• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    扬子台地西南部奥陶系宝塔组底部含鲕绿泥石灰岩成因意义

    陈思 曾敏 田景春 任科法 靳晓雨 李晨伟

    陈思, 曾敏, 田景春, 任科法, 靳晓雨, 李晨伟, 2021. 扬子台地西南部奥陶系宝塔组底部含鲕绿泥石灰岩成因意义. 地球科学, 46(9): 3107-3122. doi: 10.3799/dqkx.2020.346
    引用本文: 陈思, 曾敏, 田景春, 任科法, 靳晓雨, 李晨伟, 2021. 扬子台地西南部奥陶系宝塔组底部含鲕绿泥石灰岩成因意义. 地球科学, 46(9): 3107-3122. doi: 10.3799/dqkx.2020.346
    Chen Si, Zeng Min, Tian Jingchun, Ren Kefa, Jin Xiaoyu, Li Chenwei, 2021. Chamosite-Ooidal Limestones at the Bottom of Ordovician Pagoda Formation in the Southwestern Yangtze Platform: Genesis and Paleoenvironmental Implications. Earth Science, 46(9): 3107-3122. doi: 10.3799/dqkx.2020.346
    Citation: Chen Si, Zeng Min, Tian Jingchun, Ren Kefa, Jin Xiaoyu, Li Chenwei, 2021. Chamosite-Ooidal Limestones at the Bottom of Ordovician Pagoda Formation in the Southwestern Yangtze Platform: Genesis and Paleoenvironmental Implications. Earth Science, 46(9): 3107-3122. doi: 10.3799/dqkx.2020.346

    扬子台地西南部奥陶系宝塔组底部含鲕绿泥石灰岩成因意义

    doi: 10.3799/dqkx.2020.346
    基金项目: 

    国家自然科学基金项目 41872110

    中国博士后基金项目 2018M633331

    详细信息
      作者简介:

      陈思(1979-), 男, 讲师, 博士研究生, 沉积学专业, 主要从事矿物学、岩石学、矿床学研究, ORCID: 0000-0003-3179-9858.E-mail: chensi@cdut.edu.cn

      通讯作者:

      曾敏, ORCID: 0000-0003-3381-1873.E-mail: zengmin.inter@gmail.com

    • 中图分类号: P581

    Chamosite-Ooidal Limestones at the Bottom of Ordovician Pagoda Formation in the Southwestern Yangtze Platform: Genesis and Paleoenvironmental Implications

    • 摘要: 对四川省兴文县上奥陶统宝塔组底部含鲕绿泥石灰岩开展成因研究,有助于了解扬子台地西南部同时期的沉积环境演化过程.通过沉积学分析,并辅助以电子探针和扫描电镜等矿物学研究方法,发现富鲕绿泥石鲕粒及球粒为同生期沉积物,共生的生物碎屑组合指示海水为氧化性水体.丰富的微生物相关组构表明同期微生物席发育,且其代谢活动可致使水岩界面附近形成还原性水体,这是同生鲕绿泥石形成的必要条件,鲕绿泥石形成所需的Fe、Al元素来自早期风化壳在海侵阶段的大规模输入.宝塔组底部富鲕绿泥石灰岩是同期全球海平面演化在扬子台地的具体表现,佐证了早桑比期的海平面下降,是晚桑比期扬子台地快速海侵的重要标志.

       

    • 图  1  扬子台地中‒上奥陶统主要岩石地层单位对比

      汪啸风(2016)苏文博等(1999);R. 海平面上升;F. 海平面下降

      Fig.  1.  Correlation of litho-stratigraphic units in the Middle-Upper Ordovician of Yangtze platform

      图  2  桑比期‒早凯迪期华南扬子地块古地理格架

      陈旭等(1990)Chen et al.(2010)修改;图 2显示的晚奥陶纪铁质鲕粒分布的地理位置沈健伟(1994)

      Fig.  2.  Paleogeographic framework of the Yangtze block, South of China in the Sanbian-Early Katian Stage

