The Remote Role of Mongolia-Okhotsk Ocean: Evidences from the Origin of Rhyolite Porphyry in Yangpangou Area, the Southeast of Inner Mongolia
-
摘要: 为了解蒙古—鄂霍次克构造体系的远程作用及其在中国东北以南的影响范围,在内蒙古多伦火山盆地羊盘沟地区开展了流纹斑岩锆石U-Pb同位素年代学、岩石地球化学及区域对比研究.结果显示,其形成时代为144.2±0.6 Ma,属于早白垩世早期.主量元素SiO2含量为73.25%~76.72%,K2O含量为4.64%~7.87%,K2O/Na2O值在1.15~3.82之间,A/CNK值为0.79~0.99;副矿物为磁铁矿、锆石和磷灰石等,属准铝质高钾钙碱性—钾玄岩系列A2型流纹岩类;稀土元素总量高(320.76×10-6~415.70×10-6),富集轻稀土元素、大离子亲石元素K和Rb、高场强元素Zr和Hf以及元素U、Th等,亏损重稀土元素、大离子亲石元素Ba和Sr、高场强元素Nb和Ta以及元素P、Ti等,显著Eu负异常(δEu=0.08~0.15).表明流纹斑岩形成于后碰撞构造环境,是早白垩世蒙古—鄂霍次克洋闭合后某个伸展事件下的产物,因此,蒙古—鄂霍次克构造体系在中国的影响范围向东南至少延伸至蒙东南—冀北一带,且对应的蒙古—鄂霍次克洋东段的闭合完成时间应早于144.2 Ma.Abstract: In order to understand the long-range function of the Mongolian-Okhotsk tectonic system and its influence range to the south in China. Zircon U-Pb isotopic geochronology, rock geochemistry and regional correlation of rhyolite porphyry were carried out in yangpangou area, Duolun volcanic basin, Inner Mongolia. Zircon LA-ICP-MS U-Pb isotopic dating shows that the age of its formation is 144.2±0.6 Ma, belonging to the early Early Cretaceous. The content of SiO2 is 73.25%-76.72%, K2O is 4.64%-7.87%, K2O/Na2O is 1.15-3.82, and A/CNK is 0.79-0.99. The accessory minerals are mainly magnetite, zircon and apatite. It belongs to the type A2 rhyolite of the quasi aluminous high potassium Ca-alkaline shoshonite series. The total amount of rare-earth elements is high (320.76×10-6-415.70×10-6). Light rare-earth elements, large ion lithophile elements K, Rb and high field strength elements U, Th, Zr and Hf are enriched. Heavy rare-earth elements, large ion lithophile elements Ba, Sr and high field strength elements P, Ti, Nb, Ta are deficient. Eu negative abnormality is significant (δEu=0.08-0.15). The above characteristics indicate that the rhyolite porphyry was formed in the background of post-collision, reflecting the post-collisional extension event after the closure of Mongolia-Okhotsk Ocean in Early Cretaceous. Therefore, the influence range of the Mongolia-Okhotsk tectonic system in China extends to the southeast at least to the southeast of Inner Mongolia to the north of Hebei, and the completion time of the corresponding Mongolia-Okhotsk Ocean east section should be earlier than 144.2 Ma.
-
Key words:
- Mongolia-Okhotsk Ocean /
- rhyolite porphyry /
- Mesozoic /
- post-collision /
- the southeast of Inner Mongolia /
- geochemistry
-
0. 引言
中亚造山带是全球最大的增生造山带和大陆成矿域(Xu et al., 2015;肖文交等,2019).研究区位于西伯利亚板块和华北板块之间的中亚造山带东段(邵济安等,2011),构造背景复杂,成矿作用强烈.早中生代以前,中亚造山带东段经历了古亚洲洋构造体系的演化,古亚洲洋在二叠纪‒三叠纪期间完成闭合(孙德有等,2004;Cao et al., 2013;蒋孝君等,2013);中生代期间,中亚造山带东段不仅经历了太平洋构造体系的演化,还接受了蒙古‒鄂霍次克构造体系的叠加改造(孟恩等,2011;许文良等,2013).目前,关于冀北‒东北地区中生代区域成矿背景的研究,多数学者强调太平洋构造体系的影响(葛文春等,2007),而忽略了蒙古‒鄂霍次克构造体系的影响(孟恩等,2011),或避之不谈.随着蒙古‒鄂霍次克构造域研究工作的不断深入和积累,蒙古‒鄂霍次克洋两侧地体碰撞缝合的位置得到了一致的认识,总体呈北东向沿蒙古北部‒俄罗斯外贝加尔东部一带展布(图 1a),其核心为从杭盖山脉一直延伸到乌达海湾的丝带状蛇绿岩带及增生楔(Zorin,1999;Bussien et al., 2011;黄始琪等,2016).但该构造体系在中国的影响延伸范围尚不明确,且蒙古‒鄂霍次克洋的最终闭合时限也一直存在争议,部分学者认为其关闭时间为二叠纪‒中侏罗世(Li et al., 1999;Wang et al., 2006;武广等,2008),也有学者认为在中晚侏罗世(Zorin,1999;Parfenov et al., 2001),还有许多学者认为东段的闭合时间更晚,应该在晚侏罗世‒早白垩世期间(徐美君等,2011;李锦轶等,2013;许文良等,2013;黄始琪等,2016;蒋孝君等,2017;贺国奇等,2020).关于该课题,前人在东北地区已经做了大量的研究,而同属于大兴安岭中生代岩浆活动带的研究区位于蒙东南‒冀北地区,其中生代火山岩的形成到底是受蒙古‒鄂霍次克构造体系的远程影响还是太平洋构造体系的制约,相关研究相对较少.本文通过对羊盘沟地区流纹斑岩详细的岩相学、锆石U-Pb年代学和岩石地球化学等研究,结合已有年代学和地球化学成果,探寻蒙古‒鄂霍次克构造体系对该区远程影响的证据,并初步讨论其影响延伸范围及闭合时限.
图 1 羊盘沟地区构造位置图(a)及地质简图(b)图a据张长厚等(2006)、许文良等(2013)修改. 1.第四系;2.白音高老组;3.满克头鄂博组;4.白音高老期流纹斑岩;5.白音高老期正长斑岩;6.流纹质熔结凝灰岩;7.流纹质含角砾凝灰岩;8.石英粗面质含角砾凝灰岩;9流纹岩;10.流纹斑岩;11.正长斑岩;12.地质界线;13.岩性界线;14.喷发不整合界线,15.区域断裂;16.正断层;17.钻孔位置Fig. 1. Structural location (a) and geological sketch map (b) of Yangpangou area1. 地质背景
羊盘沟地区位于蒙东南‒冀北中生代火山岩带多伦火山喷发盆地北西缘,构造位置上处于大兴安岭中生代岩浆活动带与阴山‒燕山造山带交汇部位(图 1a).多伦火山喷发盆地内广泛发育着中生代火山岩,时代均属于早白垩世,包括满克头鄂博组(K1mk)、玛尼吐组(K1mn)、白音高老组(K1b)和义县组(K1y)、梅勒图组(K1m)等(中国地质大学(北京),2000. 内蒙古多伦县等5幅1∶5万区域地质调查报告).研究区主要出露满克头鄂博组(K1mk)、白音高老组(K1b)和白音高老晚期次火山岩体流纹斑岩(K1λ)、正长斑岩(K1ξπ)(核工业二〇八大队,2019内蒙古集宁‒多伦地区铀矿资源调查评价成果报告).区内火山构造发育,主要可分为两类:一类是白家营子破火山边缘的环状断裂,在区内表现为近东西向;另一类是白家营子破火山口塌陷形成的放射状断裂,主要呈北东向、北北东向.流纹斑岩呈岩株或岩脉状产出,总体受与火山机构有关的放射状断裂控制.研究区白音高老组呈喷发不整合覆盖在满克头鄂博组之上,后期正长斑岩和流纹斑岩依次侵位(图 1b,图 2).
2. 岩相学特征
流纹斑岩,新鲜面浅肉红色、浅紫灰色,斑状结构,块状构造或弱流纹构造,基质为微晶‒隐晶质结构(图 3a).斑晶含量不等,5%~30%,以钾长石为主,浅红色,粒径0.5~5.0 mm,半自形,板柱状,具卡式双晶,部分发生高岭土化蚀变;次为斜长石和石英,斜长石多半自形,灰白色,短柱状,具聚片双晶,粒径0.5~2.0 mm,石英多呈烟灰色,粒径0.5~2.0 mm(图 3b),发育熔蚀结构,镜下显示多被熔蚀为浑圆状、穿孔状.基质主要为微晶长英质矿物和少量的鳞片状黑云母,可见显微文象结构,局部弱定向.副矿物为磁铁矿、锆石、磷灰石等.
3. 样品采集及实验方法
在研究区ZKYP2钻孔深部分散采取了5块新鲜流纹斑岩样品、在ZKYP7钻孔深部分散采取了3块新鲜流纹斑岩样品进行全岩主量和微量元素分析,同时在ZKYP2钻孔中采取了1组新鲜流纹斑岩样品进行锆石LA-ICP-MS U-Pb定年,所有样品均取自钻孔深部揭遇白音高老期次火山岩流纹斑岩(K1λ).
在河北省区域地质矿产调查研究所实验室进行了锆石挑选、制靶及反射光、透射光和阴极发光(CL)的显微照相,在北京燕都中实测试技术有限公司实验室完成了锆石同位素测年.本次测试利用LA-Q-ICP-MS分析完成,激光剥蚀系统为New Wave UP213,ICP-MS为布鲁克M90.激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个Y型接头混合. U-Pb同位素定年中采用锆石标准GJ-1作外标进行同位素分馏校正,每分析5~10个样品点,分析2次GJ-1.锆石微量元素含量利用SRM610作为多外标、Si作内标的方法进行定量计算.根据锆石显微照相选择锆石测年区域,剥蚀光斑直径选择30 μm.运用Anderson方法(Andersen,2002)进行同位素比值校正,以扣除普通Pb的影响.使用ICP MS DataCal程序处理锆石测年中U-Pb年龄、Pb同位素比值和微量元素含量,采用Isoplot程序进行年龄计算和成图(Ludwig,1991).另外,测试数据、单个测试点年龄值的误差均为1σ.该锆石年龄都较为年轻(< 1 000 Ma),因此选用206Pb/238U年龄(李怀坤等,2009). 样品的主量元素、微量元素和稀土元素的测定均在广州澳实分析检测有限公司实验室完成.样品破碎后缩分出300 g研磨至75 μm(200目),采用ME-MS81熔融法电感耦合等离子体质谱测定稀土微量元素的含量,采用ME-XRF26X荧光光谱仪熔融法进行岩石主量元素分析.
