00397.x
      Xu, C.G., 2013. Controlling Sand Principle of Source-Sink Coupling in Time and Space in Continental Rift Basins: Basic Idea, Conceptual Systems and Controlling Sand Models. China Offshore Oil and Gas, 25(4): 1-11, 21(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_zghsyq-gc201304001.aspx
      Xu, C.G., Du, X.F., Xu, W., et al., 2017. New Advances of the "Source-to-Sink" System Research in Sedimentary Basin. Oil & Gas Geology, 38(1): 1-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201701002.htm
      Xue, Y.A., Pang, X.J., Hao, Y.W., et al., 2020. Genesis of High-Quality Mixed Rock Reservoir and Its Exploration Significance in Es1 around Southeast Margin of Qinnan Sag, Bohai Sea. Earth Science, 45(10): 3527-3542 (in Chinese with English abstract).
      Yao, G.Q., Sun, Y.C., Li, S.T., 1999. A Research System of Oil/Gas Reservoir Geology. Petroleum Exploration and Development, 26(1): 74-77 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK901.023.htm
      Zhu, H.T., Xu, C.G., Zhu, X.M., et al., 2017. Advances of the Source-to-Sink Units and Coupling Model Research in Continental Basin. Earth Science, 42(11): 1851-1870 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201701002.htm
      Zhu, R.K., Zou, C.N., Yuan, X.J., et al., 2017. Research Progress and Development Strategic Thinking on Energy Sedimentology. Acta Sedimentologica Sinica, 35(5): 1004-1015 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201705012.htm
      Zou, C.N., Tao, S.Z., Zhou, H., et al., 2008. Genesis, Classification and Evaluation Method of Diagenetic Facies. Petroleum Exploration and Development, 35(5): 526-540 (in Chinese with English abstract) doi: 10.1016/S1876-3804(09)60086-0
      Zou, C.N., Yang, Z., Zhang, G.S., et al., 2019. Establishment and Practice of Unconventional Oil and Gas Geology. Acta Geologica Sinica, 93(1): 12-23 (in Chinese with English abstract). doi: 10.1111/1755-6724.13759
      Zou, C. N., Yang, Z., Zhu, R. K., et al., 2019. Geologic Significance and Optimization Technique of Sweet Spots in Unconventional Shale Systems. Journal of Asian Earth Sciences, 178: 3-19. https://doi.org/10.1016/j.jseaes.2018.07.005
      高抒, 2005. 美国《洋陆边缘科学计划2004》述评. 海洋地质与第四纪地质, 25(1): 119-123. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ20050100K.htm
      贾承造, 邹才能, 李建忠, 等, 2012. 中国致密油评价标准、主要类型、基本特征及资源前景. 石油学报, 33(3): 343-350. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203000.htm
      姜平, 王珍珍, 邹明生, 等, 2021. 文昌A凹陷珠海组砂岩碳酸盐胶结物发育特征及其对储层质量的影响. 地球科学, 46(2): 600-620. doi: 10.3799/dqkx.2020.075
      李忠, 刘嘉庆, 2009. 沉积盆地成岩作用的动力机制与时空分布研究若干问题及趋向. 沉积学报, 27(5): 837-848. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200905009.htm
      林畅松, 夏庆龙, 施和生, 等, 2015. 地貌演化、源-汇过程与盆地分析. 地学前缘, 22(1): 9-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501003.htm
      庞雄, 彭大钧, 陈长民, 等, 2007. 三级"源-渠-汇"耦合研究珠江深水扇系统. 地质学报, 81(6): 857-864. doi: 10.3321/j.issn:0001-5717.2007.06.016
      徐长贵, 2013. 陆相断陷盆地源-汇时空耦合控砂原理: 基本思想、概念体系及控砂模式. 中国海上油气, 25(4): 1-11, 21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201304002.htm
      徐长贵, 杜晓峰, 徐伟, 等, 2017. 沉积盆地"源-汇"系统研究新进展. 石油与天然气地质, 38(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201701002.htm
      薛永安, 庞小军, 郝轶伟, 等, 2020. 渤海海域秦南凹陷东南缘沙一段混积岩优质储层成因及勘探意义. 地球科学, 45(10): 3527-3542. doi: 10.3799/dqkx.2020.154
      姚光庆, 孙永传, 李思田, 1999. 油气储集层地质学研究体系. 石油勘探与开发, 26(1): 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK901.023.htm
      朱红涛, 徐长贵, 朱筱敏, 等, 2017. 陆相盆地源-汇系统要素耦合研究进展. 地球科学, 42(11): 1851-1870. doi: 10.3799/dqkx.2017.117
      朱如凯, 邹才能, 袁选俊, 等, 2017. 中国能源沉积学研究进展与发展战略思考. 沉积学报, 35(5): 1004-1015. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201705012.htm
      邹才能, 陶士振, 周慧, 等, 2008. 成岩相的形成、分类与定量评价方法. 石油勘探与开发, 35(5): 526-540. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200805004.htm
      邹才能, 杨智, 张国生, 等, 2019. 非常规油气地质学建立及实践. 地质学报, 93(1): 12-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201901003.htm
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  874
    • HTML全文浏览量:  1690
    • PDF下载量:  130
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-09-06
    • 网络出版日期:  2021-09-14
    • 刊出日期:  2021-08-15

    目录

      /

      返回文章
      返回