      图  3  四川省兴文县海马村剖面沉积相综合柱状图

      a. 宝塔组灰岩底部鲕粒单个旋回的正粒序层理,鲕粒灰岩中有机质纹层发育;b. 图 3a红框内铁质鲕粒结构特征,部分鲕粒中的鲕绿泥石被晚期表生作用氧化形成赤铁矿等铁氧化物;c. 宝塔组灰岩龟裂纹特征;d. 宝塔组龟裂纹灰岩中的铁质核形石;e. 图 3d红框中铁质核形石结构特征;f. 十字铺组泥质灰岩顶部硬底构造;海平面变化曲线中:R. 表示海平面上升;F. 表示海平面下降

      Fig.  3.  The synthesis column map of sedimentary in Hama section, Xinwen, Sichuan

      图  4  宝塔组底部富鲕绿泥石鲕粒灰岩显微镜下特征(单偏光)

      a.球度较好、包壳圈层发育、粒度较大的鲕粒,边缘被后期方解石脉(f)顺包壳圈层穿插;b. 包壳圈层较少、粒度较小的椭球形鲕粒;c. 未发育包壳、粒度较小的球粒;d. 海百合颗粒;e. 鲕粒边缘发生破损;f. 埋藏成岩阶段形成的方解石脉;g. 苔藓虫颗粒

      Fig.  4.  Photomicrograph of chamosite-ooidal limestone in the bottom part of Pagoda Formation (plane polarized light)

      图  5  鲕粒圈层SEM背散射图像及能谱曲线

      a. 为鲕粒圈层中片状鲕绿泥石与泥晶方解石的互层结构;b. 为少量方解石后期重结晶充填于鲕绿泥石圈层孔隙中;c. 为鲕粒圈层中的鲕绿泥石呈片状沿鲕粒圈层切线方向排列;d. 鲕粒圈层中的部分鲕绿泥石转化为赤铁矿;e.为蓝细菌钙化现象.①、②、③、④分别为图 5a图 5d中对应测点的能谱曲线;①指示主要矿物为方解石;②指示主要矿物为赤铁矿,但其中的Al峰值表明原生鲕绿泥石转化为赤铁矿后残余的富铝矿物;③和④指示主要矿物为鲕绿泥石;“+”为测点位置

      Fig.  5.  BSE images and energy spectrum curves of cortical layers in ooid by SEM

      图  6  富鲕绿泥石颗粒背散射图像及显微镜下特征

      a. 鲕粒电子探针背散射图像及测点位置;b. 球粒电子探针背散射图像及测点位置;图中“○”为测点位置,1~16为测点编号;c、d分别为图a、b对应鲕粒和球粒的单偏光显微镜下特征;图d中球粒周围具显著的管状微生物组构特征;e. 鲕粒核部保留的微生物组构特征;f. 鲕粒周围基质中的自形黄铁矿,反射光;g为图f红色框内黄铁矿镜下特征,反射光

      Fig.  6.  Backscattering images of chamosite-rich grains and their characteristics under the microscope

      图  7  岩石组分及组构生成序列

      Fig.  7.  Paragenesis of compositions and fabrics

      图  8  基于Mg/Fe vs. Al/Si化学成分对比判别鲕绿泥石形成地质环境

      Damyanov and Vassileva(2001)修改

      Fig.  8.  Mg/Fe vs. Al/Si bivariate plots of chamosites from different geological settings

      图  9  扬子台地西南缘桑比期沉积环境变化及鲕绿泥石鲕粒形成过程

      a.桑比期早期低水位导致古陆暴露并形成富Fe、Al风化壳,为鲕绿泥石形成准备了重要物质基础;b.桑比期末期海侵导致水平面上升,古陆及风化壳被海水淹没并搬运Fe、Al质到浅海水域中;c.鲕绿泥石鲕粒形成过程模式图,在海水富Fe、Al背景下,微生物席发育为海水‒沉积物界面提供还原水体环境,从而导致鲕绿泥石结晶沉淀

      Fig.  9.  Evolution of sedimentary environment related to the formation of the chamosite ooidal limestones in Sandbian in southwest margin of Yangtze platform

      表  1  铁质颗粒中各矿物成分电子探针分析结果(%)