4. 分析结果
4.1 年代学
羊盘沟地区流纹斑岩LA-ICP-MS U-Pb同位素测年结果见表 1.共挑选了150颗锆石制靶,CL图像显示,锆石普遍晶形较好,自形,多呈长柱状,颗粒大小100~180 μm,具有清晰而宽缓的振荡环带(图 4),优选了30颗锆石进行了测年.数据显示,锆石的Th/U值均大于0.1,多数在0.42~0.82之间(个别比值较大可能是受后期热作用影响,加权计算时做剔除处理),表明锆石属岩浆成因,因此所测得年龄可以代表岩浆结晶的年龄(Williams et al., 1996).样品锆石30个测点中剔除3个谐和度低的数据,其余27个谐和度好,测试数据均投影在U-Pb谐和线上及附近,再剔除4个年龄相对偏差较大的数据,206Pb/238U表面年龄在142.9~144.8 Ma之间,加权平均值为144.2±0.6 Ma(MSWD=1.2)(图 5),表明研究区流纹斑岩形成于早白垩世早期.
表 1 羊盘沟地区流纹斑岩锆石LA⁃ICP⁃MS U⁃Pb同位素定年数据Table Supplementary Table Zircon U⁃Pb dating of rhyolitic porphyry in Yangpangou area测点号 元素含量(10-6) Th/U 同位素比值 同位素年龄(Ma) 谐和度(%) Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 测值 1σ 测值 1σ 测值 1σ 测值 1σ 测值 1σ 测值 1σ 1 17 305 645 0.47 0.048 5 0.000 8 0.151 3 0.002 7 0.022 5 0.000 2 124.2 40.7 143.0 2.4 143.6 1.3 99 2 19 363 676 0.54 0.049 2 0.000 9 0.153 1 0.002 8 0.022 6 0.000 2 166.8 38.0 144.7 2.4 143.9 1.3 99 3 75 1 590 431 3.69 0.066 6 0.001 1 0.224 7 0.007 0 0.024 2 0.000 3 833.3 33.3 205.8 5.8 154.4 1.7 71 4 27 433 1 021 0.42 0.050 4 0.000 7 0.157 0 0.002 3 0.022 5 0.000 2 213.0 33.3 148.0 2.0 143.6 1.1 96 5 67 1 242 521 2.39 0.049 7 0.000 6 0.164 7 0.003 0 0.023 9 0.000 2 183.4 21.3 154.8 2.7 152.4 1.4 98 6 30 502 1 124 0.45 0.050 4 0.000 7 0.157 3 0.002 4 0.022 6 0.000 2 213.0 33.3 148.4 2.1 143.8 1.2 96 7 38 849 1 402 0.61 0.067 0 0.001 4 0.196 7 0.004 1 0.021 2 0.000 2 838.9 42.6 182.3 3.5 135.1 1.0 70 8 21 376 766 0.49 0.049 4 0.000 9 0.154 5 0.002 8 0.022 7 0.000 2 164.9 40.7 145.9 2.5 144.4 1.3 98 9 38 882 1 302 0.68 0.049 6 0.000 8 0.160 7 0.002 5 0.023 4 0.000 2 176.0 35.2 151.4 2.2 149.4 1.3 98 10 42 695 1 568 0.44 0.049 7 0.000 8 0.155 6 0.002 5 0.022 6 0.000 2 189.0 37.0 146.9 2.2 144.2 1.2 98 11 27 543 972 0.56 0.048 8 0.000 8 0.151 9 0.002 6 0.022 5 0.000 2 200.1 40.7 143.6 2.3 143.6 1.3 99 12 20 351 740 0.47 0.049 1 0.000 9 0.152 2 0.002 7 0.022 5 0.000 2 150.1 44.4 143.9 2.4 143.4 1.2 99 13 10 207 384 0.54 0.050 6 0.001 1 0.156 9 0.003 4 0.022 5 0.000 2 233.4 50.0 148.0 3.0 143.2 1.4 96 14 39 631 1 443 0.44 0.049 9 0.000 8 0.156 4 0.002 4 0.022 6 0.000 2 190.8 37.0 147.5 2.1 144.2 1.2 97 15 12 254 432 0.59 0.049 6 0.001 1 0.154 9 0.003 6 0.022 6 0.000 2 189.0 53.7 146.2 3.1 144.1 1.3 98 16 11 223 406 0.55 0.047 8 0.001 0 0.153 0 0.003 1 0.023 2 0.000 2 100.1 78.7 144.6 2.7 147.7 1.3 97 17 32 717 1 192 0.60 0.050 0 0.000 8 0.154 9 0.002 4 0.022 4 0.000 2 194.5 32.4 146.3 2.1 142.9 1.2 97 18 17 316 619 0.51 0.048 4 0.000 8 0.150 0 0.002 5 0.022 5 0.000 2 116.8 45.4 141.9 2.2 143.4 1.3 98 19 8 193 266 0.73 0.049 4 0.001 3 0.151 9 0.003 8 0.022 5 0.000 2 164.9 65.7 143.6 3.4 143.5 1.6 99 20 17 385 573 0.67 0.066 3 0.001 5 0.207 7 0.005 1 0.022 5 0.000 2 814.5 48.9 191.6 4.3 143.7 1.3 71 21 24 512 894 0.57 0.050 2 0.000 8 0.156 1 0.002 5 0.022 5 0.000 2 205.6 38.9 147.3 2.2 143.5 1.2 97 22 8 215 293 0.73 0.048 4 0.001 2 0.150 0 0.003 9 0.022 5 0.000 3 116.8 59.3 141.9 3.4 143.4 1.8 98 23 15 353 542 0.65 0.049 8 0.001 0 0.155 9 0.003 2 0.022 7 0.000 2 183.4 13.9 147.1 2.8 144.6 1.5 98 24 20 342 764 0.45 0.049 5 0.000 8 0.154 0 0.002 6 0.022 5 0.000 2 172.3 38.9 145.4 2.3 143.6 1.3 98 25 18 369 672 0.55 0.048 2 0.000 9 0.149 9 0.002 6 0.022 6 0.000 2 109.4 42.6 141.8 2.3 143.9 1.2 98 26 7 203 248 0.82 0.050 2 0.001 4 0.155 6 0.004 5 0.022 5 0.000 3 205.6 97.2 146.8 4.0 143.3 1.6 97 27 16 333 577 0.58 0.048 1 0.001 0 0.150 5 0.003 1 0.022 7 0.000 2 105.6 50.0 142.4 2.8 144.6 1.3 98 28 58 1 353 1 173 1.15 0.049 4 0.000 6 0.158 8 0.002 2 0.023 2 0.000 2 168.6 25.9 149.6 2.0 148.1 1.0 98 29 9 153 331 0.46 0.049 4 0.001 2 0.154 5 0.003 8 0.022 7 0.000 2 168.6 62.0 145.8 3.3 144.8 1.4 99 30 14 285 524 0.54 0.048 5 0.000 9 0.151 0 0.002 8 0.022 5 0.000 2 124.2 40.7 142.8 2.5 143.5 1.2 99 4.2 地球化学
样品的主量元素分析结果,微量元素和稀土元素分析结果见表 1.
研究区流纹斑岩SiO2含量在73.25%~76.72%之间,显示硅过饱和;Al2O3含量在11.41%~12.65%之间;TiO2含量在0.14%~0.23%,P2O5含量在0.01%~0.04%,MgO含量在0.08%~0.24%,CaO含量在0.54%~2.26%;富碱,K2O+Na2O含量在8.42%~10.07%之间,K2O/Na2O值在1.15~3.82之间,属钾质,A/CNK值在0.79~0.99之间(均 < 1.1),A/NK值在1.04~1.09之间.经过CIPW标准矿物计算,未见碱性暗色矿物,同时在火山岩TAS图解(图 6a)中全部样品均落入高硅流纹岩范围内,且多数位于Ir分界线以下,所以该岩石属于亚碱性系列.再在K2O-SiO2图解中投图,样品主要落入高钾钙碱性‒钾玄岩系列范围内(图 6b),在A/NK-A/CNK判别图解中全部落入准铝质范围内(图 6c),所以研究区流纹斑岩属于准铝质高钾钙碱性‒钾玄岩系列流纹岩类.
稀土元素总量较高,∑REE在320.76×10-6~415.70×10-6之间(表 2).稀土元素球粒陨石标准化分布型式为典型的“右倾型”(图 7a),铕具有显著的负异常(δEu=0.08~0.15),轻稀土富集(289.55×10-6~383.31×10-6),重稀土亏损(27.29×10-6~32.39×10-6),轻重稀土分馏明显,(La/Yb)N=9.95~16.16.
表 2 羊盘沟地区流纹斑岩地球化学分析结果Table Supplementary Table Geochemical dating of rhyolitic porphyry in Yangpangou area样品号 YP-1 YP-2 YP-3 YP-4 YP-5 H-ZKYP7-1 H-ZKYP7-2 H-ZKYP7-3 SiO2 73.25 73.25 74.06 74.70 76.72 73.75 74.86 74.24 TiO2 0.22 0.20 0.20 0.19 0.14 0.21 0.23 0.21 Al2O3 12.65 12.50 12.33 12.05 11.41 12.50 12.22 12.36 FeOT 2.73 2.69 1.61 1.62 1.63 2.15 2.15 2.01 MnO 0.36 0.34 0.28 0.27 0.21 0.06 0.07 0.09 MgO 0.09 0.08 0.21 0.19 0.16 0.24 0.19 0.11 CaO 0.54 0.71 1.65 1.68 1.12 0.98 0.72 2.26 Na2O 2.08 2.06 2.42 3.18 2.98 2.20 2.80 4.05 K2O 7.87 7.87 6.82 5.69 5.43 7.87 6.73 4.64 P2O5 0.03 0.03 0.03 0.02 0.01 0.04 0.04 0.03 LOI 1.05 0.98 1.90 1.86 1.43 1.30 0.96 2.34 DI 92.64 92.35 90.42 90.83 93.07 93.08 93.68 90.26 A/CNK 0.99 0.95 0.86 0.84 0.89 0.90 0.93 0.79 A/NK 1.07 1.06 1.09 1.06 1.06 1.04 1.04 1.06 La 94.8 91.0 88.3 89.6 70.7 96.8 83.7 88.6 Ce 180 177 168 172 141 182 158 166 Pr 19.15 18.85 17.40 17.90 15.10 19.90 17.40 18.00 Nd 66.3 65.1 59.9 61.8 52.2 71.7 63.4 66.2 Sm 12.05 11.60 10.75 11.50 10.30 12.50 11.10 11.20 Eu 0.530 0.430 0.400 0.430 0.250 0.409 0.388 0.334 Gd 9.33 9.39 8.61 8.61 8.47 11.10 9.69 9.80 Tb 1.42 1.54 1.36 1.42 1.46 1.69 1.46 1.49 Dy 8.01 8.59 7.55 7.62 8.25 8.26 6.93 7.38 Ho 1.53 1.74 1.46 1.50 1.74 1.51 1.22 1.34 Er 4.24 5.04 4.12 4.55 4.99 4.34 3.54 3.91 Tm 0.70 0.74 0.67 0.67 0.76 0.58 0.47 0.54 Yb 4.22 4.56 4.03 4.00 4.80 4.33 3.50 4.01 Lu 0.68 0.72 0.62 0.61 0.74 0.58 0.48 0.55 ΣREE 402.96 395.80 372.67 381.71 320.76 415.70 361.28 379.35 (La/Yb)N 15.18 13.49 14.81 15.14 9.95 15.11 16.16 14.93 δEu 0.15 0.12 0.12 0.13 0.08 0.10 0.11 0.10 Rb 323 313 265 219 209 272 220 143 Ba 270 274 241 164 142 215 217 162 Th 31.0 33.2 31.8 30.5 32.8 30.7 28.2 30.6 U 6.54 5.60 150.00 36.50 32.90 3.20 4.50 5.12 Ta 2.30 2.40 2.20 2.10 2.30 2.28 2.23 2.18 Nb 24.7 25.0 22.9 23.0 24.4 28.9 29.6 25.6 Sr 23.9 23.8 27.6 23.7 19.7 22.4 21.2 42.0 Zr 443 451 426 402 348 174 163 172 Hf 12.10 12.50 11.40 11.10 10.40 7.46 7.03 7.61 Y 44.3 48.8 40.8 42.4 47.5 43.4 36.1 38.6 Ga 24.4 23.2 23.6 23.1 22.7 24.3 24.2 21.8 Rb/Sr 13.51 13.15 9.60 9.24 10.61 12.14 10.38 3.40 Ti/Y 30.14 24.94 28.73 27.48 17.93 28.69 38.23 32.60 Ti/Zr 3.01 2.70 2.75 2.90 2.45 7.16 8.47 7.32 注:主量元素单位为%;稀土和微量元素单位为10-6;主量元素数据经过烧失量校正. 微量元素原始地幔标准化蛛网图中所有样品展现了相似的分布型式(图 7b),大离子亲石元素K、Rb等相对富集,Sr、Ba强烈亏损;高场强元素Ta、Nb相对亏损,Zr、Hf相对富集;同时P、Ti强烈亏损,U、Th富集;其中部分样品U元素强烈富集可能受铀成矿作用影响(核工业二〇八大队,2019. 内蒙古集宁‒多伦地区铀矿资源调查评价成果报告).
5. 讨论
5.1 岩石成因类型
羊盘沟流纹斑岩属于准铝质高钾钙碱性‒钾玄岩系列流纹岩类;矿物成分主要由石英、钾长石、少量斜长石和黑云母组成,且石英多呈烟灰色;富SiO2和K2O+Na2O,K2O含量和K2O/Na2O比值较高,贫Al2O3、MgO、CaO,FeOT/MgO比值高(7.80~33.13);微量元素Ba、Sr明显亏损,稀土元素总量高,且为轻稀土富集型,Eu明显负异常,具有典型A型花岗岩的基本特征(张旗等,2012).岩石Ga(21.80×10-6~24.40×10-6)含量高,且具有较高的10 000Ga/Al比值(3.33~3.76),Zr+Nb+Ce+Y的值在386.70×10-6~701.30×10-6之间,明显高于A型花岗岩下限值350.00×10-6(Whalen et al., 1987);Rb/Sr比值大,在3.40~13.51之间,明显区别于I型(平均值0.61)、S型(平均值1.81)和M型(平均值0.06)花岗岩,而符合A型花岗岩特征(平均值3.52)(Whalen et al., 1987).同时,在图 8中所有样品均落入A型花岗岩范围内,综合判断该岩石属于A型花岗岩类.同时,在图 9中所有样品都落入A2型范围内,说明该岩石属于Eby(1992)划分的A2型花岗岩类,指示其可能形成于后碰撞构造环境.
图 8 羊盘沟地区流纹斑岩(K2O+Na2O)/CaO-Zr+Nb+Ce+Y图解(a)、FeOT/MgO-Zr+Nb+Ce+Y图解(b)、(K2O+Na2O)/CaO-10 000Ga/Al图解(c)和Ce-10 000Ga/Al图解(d)A. A型;I & S. I、S型;FG. 分异的I、S型;OTG. 未分异的I、S型Fig. 8. (K2O+Na2O)/CaO vs. Zr+Nb+Ce+Y (a)、FeOT/MgO vs. Zr+Nb+Ce+Y (b)、(K2O+Na2O)/CaO vs. 10 000Ga/Al (c) and Ce vs. 10 000Ga/Al (d) diagrams of rhyolitic porphyry in Yangpangou area5.2 岩浆源区
中酸性岩浆岩的源区主要有地壳物质的部分熔融、地幔岩浆分离结晶或者与地壳物质的混合、混染等(邓晋福等,2004),而大兴安岭流纹岩的成因主要有3种观点:(1)由玄武岩浆或安山岩浆经分离结晶作用形成(林强等,2003;张连昌等,2007);(2)与玄武岩构成双峰式火山岩组合,由同源地幔岩浆经过结晶分异或同化混染作用形成(林强等,2003);(3)来自地壳物质的部分熔融(赵书跃等,2004;Liu et al., 2008;Xu et al., 2009).
研究区所在蒙东南‒冀北地区广泛发育中生代流纹质火山岩,堆积厚度深,体积巨大,如此大规模的酸性岩浆,来源于幔源岩浆分异的可能性不大.羊盘沟流纹斑岩强烈的Eu负异常,且明显贫Al、Ca、Sr元素,指示岩浆残留相中可能存在富钙的斜长石,此类岩浆不可能由幔源岩浆分异而来(吴福元等,2007);Ba、Sr、Nb、Ta和Ti元素的亏损也暗示其不可能由软流圈物质部分熔融直接形成(Foley and Peccerillo, 1992).同时高硅、贫钙镁的化学特征也暗示源区可能没有幔源组分的参与,基本排除了岩浆混合成因的可能,因为基性与酸性岩浆的混合必然造成钙镁组分的升高和硅含量的降低(王建国等,2013).另外,由于区域上未发现同时期的玄武岩(中国地质大学(北京),2000. 内蒙古多伦县等5幅1∶5万区域地质调查报告),不可能构成双峰式火山岩组合,也进一步排除由玄武质岩浆分异的可能.
羊盘沟流纹斑岩稀土元素总量高,明显富集轻稀土元素,亏损重稀土元素和Nb、Ta等高场强元素,Eu明显负异常(δEu=0.08~0.15),富Rb、贫Sr,显示了壳源岩浆的典型特征(Wilson,1989).微量元素上Rb/Sr=3.40~13.51(> 0.5),Ti/Y=17.93~38.23(< 100),Ti/Zr=2.45~8.47(< 20),均位于壳源岩浆范围内(Pearce,1983;Sun and McDonough, 1989;Wilson,1989).该岩石属于典型的准铝质类A型花岗岩,通常岩浆由地壳物质在贫水环境下部分熔融产生(Johannes and Holtz, 1996;Patiño Douce,1997).羊盘沟流纹斑岩还具有低Ba(142.00×10-6~274.00×10-6)、Sr(19.70×10-6~42.00×10-6)特征,地球化学特征与大兴安岭中生代低Ba-Sr流纹岩类相似,此类岩石来源于地壳岩石的部分熔融(林强等,2003).孙德有等(2011)也认为,在趋向于部分熔融的演变趋势下,酸性火山岩更可能是岩浆底侵导致增生陆壳部分熔融作用的结果,特别是大体积的酸性岩浆.诸上特征,均指示该岩石可能来源于地壳物质的部分熔融,同时,在δEu-Sr源区判别图解中,所有样品也都落在壳源范围内(图 10).
另外,与羊盘沟流纹斑岩相邻的同期流纹质熔结凝灰岩(87Sr/86Sr)0为0.709 4±0.002 2,其岩浆也来源于地壳部分熔融(中国地质大学(北京),2000. 内蒙古多伦县等5幅1∶5万区域地质调查报告).同时,研究区所在的大兴安岭中生代岩浆活动带广泛分布着白音高老组流纹岩类,许多学者通过同位素研究也得出了一致的论断,认为它们均源于地壳部分熔融,如苏尼特左旗红格尔((87Sr/86Sr)0= 0.704 5~0.705 1,εNd(t)=0.88~2.66)、呼伦贝尔温布旗(176Hf/177Hf=0.282 830~0.282 983,εHf(t)=6.02~10.19)和满洲里南部(176Hf/177Hf= 0.282 785~0.282 970,εHf(t)=3.78~9.98)等地区的流纹岩,东乌珠穆沁旗贺斯格乌拉((87Sr/86Sr)0=0.703 9~0.704 5,εNd(t)=2.65~4.39)和科右前旗索伦(176Hf/177Hf=0.282 854~0.283 026,εHf(t)=5.50~11.50)等地区的流纹质火山碎屑岩等(苟军等,2010;张祥信等,2016;谭皓元等,2017;王阳等,2017;胡振华等,2020).这些亏损的同位素数据暗示了它们可能来源于年轻的地壳源区.