      Table  1.   Chemical analytical results (%) of mineral components in iron particles

      测点 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
      SiO2 0.288 0.044 23.233 0.624 22.825 23.375 0.257 22.745 0.042 23.714 0.083 93.200 1.011 0.211 21.196 22.085
      TiO2 bdl bdl 0.667 0.441 0.237 0.361 0.186 0.199 0.207 0.047 0.037 0.075 0.130 0.106 0.052 0.064
      SrO 0.075 bdl 0.056 0.161 bdl 0.022 0.053 0.072 0.047 0.021 0.064 0.105 0.002 0.048 0.007 bdl
      Cr2O3 0.003 0.015 bdl 0.039 0.009 bdl 0.004 0.031 bdl 0.008 bdl bdl bdl bdl 0.022 0.022
      MgO 0.933 0.885 6.289 0.356 5.850 6.221 0.663 6.151 0.492 6.617 0.751 0.012 0.854 0.936 6.135 6.390
      P2O5 0.099 0.032 bdl 0.065 bdl bdl 0.017 0.057 0.035 0.009 0.090 bdl 0.011 0.035 bdl bdl
      MnO 0.017 0.030 0.070 0.144 bdl 0.021 0.094 0.019 0.133 bdl 0.096 bdl 0.131 0.155 0.005 0.002
      Al2O3 0.006 bdl 17.795 0.409 17.314 17.412 0.105 16.471 0.054 19.366 0.010 0.006 0.711 0.181 15.916 17.799
      SO3 0.018 0.049 bdl 0.004 0.006 bdl 0.063 bdl 0.065 0.015 0.029 bdl 0.099 0.125 0.027 0.030
      FeO 0.249 0.317 35.913 7.187 36.250 36.337 1.633 31.268 0.749 34.037 0.371 0.083 2.958 3.030 32.416 34.515
      K2O 0.053 0.149 0.079 0.009 0.032 0.046 0.002 0.090 bdl 0.038 0.001 bdl 0.018 0.014 0.093 0.090
      CaO 52.055 53.414 0.291 45.987 0.119 0.190 55.078 4.789 56.866 0.229 52.930 0.223 49.928 51.611 7.733 2.699
      BaO bdl 0.001 bdl bdl 0.037 0.006 0.017 bdl 0.015 0.017 0.063 bdl bdl bdl bdl bdl
      Na2O 0.038 0.025 0.033 0.026 0.054 0.046 0.016 0.043 0.019 0.072 0.012 0.059 bdl 0.065 0.018 0.049
      Total 53.861 54.961 84.427 55.452 83.125 84.036 58.186 81.935 58.725 84.189 54.537 93.761 55.853 56.517 83.620 83.745
      注:测点3、5、6、8、10、15、16为鲕绿泥石,1、2、4、7、9、11、13、14为方解石,12为石英;FeO代表全铁;bdl代表低于检测限.
      下载: 导出CSV