同时,该岩石具有较高的分异指数DI值(90.26~93.28),说明地壳部分熔融形成的岩浆在演化过程中经历了显著的分离结晶作用.前文提到,岩石强烈亏损Ba、Sr,且Eu也具有显著负异常,指示岩浆演化过程中发生了斜长石等的分离结晶且岩浆源区可能有斜长石的残留;而低Sr高Yb的特征(Sr平均值25.54×10-6,Yb平均值4.18×10-6)也进一步暗示源区可能存在斜长石和角闪石的残留(张旗等,2008).
综上所述,初步推断羊盘沟流纹斑岩是由地壳物质部分熔融演化而来,岩浆演化过程中发生了强烈的结晶分异作用且源区部分熔融可能存在以斜长石为主的残留物.
5.3 构造背景与区域构造演化
中亚造山带东段在中生代期间经受了蒙古‒鄂霍次克构造域和太平洋构造域的双重影响(许文良等,2013).在中国东北‒冀北地区关于太平洋构造域的研究炙手可热(葛文春等,2007;许文良等,2013),而蒙古‒鄂霍次克构造域的研究相对较少.
蒙古‒鄂霍次克构造带是中亚造山带的重要组成部分,在东亚大陆形成演化的历史上占有极为重要的地位,也是华北板块和西伯利亚板块之间的最后缝合带,但是其最终闭合时限一直存在争议,且蒙古‒鄂霍次克构造体系的远程影响范围也不是很明朗.
研究区位于蒙东南‒冀北地区,区域上发育多个晚侏罗世‒早白垩世火山喷发盆地,火山口明显呈北东向展布,火山喷发盆地以坳陷型为主,且内部多发育大量塌陷破火山,盆地及破火山的长轴方向基本一致,均为北东向,说明它们主要受大型北东向伸展断裂控制(中国地质大学(北京),2000. 内蒙古多伦县等5幅1∶5万区域地质调查报告),方向与蒙古‒鄂霍次克构造带及东北地区的塔源‒喜桂图旗断裂和贺根山‒黑河断裂一致.同时,早白垩世早期与中晚侏罗世两个阶段的火山岩具有相似的分布范围,均只分布在松辽盆地‒冀北一线往西(图 11)(Wang et al., 2006;Zhang et al., 2008;Ying et al., 2010;孟恩等,2011;徐美君等,2011;王建国等,2013;许文良等,2013),并表现为向西出露更加广泛的特征,且在毗邻的蒙古国中东部也同样广泛分布,而蒙古国与古太平洋板块距离遥远(Fan et al., 2003;孙德有等,2011),指示研究区早白垩世火山岩是受来自北西侧蒙古‒鄂霍次克构造体系的远程影响.赵大鹏等(2004)通过对长白山多个地震台的地震层析成像分析,排除了该时期火山岩形成于弧后拉张环境的可能.该时期火山岩在更靠近太平洋俯冲带的东北地区东部基本未见出露(图 11),则进一步排除了研究区受太平洋板块俯冲间歇期局部伸展影响的可能.另外,太平洋板块自中生代早期向北或北北西方向运动,与欧亚大陆边缘呈小角度相交,至早中侏罗世太平洋构造体系开始俯冲,影响范围主要在吉黑东部及小兴安岭‒张广才岭以东(许文良等,2008;裴福萍等,2009;徐美君等,2013),且中侏罗世晚期‒早白垩世早期阶段,古太平洋板块俯冲进入间歇期,主要表现为从低纬度到高纬度的走滑构造就位过程(许文良等,2019),因此,中侏罗世晚期‒早白垩世早期太平洋构造体系的影响未波及蒙东南‒冀北地区或影响微弱.需要注意的是,大兴安岭中生代岩浆活动带在东北地区主体呈北北东向,与蒙古‒鄂霍次克洋缝合带和太平洋俯冲带均呈小角度相交(图 11),这是因为该活动带在受到蒙古‒鄂霍次克构造体系的影响之后,又受到后期太平洋构造体系的强烈叠加影响而发生小角度转折.研究区早白垩世早期火山喷发盆地长轴方向均为北东方向,且区域上中侏罗世晚期‒早白垩世早期火山岩主要分布在东北地区西部,而早白垩世晚期火山岩广泛分布在东北大部分地区(许文良等,2013),这一现象也很好地佐证了这一点.Wu et al.(2002)将东北地区的A型花岗岩类岩石划分为3个时期,东北地区大面积分布的早白垩世晚期火山岩具有A1型(非造山)花岗岩特征,形成于太平洋板块开始俯冲的构造背景下,是第3个时期;而早白垩世早期火山岩主要分布在东北西部,具有A2型(后碰撞)花岗岩特征,应归于第2个时期,是古亚洲洋最后的蒙古‒鄂霍次克缝合带完成碰撞后岩石圈拆沉的产物.综上所述,研究区早白垩世早期主体受蒙古‒鄂霍次克构造体系的远程影响,且在中国的影响范围由北向南至少延伸到松辽盆地至蒙东南‒冀北一带.
大量研究表明,大兴安岭北段漠河、额尔古纳、新巴尔虎右旗及满洲里等地区早侏罗世火山岩,中段扎兰屯‒科右中旗等地区的早‒中侏罗世火山岩,南段巴林右旗等地区中侏罗世火山岩均形成于活动陆缘环境,是蒙古‒鄂霍次克大洋板块向南俯冲的产物(王伟,2014;关庆彬和刘正宏,2017;李研等,2017;赵胜金等,2018;唐宗源,2019).大兴安岭北部孙吴地区发育中侏罗世晚期S型花岗岩(李宇等,2015),且还存在同时期的变质变形活动(Miao et al., 2015),指示区域构造背景已转换为蒙古‒鄂霍次克洋两侧板块的碰撞构造环境;南段燕山地区髫髻山组火山岩古地磁和地球化学特征表明蒙古‒鄂霍次克洋两侧板块的碰撞在晚侏罗世尚未结束(任强,2015).
羊盘沟流纹斑岩是早白垩世白音高老旋回产物,属于多伦坳陷型火山盆地白家营子塌陷破火山的一部分,说明其形成于伸展构造环境.在图 12中,所有样品均落入板内花岗岩范围内,也指示其形成于伸展构造背景下,而且在Rb-(Y+Nb)图解中,所有样品更是全部落入Pearce(1983)划定的后碰撞花岗岩范围内.前文述及,该岩石属于A2型花岗岩类,也指示其可能形成于后碰撞伸展构造环境.同时,该岩石具有与后碰撞酸性火山岩相似的不相容元素分布模式,且研究区具有大规模的破火山分布和大体积流纹质火山岩堆积的特征.综合判定,羊盘沟流纹斑岩形成于后碰撞伸展构造环境.
综上所述,蒙古‒鄂霍次克洋在早侏罗世前开始向南俯冲,中‒晚侏罗世两侧板块发生碰撞缝合,并逐渐完成闭合作用,早白垩世进入后碰撞阶段,在某个伸展事件下羊盘沟流纹斑岩侵位成岩(图 13).羊盘沟流纹斑岩位于蒙东南‒冀北地区,形成时间为144.2 Ma,属于早白垩世早期,所以,蒙古‒鄂霍次克构造体系向东南远程影响范围至少延伸至蒙东南‒冀北地区,且研究区对应的蒙古‒鄂霍次克洋东段闭合时间应早于144.2 Ma.
图 13 早白垩世早期蒙东南‒冀北地区构造环境示意据张超(2020)修改Fig. 13. Schematic diagram of tectonic setting for the area between the southeast of Inner Mongolia and the north of Hebei during early Early Cretaceous6. 结论
(1) 经过全岩锆石LA-ICP-MS U-Pb同位素测年,羊盘沟流纹斑岩形成于144.2±0.6 Ma(MSWD=1.2),属于早白垩世早期.
(2) 羊盘沟流纹斑岩为准铝质高钾钙碱性‒钾玄岩系列A2型流纹岩类,岩浆来源于地壳岩石的部分熔融.
(3) 羊盘沟流纹斑岩形成于蒙古‒鄂霍次克洋闭合之后的后碰撞伸展构造环境,所以蒙古‒鄂霍次克构造体系在中国的影响范围向东南至少延伸至蒙东南‒冀北一带,且研究区对应的蒙古‒鄂霍次克洋东段的闭合时间应早于144.2 Ma.
致谢: 文章修改过程中得到了云南大学刘铮副教授和东北师范大学王兴安副教授的宝贵意见和建议,野外工作中得到了核工业二〇八大队地勘五处同事们的大力支持,样品制备得到了河北省廊坊市区域地质调查研究所实验室的帮助,锆石测年和主微量元素等化学分析分别得到了北京燕都中实测试技术有限公司实验室和广州澳实分析检测有限公司实验室的支持,在此一并表示衷心的感谢! -
图 1 羊盘沟地区构造位置图(a)及地质简图(b)
图a据张长厚等(2006)、许文良等(2013)修改. 1.第四系;2.白音高老组;3.满克头鄂博组;4.白音高老期流纹斑岩;5.白音高老期正长斑岩;6.流纹质熔结凝灰岩;7.流纹质含角砾凝灰岩;8.石英粗面质含角砾凝灰岩;9流纹岩;10.流纹斑岩;11.正长斑岩;12.地质界线;13.岩性界线;14.喷发不整合界线,15.区域断裂;16.正断层;17.钻孔位置
Fig. 1. Structural location (a) and geological sketch map (b) of Yangpangou area
图 7 羊盘沟地区流纹斑岩稀土球粒陨石元素标准化分布型式图(a)和微量元素原始地幔标准化蛛网图(b)
Fig. 7. Chondrite-normalized REE (a) and primitive mantle-normalized (b) diagrams of rhyolitic porphyry in Yangpangou area
图 8 羊盘沟地区流纹斑岩(K2O+Na2O)/CaO-Zr+Nb+Ce+Y图解(a)、FeOT/MgO-Zr+Nb+Ce+Y图解(b)、(K2O+Na2O)/CaO-10 000Ga/Al图解(c)和Ce-10 000Ga/Al图解(d)
A. A型;I & S. I、S型;FG. 分异的I、S型;OTG. 未分异的I、S型
Fig. 8. (K2O+Na2O)/CaO vs. Zr+Nb+Ce+Y (a)、FeOT/MgO vs. Zr+Nb+Ce+Y (b)、(K2O+Na2O)/CaO vs. 10 000Ga/Al (c) and Ce vs. 10 000Ga/Al (d) diagrams of rhyolitic porphyry in Yangpangou area
图 10 羊盘沟地区流纹斑岩δEu-Sr源区判别图解
Fig. 10. The δEu vs. Sr diagram of rhyolitic porphyry in Yangpangou area
图 11 东北地区早白垩世早期和中晚侏罗世火山岩分布
Fig. 11. Distribution map of early Early Cretaceous and Middle-Late Jurassic volcanic rocks in NE China
图 12 羊盘沟地区流纹斑岩Rb-Y+Nb(a)和Nb-Y(a)构造环境判别图解
Fig. 12. Rb vs. Y+Nb (a) and Nb vs. Y (b) diagrams of rhyolitic porphyry in Yangpangou area
图 13 早白垩世早期蒙东南‒冀北地区构造环境示意
据张超(2020)修改
Fig. 13. Schematic diagram of tectonic setting for the area between the southeast of Inner Mongolia and the north of Hebei during early Early Cretaceous
表 1 羊盘沟地区流纹斑岩锆石LA⁃ICP⁃MS U⁃Pb同位素定年数据
Table 1. Zircon U⁃Pb dating of rhyolitic porphyry in Yangpangou area
测点号 元素含量(10-6) Th/U 同位素比值 同位素年龄(Ma) 谐和度(%) Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 测值 1σ 测值 1σ 测值 1σ 测值 1σ 测值 1σ 测值 1σ 1 17 305 645 0.47 0.048 5 0.000 8 0.151 3 0.002 7 0.022 5 0.000 2 124.2 40.7 143.0 2.4 143.6 1.3 99 2 19 363 676 0.54 0.049 2 0.000 9 0.153 1 0.002 8 0.022 6 0.000 2 166.8 38.0 144.7 2.4 143.9 1.3 99 3 75 1 590 431 3.69 0.066 6 0.001 1 0.224 7 0.007 0 0.024 2 0.000 3 833.3 33.3 205.8 5.8 154.4 1.7 71 4 27 433 1 021 0.42 0.050 4 0.000 7 0.157 0 0.002 3 0.022 5 0.000 2 213.0 33.3 148.0 2.0 143.6 1.1 96 5 67 1 242 521 2.39 0.049 7 0.000 6 0.164 7 0.003 0 0.023 9 0.000 2 183.4 21.3 154.8 2.7 152.4 1.4 98 6 30 502 1 124 0.45 0.050 4 0.000 7 0.157 3 0.002 4 0.022 6 0.000 2 213.0 33.3 148.4 2.1 143.8 1.2 96 7 38 849 1 402 0.61 0.067 0 0.001 4 0.196 7 0.004 1 0.021 2 0.000 2 838.9 42.6 182.3 3.5 135.1 1.0 70 8 21 376 766 0.49 0.049 4 0.000 9 0.154 5 0.002 8 0.022 7 0.000 2 164.9 40.7 145.9 2.5 144.4 1.3 98 9 38 882 1 302 0.68 0.049 6 0.000 8 0.160 7 0.002 5 0.023 4 0.000 2 176.0 35.2 151.4 2.2 149.4 1.3 98 10 42 695 1 568 0.44 0.049 7 0.000 8 0.155 6 0.002 5 0.022 6 0.000 2 189.0 37.0 146.9 2.2 144.2 1.2 98 11 27 543 972 0.56 0.048 8 0.000 8 0.151 9 0.002 6 0.022 5 0.000 2 200.1 40.7 143.6 2.3 143.6 1.3 99 12 20 351 740 0.47 0.049 1 0.000 9 0.152 2 0.002 7 0.022 5 0.000 2 150.1 44.4 143.9 2.4 143.4 1.2 99 13 10 207 384 0.54 0.050 6 0.001 1 0.156 9 0.003 4 0.022 5 0.000 2 233.4 50.0 148.0 3.0 143.2 1.4 96 14 39 631 1 443 0.44 0.049 9 0.000 8 0.156 4 0.002 4 0.022 6 0.000 2 190.8 37.0 147.5 2.1 144.2 1.2 97 15 12 254 432 0.59 0.049 6 0.001 1 0.154 9 0.003 6 0.022 6 0.000 2 189.0 53.7 146.2 3.1 144.1 1.3 98 16 11 223 406 0.55 0.047 8 0.001 0 0.153 0 0.003 1 0.023 2 0.000 2 100.1 78.7 144.6 2.7 147.7 1.3 97 17 32 717 1 192 0.60 0.050 0 0.000 8 0.154 9 0.002 4 0.022 4 0.000 2 194.5 32.4 146.3 2.1 142.9 1.2 97 18 17 316 619 0.51 0.048 4 0.000 8 0.150 0 0.002 5 0.022 5 0.000 2 116.8 45.4 141.9 2.2 143.4 1.3 98 19 8 193 266 0.73 0.049 4 0.001 3 0.151 9 0.003 8 0.022 5 0.000 2 164.9 65.7 143.6 3.4 143.5 1.6 99 20 17 385 573 0.67 0.066 3 0.001 5 0.207 7 0.005 1 0.022 5 0.000 2 814.5 48.9 191.6 4.3 143.7 1.3 71 21 24 512 894 0.57 0.050 2 0.000 8 0.156 1 0.002 5 0.022 5 0.000 2 205.6 38.9 147.3 2.2 143.5 1.2 97 22 8 215 293 0.73 0.048 4 0.001 2 0.150 0 0.003 9 0.022 5 0.000 3 116.8 59.3 141.9 3.4 143.4 1.8 98 23 15 353 542 0.65 0.049 8 0.001 0 0.155 9 0.003 2 0.022 7 0.000 2 183.4 13.9 147.1 2.8 144.6 1.5 98 24 20 342 764 0.45 0.049 5 0.000 8 0.154 0 0.002 6 0.022 5 0.000 2 172.3 38.9 145.4 2.3 143.6 1.3 98 25 18 369 672 0.55 0.048 2 0.000 9 0.149 9 0.002 6 0.022 6 0.000 2 109.4 42.6 141.8 2.3 143.9 1.2 98 26 7 203 248 0.82 0.050 2 0.001 4 0.155 6 0.004 5 0.022 5 0.000 3 205.6 97.2 146.8 4.0 143.3 1.6 97 27 16 333 577 0.58 0.048 1 0.001 0 0.150 5 0.003 1 0.022 7 0.000 2 105.6 50.0 142.4 2.8 144.6 1.3 98 28 58 1 353 1 173 1.15 0.049 4 0.000 6 0.158 8 0.002 2 0.023 2 0.000 2 168.6 25.9 149.6 2.0 148.1 1.0 98 29 9 153 331 0.46 0.049 4 0.001 2 0.154 5 0.003 8 0.022 7 0.000 2 168.6 62.0 145.8 3.3 144.8 1.4 99 30 14 285 524 0.54 0.048 5 0.000 9 0.151 0 0.002 8 0.022 5 0.000 2 124.2 40.7 142.8 2.5 143.5 1.2 99 表 2 羊盘沟地区流纹斑岩地球化学分析结果
Table 2. Geochemical dating of rhyolitic porphyry in Yangpangou area
样品号 YP-1 YP-2 YP-3 YP-4 YP-5 H-ZKYP7-1 H-ZKYP7-2 H-ZKYP7-3 SiO2 73.25 73.25 74.06 74.70 76.72 73.75 74.86 74.24 TiO2 0.22 0.20 0.20 0.19 0.14 0.21 0.23 0.21 Al2O3 12.65 12.50 12.33 12.05 11.41 12.50 12.22 12.36 FeOT 2.73 2.69 1.61 1.62 1.63 2.15 2.15 2.01 MnO 0.36 0.34 0.28 0.27 0.21 0.06 0.07 0.09 MgO 0.09 0.08 0.21 0.19 0.16 0.24 0.19 0.11 CaO 0.54 0.71 1.65 1.68 1.12 0.98 0.72 2.26 Na2O 2.08 2.06 2.42 3.18 2.98 2.20 2.80 4.05 K2O 7.87 7.87 6.82 5.69 5.43 7.87 6.73 4.64 P2O5 0.03 0.03 0.03 0.02 0.01 0.04 0.04 0.03 LOI 1.05 0.98 1.90 1.86 1.43 1.30 0.96 2.34 DI 92.64 92.35 90.42 90.83 93.07 93.08 93.68 90.26 A/CNK 0.99 0.95 0.86 0.84 0.89 0.90 0.93 0.79 A/NK 1.07 1.06 1.09 1.06 1.06 1.04 1.04 1.06 La 94.8 91.0 88.3 89.6 70.7 96.8 83.7 88.6 Ce 180 177 168 172 141 182 158 166 Pr 19.15 18.85 17.40 17.90 15.10 19.90 17.40 18.00 Nd 66.3 65.1 59.9 61.8 52.2 71.7 63.4 66.2 Sm 12.05 11.60 10.75 11.50 10.30 12.50 11.10 11.20 Eu 0.530 0.430 0.400 0.430 0.250 0.409 0.388 0.334 Gd 9.33 9.39 8.61 8.61 8.47 11.10 9.69 9.80 Tb 1.42 1.54 1.36 1.42 1.46 1.69 1.46 1.49 Dy 8.01 8.59 7.55 7.62 8.25 8.26 6.93 7.38 Ho 1.53 1.74 1.46 1.50 1.74 1.51 1.22 1.34 Er 4.24 5.04 4.12 4.55 4.99 4.34 3.54 3.91 Tm 0.70 0.74 0.67 0.67 0.76 0.58 0.47 0.54 Yb 4.22 4.56 4.03 4.00 4.80 4.33 3.50 4.01 Lu 0.68 0.72 0.62 0.61 0.74 0.58 0.48 0.55 ΣREE 402.96 395.80 372.67 381.71 320.76 415.70 361.28 379.35 (La/Yb)N 15.18 13.49 14.81 15.14 9.95 15.11 16.16 14.93 δEu 0.15 0.12 0.12 0.13 0.08 0.10 0.11 0.10 Rb 323 313 265 219 209 272 220 143 Ba 270 274 241 164 142 215 217 162 Th 31.0 33.2 31.8 30.5 32.8 30.7 28.2 30.6 U 6.54 5.60 150.00 36.50 32.90 3.20 4.50 5.12 Ta 2.30 2.40 2.20 2.10 2.30 2.28 2.23 2.18 Nb 24.7 25.0 22.9 23.0 24.4 28.9 29.6 25.6 Sr 23.9 23.8 27.6 23.7 19.7 22.4 21.2 42.0 Zr 443 451 426 402 348 174 163 172 Hf 12.10 12.50 11.40 11.10 10.40 7.46 7.03 7.61 Y 44.3 48.8 40.8 42.4 47.5 43.4 36.1 38.6 Ga 24.4 23.2 23.6 23.1 22.7 24.3 24.2 21.8 Rb/Sr 13.51 13.15 9.60 9.24 10.61 12.14 10.38 3.40 Ti/Y 30.14 24.94 28.73 27.48 17.93 28.69 38.23 32.60 Ti/Zr 3.01 2.70 2.75 2.90 2.45 7.16 8.47 7.32 注:主量元素单位为%;稀土和微量元素单位为10-6;主量元素数据经过烧失量校正. -
Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X Bussien, D., Gombojav, N., Winkler, W., et al., 2011. The Mongol-Okhotsk Belt in Mongolia-An Appraisal of the Geodynamic Development by the Study of Sandstone Provenance and Detrital Zircons. Tectonophysics, 510(1-2): 132-150. https://doi.org/10.1016/j.tecto.2011.06.024 Cao, H. H., Xu, W. L., Pei, F. P., et al., 2013. Zircon U-Pb Geochronology and Petrogenesis of the Late Paleozoic-Early Mesozoic Intrusive Rocks in the Eastern Segment of the Northern Margin of the North China Block. Lithos, 170-171: 191-207. https://doi.org/10.1016/j.lithos.2013.03.006 Deng, J. F., Qiu, R. Z., Xiao, Q. H., et al., 2004. Input of Material and Heat from Convective Mantle into Continent and Continental Metallogenesis. Mineral Deposits, 23(S1): 24-31 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ2004S1007.htm Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 Fan, W. M., Guo, F., Wang, Y. J., et al., 2003. Late Mesozoic Calc-Alkaline Volcanism of Post-Orogenic Extension in the Northern Da Hinggan Mountains, Northeastern China. Journal of Volcanology and Geothermal Research, 121(1-2): 115-135. https://doi.org/10.1016/S0377-0273(02)00415-8 Foley, S., Peccerillo, A., 1992. Potassic and Ultrapotassic Magmas and Their Origin. Lithos, 28(3-6): 181-185. https://doi.org/10.1016/0024-4937(92)90005-J Ge, W.C., Sui, Z.M., Wu, F.Y., et al., 2007. Zircon U-Pb Ages, Hf Isotopic Characteristics and Their Implications of the Early Paleozoic Granites in the Northeastern Da Hinggan Mts., Northeastern China. Acta Petrologica Sinica, 23(2): 423-440 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702022.htm Gou, J., Sun, D.Y., Zhao, Z.H., et al., 2010. Zircon LA-ICP-MS U-Pb Dating and Petrogenesis of Rhyolites in Baiyingaolao Formation from the Southern Manzhouli, Inner-Mongolia. Acta Petrologica Sinica, 26(1): 333-344 (in Chinese with English abstract). http://www.oalib.com/paper/1472934 Guan, Q. B., Liu, Z. H., 2017. Chronology and Geochemistry of Late Mesozoic Volcanic Rocks and Subvolcanic Rocks in Balinyouqi Area, South Section of Daxing'anling Mountains. Proceedings of the 16th Annual Meeting of China Society of Mineralogy and Petrochemistry, Guiyang (in Chinese). He, G. Q., Liu, C., Deng, J. F., et al., 2020. Records of the Late Jurassic Magmatic Arc in Heihe Area, Heilongjiang Province: Discussion on the Relationship with Mongolia-Okhotsk Ocean. Earth Science, 45(7): 2524-2537 (in Chinese with English abstract). Hu, Z. H., Cheng, Z. X., Zhang, Y. L., 2020. U-Pb Ages and Geochemical Characteristics of Volcanic Rocks in the Baiyingaolao Formation of Hesigewula Ranch, Dongwuqi, Inner Mongolia. Geololgy and Exploration, 56(2): 359-371 (in Chinese with English abstract). Huang, S. Q., Dong, S. W., Hu, J. M., et al., 2016. The Formation and Tectonic Evolution of the Mongol-Okhotsk Belt. Acta Geologica Sinica, 90(9): 2192-2205 (in Chinese with English abstract). http://www.researchgate.net/publication/324681010_The_formation_and_tectonic_evolution_of_the_Mongol-Okhotsk_belt Huo, Y. H., 1986. Tectonic Environment of Mesozoic Volcanic Rocks in the Coastal Areas of SE China. Geochemistry, 5(3): 195-204. https://doi.org/10.1007/BF02864871 Jiang, X. J., Liu, Z. H., Xu, Z. Y., et al., 2013. LA-ICP-MS Zircon U-Pb Dating of Wulanhada Middle Permian Alkali-Feldspar Granites in Xianghuang Banner, Central Inner Mongolia and Its Geochemical Characteristics. Geological Bulletin of China, 32(11): 1760-1768 (in Chinese with English abstract). http://www.researchgate.net/publication/281331580_LA-ICP-MS_zircon_U-Pb_dating_of_Wulanhada_middle_Permian_alkali-feldspar_granites_in_Xianghuang_Banner_central_Inner_Mongolia_and_its_geochemical_characteristics Jiang, X. J., Yan, P. B., Xue, W., et al., 2017. Geochemical Characteristics of Rhyolite Porphyry and Relationship between the Rock and Enriched Uranium in Hetaoba, Inner Mongolia. Geoscience, 31(2): 225-233 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201702002.htm Johannes, W., Holtz, F., 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61049-3 Li, H. K., Geng, J. Z., Hao, S., et al., 2009. Determination of Zircon U-Pb Isotopic Age by Laser Ablation Multi Receiver Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICP MS). Acta Mineralogica Sinica, 29(S1): 600-601 (in Chinese). Li, J. Y., He, Z. J., Mo, S. G., et al., 1999. The Late Mesozoic Orogenic Processes of Mongolia-Okhotsk Orogeny: Evidence from Field Investigations into Deformation of the Mohe area, NE China. Journal of Geoscientific Research in Northeast Asia, 2(2): 172-178. http://www.cqvip.com/QK/87465A/199902/3000794141.html Li, J. Y., Qu, J. F., Zhang, J., et al., 2013. New Developments on the Reconstruction of Phanerozoic Geological History and Research of Metallogenic Geological Settings of the Northern China Orogenic Region. Geological Bulletin of China, 32(2-3): 207-219 (in Chinese with English abstract). http://www.researchgate.net/publication/290583551_New_developments_on_the_reconstruction_of_phanerozoic_geological_history_and_research_of_metallogenic_geological_settings_of_the_Northern_China_orogenic_region Li, Y., Ding, L. L., Xu, W. L., et al., 2015. Geochronology and Geochemistry of Muscovite Granite in Sunwu Area, NE China: Implications for the Timing of Closure of the Mongol-Okhotsk Ocean. Acta Petrologica Sinica, 31(1): 56-66 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252015454.html Li, Y., Wang, J., Han, Z. B., et al., 2017. Zircon U-Pb Dating and Petrogenesis of the Early Jurassic Rhyolite in Badaguan Area, Northern Da Hinggan Mountains. Geology in China, 44(2): 346-357 (in Chinese with English abstract). http://www.researchgate.net/publication/320189200_Zircon_U-Pb_dating_and_petrogenesis_of_the_Early_Jurassic_rhyolite_in_Badaguan_area_northern_da_hinggan_mountains Lin, Q., Ge, W. C., Cao, L., et al., 2003. Geochemistry of Mesozoic Volcanicr Ocks in Da Hinggan Ling: The Bimodal Volcanic Rocks. Geochimica, 32(3): 208-222 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200303001.htm Liu, S., Hu, R. Z., Gao, S., et al., 2008. U-Pb Zircon Age, Geochemical and Sr-Nd-Pb-Hf Isotopic Constraints on Age and Origin of Alkaline Intrusions and Associated Mafic Dikes from Sulu Orogenic Belt, Eastern China. Lithos, 106(3-4): 365-379. https://doi.org/10.1016/j.lithos.2008.09.004 Ludwig, K. R., 1991. Isoplot-A Plotting and Regression Program for Radio-Genic-Isotope Data. US Geological Survey, Reston. Meng, E., Xu, W. L., Yang, D. B., et al., 2011. Zircon U-Pb Chronology, Geochemistry of Mesozoic Volcanic Rocks from the Lingquan Basin in Manzhouli Area, and Its Tectonic Implications. Acta Petrologica Sinica, 27(4): 1209-1226 (in Chinese with English abstract). http://www.oalib.com/paper/1475699 Miao, L. C., Zhang, F. Q., Zhu, M. S., et al., 2015. Zircon SHRIMP U-Pb Dating of Metamorphic Complexes in the Conjunction of the Greater and Lesser Xing'an Ranges, NE China: Timing of Formation and Metamorphism and Tectonic Implications. Journal of Asian Earth Sciences, 114: 634-648. https://doi.org/10.1016/j.jseaes.2014.09.035 Parfenov, L. M., Popeko, L. I., Tomurtogoo, O., 2001. Problems of Tectonics of the Mongol-Okhotsk Orogenic Belt. Geology of the Pacific Ocean, 16(5): 797-830. http://www.researchgate.net/publication/279625129_Problems_of_tectonics_of_the_Mongol-Okhotsk_orogenic_belt Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743-746. https://doi.org/10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2 doi: 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2 Pearce, J. A., 1983. The Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins. In: Hawkesworth, C. J., Norry, M. J., eds., Continental Basalts and Mantle Xenoliths. Shiva, Nantwich. Pei, F. P., Xu, W. L., Yang, D. B., et al., 2009. Heterogeneity of Late Mesozoic Deep Lithosphere Beneath the Northeastern North China Craton: Evidence from Elemental and Sr-Nd Isotopic Geochemistry of Mesozoic Volcanic Rocks in the Southern Jilin Province, China. Acta Petrologica Sinica, 25(8): 1962-1974 (in Chinese with English