      表  2  鲕绿泥石原子比例计算结果

      Table  2.   Calculated atomic ratios of chamosites in this study

      测点 3 5 6 8 10 15 16
      Si 2.738 2.758 2.772 2.757 2.756 2.575 2.639
      Al+Al 2.471 2.466 2.434 2.353 2.653 2.279 2.507
      Fe 3.541 3.665 3.606 3.172 3.311 3.295 3.452
      Mg 1.105 1.054 1.100 1.111 1.147 1.111 1.138
      Mg/Fe 0.312 0.287 0.305 0.350 0.346 0.337 0.330
      Al/Si 0.903 0.894 0.878 0.854 0.963 0.885 0.950
      注:以28个氧原子为基础,计算鲕绿泥石的原子比例;Fe代表全铁.
      下载: 导出CSV
    • Bhattacharyya, D. P., 1983. Origin of Berthierine in Ironstones. Clays and Clay Minerals, 31(3): 173-182. https://doi.org/10.1346/CCMN.1983.0310302
      Chen, X., Xu, J. T., Cheng, H. J., et al., 1990. On the Hannan Old Land and Dabashan Uplift. Journal of Stratigraphy, 14(2): 81-116 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ199002000.htm
      Chen, X., Zhou, Z. Y., Fan, J. X., 2010. Ordovician Paleogeography and Tectonics of the Major Paleoplates of China. Special Paper of the Geological Society of America, 466: 85-104. https://doi.org/10.1130/2010.2466(06)
      Clement, A. M., Tackett, L. S., Ritterbush, K. A., et al., 2020. Formation and Stratigraphic Facies Distribution of Early Jurassic Iron Oolite Deposits from West Central Nevada, USA. Sedimentary Geology, 395: 105537. https://doi.org/10.1016/j.sedgeo.2019.105537
      Damyanov, Z., Vassileva, M., 2001. Authigenic Phyllosilicates in the Middle Triassic Kremikovtsi Sedimentary Exhalative Siderite Iron Formation, Western Balkan, Bulgaria. Clays and Clay Minerals, 49(6): 559-585. https://doi.org/10.1346/CCMN.2001.0490607
      Dodd, M. S., Papineau, D., She, Z. B., et al., 2018. Organic Remains in Late Palaeoproterozoic Granular Iron Formations and Implications for the Origin of Granules. Precambrian Research, 310: 133-152. https://doi.org/10.1016/j.precamres.2018.02.016
      Fan, R., Lu, Y. Z., Zhang, X. L., et al., 2013. New Understanding of the Contact Relationship between Shihtzupu Formation and Pagoda Formation in Sichuan Basin. Acta Geologica Sinica, 87(3): 321-329 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE201303004&dbcode=CJFD&year=2013&dflag=pdfdown
      Garcia-Frank, A., Ureta, S., Mas, R., 2012. Iron-Coated Particles from Condensed Aalenian-Bajocian Deposits: Evolutionary Model (Iberian Basin, Spain). Journal of Sedimentary Research, 82(12): 953-968. https://doi.org/10.2110/jsr.2012.75
      Gehring, A. U., 1989. The Formation of Goethitic Ooids in Condensed Jurassic Deposits in Northern Switzerland. Geological Society, London, Special Publications, 46(1): 133-139. https://doi.org/10.1144/gsl.sp.1989.046.01.13
      Han, K. B., 2019. Characteristics and Formation Mechanism of Oolitic Ironstones in Middle Jurassic Batonian Period, in Nyalam Area, Southern Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Harder, H., 1978. Synthesis of Iron Layer Silicate Minerals under Natural Conditions. Clays and Clay Minerals, 26(1): 65-72. https://doi.org/10.1346/CCMN.1978.0260108
      Harder, H., 1989. Mineral Genesis in Ironstones: A Model Based Upon Laboratory Experiments and Petrographic Observations. Geological Society, London, Special Publications, 46(1): 9-18. https://doi.org/10.1144/gsl.sp.1989.046.01.04
      Heller, P. L., Komar, P. D., Pevear, D. R., 1980. Transport Processes in Ooid Genesis. Journal of Sedimentary Research. 50(3): 943-951. https://doi.org/10.1306/212f7b2b-2b24-11d7-8648000102c1865d
      Jiang, Z. X., 2003. Sedimentary Petrology. Petroleum Industry Press, Beijing (in Chinese).
      Kimberley, M. M., 1974. Origin of Iron Ore by Diagenetic Replacement of Calcareous Oolite. Nature, 250(5464): 319-320. https://doi.org/10.1038/250319a0
      Lu, Y. B., Ma, Y. Q., Wang, Y. X., et al., 2017. The Sedimentary Response to the Major Geological Events and Lithofacies Characteristics of Wufeng Formation-Longmaxi Formation in the Upper Yangtze Area. Earth Science, 42(7): 1169-1184 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707012.htm
      Maynard, J. B., 1986. Geochemistry of Oolitic Iron Ores, an Electron Microprobe Study. Economic Geology, 81(6): 1473-1483. https://doi.org/10.2113/gsecongeo.81.6.1473
      Mei, M. X., 2011. Microbial-Mat Sedimentology: A Young Branch from Sedimentology. Advances in Earth Science, 26(6): 586-597 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201106003.htm
      Mücke, A., 2006. Chamosite, Siderite and the Environmental Conditions of Their Formation in Chamosite-Type Phanerozoic Ooidal Ironstones. Ore Geology Reviews, 28(2): 235-249. https://doi.org/10.1016/j.oregeorev.2005.03.004
      O'Reilly, S. S., Mariotti, G., Winter, A. R., et al., 2017. Molecular Biosignatures Reveal Common Benthic Microbial Sources of Organic Matter in Ooids and Grapestones from Pigeon Cay, the Bahamas. Geobiology, 15(1): 112-130. https://doi.org/10.1111/gbi.12196
      Qin, S., Zhang, T., Su, W. B., et al., 2011. Characteristics and Implications of the Oolitic Limestones from the Silurian Succession in Wangcang, Sichuan, South China. Earth Science, 36(1): 43-52 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201101006.htm
      Rahiminejad, A. H., Zand-Moghadam, H., 2018. Synsedimentary Formation of Ooidal Ironstone: an Example from the Jurassic Deposits of SE Central Iran. Ore Geology Reviews, 95: 238-257. https://doi.org/10.1016/j.oregeorev.2018.02.028
      Rayner, D. H., Hemingway, J. E., 1974. The Geology and Mineral Resources of Yorkshire. Yorkshire Geological Society, Leeds.
      Salama, W., El Aref, M., Gaupp, R., 2014. Facies Analysis and Palaeoclimatic Significance of Ironstones Formed during the Eocene Greenhouse. Sedimentology, 61(6): 1594-1624. https://doi.org/10.1111/sed.12106
      Scholle, P. A., Ulmer-Scholle, D. S., 2003. A Color Guide to the Petrography of Carbonate Rocks. American Association of Petroleum Geologists, McLean.
      Servais, T., Owen, A. W., Harper, D. A. T., et al., 2010. The Great Ordovician Biodiversification Event (GOBE): The Palaeoecological Dimension. Palaeogeography, Palaeoclimatology, Palaeoecology, 294(3-4): 99-119. https://doi.org/10.1016/j.palaeo.2010.05.031
      Sharma, S., Dix, G. R, 2004. Magnesian Calcite and Chamositic Ooids Forming Shoals Peripheral to Late Ordovician (Ashgill) Muddy Siliciclastic Shores: Southern Ontario. Palaeogeography, Palaeoclimatology, Palaeoecology, 210(2-4): 347-366. https://doi.org/10.1016/j.palaeo.2004.02.036
      Shen, J. W., 1994. Sequential Position and Environment Significance of Chamositic Ooids and Glauconite in the Early Middle Ordovician Sediments in Guizhou Province and Adjacent Areas. Guzhou Geology, 11(3): 207-217 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZDZ403.003.htm
      Siehl, A., Thein, J., 1989. Minette-Type Ironstones. Geological Society, London, Special Publications, 46(1): 175-193. https://doi.org/10.1144/gsl.sp.1989.046.01.16
      Song, W. T., Liu, J. B., 2020. A Review of Cortical Structures of Carbonate Ooids. Journal of Palaeogeography, 22(1): 147-160 (in Chinese with English abstract).
      Sturesson, U., Heikoop, J. M., Risk, M. J., 2000. Modern and Palaeozoic Iron Ooids-A Similar Volcanic Origin. Sedimentary Geology, 136(1-2): 137-146. https://doi.org/10.1016/S0037-0738(00)00091-9