abstract). http://www.ysxb.ac.cn/cjstp/ch/reader/create_pdf.aspx?file_no=20090820&flag=1&journal_id=ysxb&year_id=2009 Ren, Q., 2015. New Paleomagnetic Results from the Volcanic Rocks of Tioajishan Formation in the Yanshan Area of the North China and Their Tectonic Implications (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). Shao, J. A., Zhang, L. Q., Mu, B. L., 2011. Distribution of Uranium and Molybdenum Deposits and Their Relations with Medium Massifs in Central Asian Orogenic Zone. Journal of Jilin University (Earth Science Edition), 41(6): 1667-1675 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201106002.htm Sun, D. Y., Gou, J., Ren, Y. S., et al., 2011. Zircon U-Pb Dating and Study on Geochemistry of Volcanic Rocks in Manitu Formation from Southern Manchuria, Inner Mongolia. Acta Petrologica Sinica, 27(10): 3083-3094 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=39860741 Sun, D. Y., Wu, F. Y., Zhang, Y. B., et al., 2004. The Final Closing Time of the West Lamulun River-Changchun-Yanji Plate Suture Zone-Evidence from the Dayushan Granitic Pluton, Jilin Province. Journal of Jilin University (Earth Science Edition), 34(2): 174-181 (in Chinese with English abstract). http://www.researchgate.net/publication/284701794_The_final_closing_time_of_the_west_Lamulun_River-Changchun-Yanji_plate_suture_zone_Evidence_from_the_Dayushan_granitic_pluton_Jilin_Province Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345. http://dx.doi.org/10.1144/GSL.SP.1989.042.01.19 Tan, H. Y., He, Z. H., Chen, F., et al., 2017. Zircon U-Pb Ages and Geochemical Characteristics of Volcanic Rocks in Baiyingaolao Formation of Suolun Area within Central Da Hinggan Mountains and Their Tectonic Implications. Geological Bulletin of China, 36(5): 893-908 (in Chinese with English abstract). http://www.researchgate.net/publication/319008952_Zircon_U-Pb_ages_and_geochemical_characteristics_of_volcanic_rocks_in_Baiyingaolao_Formation_of_Suolun_area_within_central_Da_Hinggan_Mountains_and_their_tectonic_implications Tang, Z. Y., 2019. Petrogenesis and Geodynamic Mechanism of the Mesozoic Volcanic Rocks in the Central Great Xing'an Range (Dissertation). Jilin University, Changchun (in Chinese with English abstract). Wang, F., Zhou, X. H., Zhang, L. C., et al., 2006. Late Mesozoic Volcanism in the Great Xing'an Range (NE China): Timing and Implications for the Dynamic Setting of NE Asia. Earth and Planetary Science Letters, 251(1-2): 179-198. https://doi.org/10.1016/j.epsl.2006.09.007 Wang, J. G., He, Z. H., Xu, W. L., 2013. Petrogenesis of Riebeckite Rhyolitesin the Southern Da Hinggan Mts: Geohronological and Geochemical Evidence. Acta Petrologica Sinica, 29(3): 853-863 (in Chinese with English abstract). http://www.oalib.com/paper/1475455 Wang, W., 2014. Geochronology and Geochemistry of the Early Jurassic Volcanic Rocks in the Manzhouli-Erguna Area, NE China (Dissertation). Jilin University, Changchun (in Chineses with English abstract). Wang, Y., Xu, Z. Y., Liu, Z. H., et al., 2017. Formation Mechanism of Baiyingaolao Volcanic Rocks in Wenbuqi Area of Da Hinggan Mountains. Global Geology, 36(3): 714-725 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SJDZ201703007&dbcode=CJFD&year=2017&dflag=pdfdown Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 Williams, I. S., Buick, I. S., Cartwright, I., 1996. An Extended Episode of Early Mesoproterozoic Metamorphic Fluid Flow in the Reynolds Range, Central Australia. Journal of Metamorphic Geology, 14(1): 29-47. https://doi.org/10.1111/j.1525-1314.1996.00029.x Wilson, M., 1989. Igneous Petrogenesis. Springer, Dordrecht. Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract). http://www.researchgate.net/profile/Yong-Fei_Zheng/publication/279707410_Discussions_on_the_petrogenesis_of_granites/links/55ceace208ae6a881384a0c7.pdf Wu, F.Y., Sun, D.Y., Li, H., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1-2): 143-173. https://doi.org/10.1016/S0009-2541(02)00018-9 Wu, G., Chen, Y. J., Sun, F. Y., et al., 2008. Geochemistry of the Late Jurassic Granitoids in the Northern End Area of Da Hinggan Mountains and Their Geological and Prospecting Implications. Acta Petrologica Sinica, 24(4): 899-910 (in Chinese with English abstract). http://www.cqvip.com/QK/71135X/201107/27734160.html Xiao, W. J., Song, D. F., Windley, B. F., et al., 2019. Research Progress of Accretive Orogeny and Mineralization in Central Asia. Science in China (Series D), 49(10): 1512-1545 (in Chinese). http://www.cqvip.com/qk/94579x/20195/7002173885.html Xu, B., Zhao, P., Wang, Y. Y., et al., 2015. The Pre-Devonian Tectonic Framework of Xing'an-Mongolia Orogenic Belt (XMOB) in North China. Journal of Asian Earth Sciences, 97: 183-196. https://doi.org/10.1016/j.jseaes.2014.07.020 Xu, M. J., Xu, W. L., Meng, E., et al., 2011. LA-ICP-MS Zircon U-Pb Chronology and Geochemistry of Mesozoic Volcanic Rocks from the Shanghulin-Xiangyang Basins in Ergun Area, Northeastern Inner Mongolia. Geological Bulletin of China, 30(9): 1321-1338 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252284611.html Xu, M. J., Xu, W. L., Wang, F., et al., 2013. Geochronology and Geochemistry of the Early Jurassic Granitoids in the Central Lesser Xing'an Range, NE China and Its Tectonic Implications. Acta Petrologica Sinica, 29(2): 354-368 (in Chinese with English abstract). Xu, W. L., Ji, W. Q., Pei, F. P., et al., 2009. Triassic Volcanism in Eastern Heilongjiang and Jilin Provinces, NE China: Chronology, Geochemistry, and Tectonic Implications. Journal of Asian Earth Sciences, 34(3): 392-402. https://doi.org/10.1016/j.jseaes.2008.07.001 Xu, W. L., Pei, F. P., Gao, F. H., et al., 2008. Ziron U-Pb Age from Basement Granites in Yishu Graben and Its Tectonic Implications. Earth Science, 33(2): 145-150 (in Chinese with English abstract). Xu, W. L., Sun, C. Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an-Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646 (in Chinese with English abstract). Xu, W. L., Wang, F., Pei, F. P., et al., 2013. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 29(2): 339-353 (in Chinese with English abstract). Ying, J. F., Zhou, X. H., Zhang, L. C., et al., 2010. Geochronological and Geochemical Incestigation of the Late Mesozoic Volcanic Rocks from the Northern Great Xing'an Range and Their Tectonic Implications. International Journal of Earth Sciences, 99(2): 357-378. https://doi.org/10.1007/s00531-008-0395-z Zhang, C., 2020. Late Mesozoic Magmatism and Tectonic Setting of Bairin Left Banner-Jarud Banner Area in the Southern Great Xing'an Range (Dissertation). Jilin University, Changchun (in Chinese with English abstract). Zhang, C. H., Zhang, Y., Li, H. L., et al., 2006. Late Mesozoic Thrust Tectonics Framework in the Western Part of the Yanshan Orogenic Belt and the Western Hills of Beijing: Characteristics and Significance. Earth Science Frontiers, 13(2): 165-183 (in Chinese with English abstract). Zhang, L. C., Chen, Z. G., Zhou, X. H., et al., 2007. Characteristics of Deep Sources and Tectonic-Magmatic Evolution of the Early Cretaceous Voleanics in Genhe Area, Da-Hinggan Mountains: Constraints of Sr-Nd-Pb-Hf Isotopic Geochemistries. Acta Petrologica Sinica, 23(11): 2823-2835 (in Chinese with English abstract). Zhang, Q., Ran, H., Li, C. D., 2012. A-Type Granite: What is the Essence?. Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201204015.htm Zhang, Q., Wang, Y., Pan, G. Q., et al., 2008. Sources of Granites: some Crucial Questions on Granite Study (4). Acta Petrologica Sinica, 24(6): 1193-1204 (in Chinese with English abstract). http://www.researchgate.net/publication/285897167_Sources_of_granites_Some_crucial_questions_on_granite_study_4 Zhang, X. X., Gao, Y. F., Lei, S. H., 2016. Geochemisty and Petrogenesis of the Rhyolites from the Baiyingaolao Formation in the Honggeer Area, Central Inner Mongolia. Geoscience, 30(5): 950-960 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201605002.htm Zhang, Y. Q., Dong, S. W., Zhao, Y., et al., 2008. Jurassic Tectonics of North China: A Synthetic View. Acta Geologica Sinica (English Edition), 82(2): 310-326. https://doi.org/10.1111/j.1755-6724.2008.tb00581.x Zhao, D. P., Lei, J. S., Tang, R. Y., 2004. Theorigin of Changbai Volcano in the Northeast China: Seismic Tomographic Imaging Evidence. Chinese Science Bulletin, 49(14): 1439-1446 (in Chinese with English abstract). doi: 10.1360/csb2004-49-14-1439 Zhao, S. J., Yu, H. Y., Shen, L., et al., 2018. Determination and Geological Significance of Chaihe Formation of the Lower Jurassic in North Daxing'anling Range. Geological Bulletin of China, 37(7): 1302-1314 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201807014.htm Zhao, S. Y., Han, Y. D., Zhu, C. Y., et al., 2004. Geochemical Characteristics and Geological Significance of Intermediate and Intermediate-Acid Volcanic Rocks in the Northern Sector of the Da Hinggan Volcanic Eruptionzone. Journal of Geomechanics, 10(3): 276-287 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200403009.htm Zorin, Y. A., 1999. Geodynamics of the Western Part of the Mongolia-Okhotsk Collisional Belt, Trans-Baikal Region (Russia) and Mongolia. Tectonophysics, 306(1): 33-56. https://doi.org/10.1016/S0040-1951(99)00042-6 邓晋福, 邱瑞照, 肖庆辉, 等, 2004. 对流地幔输入大陆与大陆成矿作用. 矿床地质, 23(S1): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2004S1007.htm 葛文春, 隋振民, 吴福元, 等, 2007. 大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义. 岩石学报, 23(2): 423-440. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702022.htm 苟军, 孙德有, 赵忠华, 等, 2010. 满洲里南部白音高老组流纹岩锆石U-Pb定年及岩石成因. 岩石学报, 26(1): 333-344. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201001038.htm 关庆彬, 刘正宏, 2017. 大兴安岭南段巴林右旗地区晚中生代火山岩、次火山岩年代学及地球化学研究. 中国矿物岩石地球化学学会第九次全国会员代表大会暨第16届学术年会, 贵阳. 贺国奇, 刘翠, 邓晋福, 等, 2020. 黑龙江黑河地区晚侏罗世岩浆弧的火成岩记录: 与蒙古-鄂霍茨克洋关系探讨. 地球科学, 45(7): 2524-2537. doi: 10.3799/dqkx.2020.050 胡振华, 程招勋, 张跃龙. 2020. 内蒙古贺斯格乌拉牧场白音高老组火山岩U-Pb年龄及地球化学特征. 地质与勘探, 56(2): 359-371. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202002011.htm 黄始琪, 董树文, 胡健民, 等, 2016. 蒙古-鄂霍次克构造带的形成与演化. 地质学报, 90(9): 2192-2205. doi: 10.3969/j.issn.0001-5717.2016.09.008 蒋孝君, 刘正宏, 徐仲元, 等, 2013. 内蒙古镶黄旗乌兰哈达中二叠世碱长花岗岩LA-ICP-MS锆石U-Pb年龄和地球化学特征. 地质通报, 32(11): 1760-1768. doi: 10.3969/j.issn.1671-2552.2013.11.008 蒋孝君, 剡鹏兵, 薛伟, 等, 2017. 内蒙古核桃坝地区流纹斑岩的地球化学特征及与铀富集的关系. 现代地质, 31(2): 225-233. doi: 10.3969/j.issn.1000-8527.2017.02.002 李怀坤, 耿建珍, 郝爽, 等, 2009. 用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究. 矿物学报, 29(S1): 600-601. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1311.htm 李锦轶, 曲军峰, 张进, 等, 2013. 中国北方造山区显生宙地质历史重建与成矿地质背景研究进展. 地质通报, 32(2-3): 207-219. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2013Z1000.htm 李宇, 丁磊磊, 许文良, 等, 2015. 孙吴地区中侏罗世白云母花岗岩的年代学与地球化学: 对蒙古-鄂霍茨克洋闭合时间的限定. 岩石学报, 31(1): 56-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501004.htm 李研, 王建, 韩志滨, 等, 2017. 大兴安岭北段八大关地区早侏罗世流纹岩锆石U-Pb定年与岩石成因. 中国地质, 44(2): 346-357. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201702011.htm 林强, 葛文春, 曹林, 等, 2003. 大兴安岭中生代双峰式火山岩的地球化学特征. 地球化学, 32(3): 208-222. doi: 10.3321/j.issn:0379-1726.2003.03.002 孟恩, 许文良, 杨德彬, 等, 2011. 满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义. 岩石学报, 27(4): 1209-1226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201104029.htm 裴福萍, 许文良, 杨德彬, 等, 2009. 华北克拉通东北缘岩石圈深部物质组成的不均一性: 来自吉林南部中生代火山岩元素及Sr-Nd同位素地球化学的证据. 岩石学报, 25(8): 1962-1974. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200908022.htm 任强, 2015. 华北燕山地区上侏罗统髫髻山组火山岩古地磁新结果及其大地构造意义(硕士学位论文), 北京: 中国地质大学. 邵济安, 张履桥, 牟保磊, 2011. 中亚造山带东段铀、钼矿床分布与中间地块的关系. 吉林大学学报(地球科学版), 41(6): 1667-1675. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201106002.htm 孙德有, 苟军, 任云生, 等, 2011. 满洲里南部玛尼吐组火山岩锆石U-Pb年龄与地球化学研究. 岩石学报, 27(10): 3083-3094. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201110024.htm 孙德有, 吴福元, 张艳斌, 等, 2004. 西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据. 吉林大学学报(地球科学版), 34(2): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200402003.htm 谭皓元, 和钟铧, 陈飞, 等, 2017. 大兴安岭中段索伦地区白音高老组火山岩锆石U-Pb年龄、地球化学特征及构造意义. 地质通报, 36(5): 893-908. doi: 10.3969/j.issn.1671-2552.2017.05.021 唐宗源, 2019. 大兴安岭中段中生代火山岩成因及地球动力学机制(博士学位论文). 长春: 吉林大学. 王建国, 和钟铧, 许文良, 2013. 大兴安岭南部钠闪石流纹岩的岩石成因: 年代学和地球化学证据. 岩石学报, 29(3): 853-863. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303010.htm 王伟, 2014. 满洲里-额尔古纳地区早侏罗世火山岩的年代学与地球化学研究(硕士学位论文). 长春: 吉林大学. 王阳, 徐仲元, 刘正宏, 等, 2017. 大兴安岭温布其地区白音高老组火山岩的形成机制. 世界地质, 36(3): 714-725. doi: 10.3969/j.issn.1004-5589.2017.03.007 吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 武广, 陈衍景, 孙丰月, 等, 2008. 大兴安岭北端晚侏罗世花岗岩类地球化学及其地质和找矿意义. 岩石学报, 24(4): 899-910. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804029.htm 肖文交, 宋东方, Windley, B. F., 等, 2019. 中亚增生造山过程与成矿作用研究进展. 中国科学(D辑), 49(10): 1512-1545. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201910003.htm 徐美君, 许文良, 孟恩, 等, 2011. 内蒙古东北部额尔古纳地区上护林-向阳盆地中生代火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征. 地质通报, 30(9): 1321-1338. doi: 10.3969/j.issn.1671-2552.2011.09.001 徐美君, 许文良, 王枫, 等, 2013. 小兴安岭中部早侏罗世花岗质岩石的年代学与地球化学及其构造意义. 岩石学报, 29(2): 354-368. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302003.htm 许文良, 裴福萍, 高福红, 等, 2008. 伊舒地堑基底花岗岩的锆石U-Pb年代学及其构造意义. 地球科学, 33(2): 145-150. doi: 10.3321/j.issn:1000-2383.2008.02.001 许文良, 孙晨阳, 唐杰, 等, 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44(5): 1620-1646. doi: 10.3799/dqkx.2019.036 许文良, 王枫, 裴福萍, 等, 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm 张超, 2020. 大兴安岭南段巴林左旗-扎鲁特旗地区晚中生代岩浆作用及其构造背景(博士学位论文). 长春: 吉林大学. 张长厚, 张勇, 李海龙, 等, 2006. 燕山西段及北京西山晚中生代逆冲构造格局及其地质意义. 地学前缘, 13(2): 165-183. doi: 10.3321/j.issn:1005-2321.2006.02.015 张连昌, 陈志广, 周新华, 等, 2007. 大兴安岭根河地区早白垩世火山岩深部源区与构造-岩浆演化: Sr-Nd-Pb-Hf同位素地球化学制约. 岩石学报, 23(11): 2823-2835. doi: 10.3969/j.issn.1000-0569.2007.11.013 张旗, 冉皞, 李承东, 2012. A型花岗岩的实质是什么?. 岩石矿物学杂志, 31(4): 621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014 张旗, 王焰, 潘国强, 等, 2008. 花岗岩源岩问题——关于花岗岩研究的思考之四. 岩石学报, 24(6): 1193-1204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806004.htm 张祥信, 高永丰, 雷世和, 2016. 内蒙古中部红格尔地区白音高老组流纹岩地球化学特征及成因. 现代地质, 30(5): 950-960. doi: 10.3969/j.issn.1000-8527.2016.05.002 赵大鹏, 雷建设, 唐荣余. 2004. 中国东北长白山火山的起源: 地震层析成像证据. 科学通报, 49(14): 1439-1446. doi: 10.3321/j.issn:0023-074X.2004.14.017 赵胜金, 于海洋, 申亮, 等, 2018. 大兴安岭北段下侏罗统柴河组的厘定及地质意义. 地质通报, 37(7): 1302-1314. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201807014.htm 赵书跃, 韩彦东, 朱春燕, 等, 2004. 大兴安岭火山喷发带北段中性、中酸性火山岩地球化学特征及其地质意义. 地质力学学报, 10(3): 276-287. doi: 10.3969/j.issn.1006-6616.2004.03.009 期刊类型引用(6)
1. Junlin Zhou,Yuhong Li,Wei Han,Yunpeng Zhang,Gaochao Chen,Qiao Zhang,Jianshe Wei,Yazhuo Niu. Cretaceous–Neogene Exhumation of the Daqing Shan, North China Constrained by Apatite Fission Track Thermochronology. Journal of Earth Science. 2024(01): 99-111 . 必应学术
2. 刘青占,蒋孝君,王果,李天瑜,李东鹏. 内蒙古南炮台花岗斑岩成因与构造环境:锆石U-Pb年代学、Hf同位素和全岩元素组成制约. 现代地质. 2024(01): 154-168 . 百度学术
3. 刘晶晶,李英杰,林敏,姚海龙,赵东芳,陈显婷,刘志斌. 东乌旗桑杰敖包白音高老组火山岩地质、地球化学特征,U-Pb年龄及地质意义. 地质论评. 2024(03): 1013-1029 . 百度学术
4. 张国宾,孔金贵,吴子杰,冯玥,何云龙,陈兴凯. 蒙古—鄂霍次克洋早侏罗世构造演化:来自大兴安岭北段新立屯地区花岗岩的证据. 现代地质. 2023(02): 404-418 . 百度学术
5. 王涛,张建军,李舢,童英,郭磊,张晓伟,黄河,张磊,薛怀民. 东北亚晚古生代—中生代岩浆时空演化:多重板块构造体制范围及叠合的鉴别证据. 地学前缘. 2022(02): 28-44 . 百度学术
6. 章培春,彭勃,赵金忠,王鑫,贺吉,张爱,双龙. 大兴安岭南段小乌兰沟正长花岗岩成因:锆石LA-ICP-MS U-Pb年代学、地球化学及Hf同位素的制约. 地球科学. 2022(08): 2889-2901 . 本站查看
其他类型引用(0)
-