      Su, W. B., Li, Z. M., Chen, J. Q., et al., 1999. A Reliable Example for Eustacy Ordovician Sequence Stratigraphy on the Southeastern Margin of the Upper Yangtze Platform. Acta Sedimentologica Sinica, 17(3): 345-353 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199903002.htm
      Tang, D. J., Shi, X. Y., Jiang, G. Q., et al., 2017. Ferruginous Seawater Facilitates the Transformation of Glauconite to Chamosite: An Example from the Mesoproterozoic Xiamaling Formation of North China. American Mineralogist, 102(11): 2317-2332. https://doi.org/10.2138/am-2017-6136
      Taylor, K. G., Simo, J. A., Yocum, D., et al., 2002. Stratigraphic Significance of Ooidal Ironstones from the Cretaceous Western Interior Seaway: The Peace River Formation, Alberta, Canada, and the Castlegate Sandstone, Utah, USA. Journal of Sedimentary Research, 72(2): 316-327. https://doi.org/10.1306/060801720316
      Todd, S. E., Pufahl, P. K., Murphy, J. B., et al., 2019. Sedimentology and Oceanography of Early Ordovician Ironstone, Bell Island, Newfoundland: Ferruginous Seawater and Upwelling in the Rheic Ocean. Sedimentary Geology, 379: 1-15. https://doi.org/10.1016/j.sedgeo.2018.10.007
      Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
      van Houten, F. B., Bhattacharyya, D. P., 1982. Phanerozoic Oolitic Ironstones: Geologic Record and Facies Model. Annual Review of Earth and Planetary Sciences, 10(1): 441-457. https://doi.org/10.1146/annurev.ea.10.050182.002301
      van Houten, F. B., Purucker, M. E., 1984. Glauconitic Peloids and Chamositic Ooids-Favorable Factors, Constraints, and Problems. Earth-Science Reviews, 20(3): 211-243. https://doi.org/10.1016/0012-8252(84)90002-3
      Wang, H. Z., Shi, X. Y., 1998. Hierarchy of Depositional Sequences and Eustatic Cycles a Discussion on the Mechanism of Sedimentary Cycles. Geoscience, 12(1): 1-17 (in Chinese with English abstract).
      Wang, X. F., 2016. Ordovician Tectonic-Paleogeography in South China and Chrono- and Bio-Stratigraphic Division and Correlation. Earth Science Frontiers, 23(6): 253-267 (in Chinese with English abstract). http://www.researchgate.net/publication/316514996_Ordovician_tectonic-paleogeography_in_South_China_and_chrono-and_bio-stratigraphic_division_and_correlation
      Xu, X. S., Wan, F., Yin, F. G., et al., 2001. Environment Facies, Ecological Facies and Diagenetic Facies of Baota Formation, of Late Ordovina. Journal of Mineralogy and Petrology, 21(3): 64-68 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWYS200103009.htm
      Young, T. P., 1989. Phanerozoic Ironstones: An Introduction and Review. Geological Society, London, Special Publications, 46(1): ⅸ-xxv. https://doi.org/10.1144/gsl.sp.1989.046.01.02
      陈旭, 徐均涛, 成汉钧, 等, 1990. 论汉南古陆及大巴山隆起. 地层学杂志, 14(2): 81-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ199002000.htm
      樊茹, 卢远征, 张学磊, 等, 2013. 四川盆地奥陶系十字铺组与宝塔组接触关系新认识. 地质学报, 87(3): 321-329. doi: 10.3969/j.issn.0001-5717.2013.03.003
      韩凯博, 2019. 藏南聂拉木地区中侏罗世巴通期铁鲕岩的特征及形成机制(硕士学位论文). 北京: 中国地质大学.
      姜在兴, 2003. 沉积岩石学. 北京:石油工业出版社.
      陆扬博, 马义权, 王雨轩, 等, 2017. 上扬子地区五峰组-龙马溪组主要地质事件及岩相沉积响应. 地球科学, 42(7): 1169-1184. doi: 10.3799/dqkx.2017.095
      梅冥相, 2011. 微生物席沉积学: 一个年轻的沉积学分支. 地球科学进展, 26(6): 586-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201106003.htm
      秦松, 张涛, 苏文博, 等, 2011. 四川旺苍志留系鲕粒灰岩特征及地质意义. 地球科学, 36(1): 43-52. doi: 10.3799/dqkx.2011.005
      沈健伟, 1994. 贵州及邻区中奥陶世早期沉积物中鲕绿泥石鲕和海绿石的时序位置和环境意义. 贵州地质, 11(3): 207-217. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ403.003.htm
      宋文天, 刘建波, 2020. 碳酸盐鲕粒包壳结构研究综述. 古地理学报, 22(1): 147-160. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202001009.htm
      苏文博, 李志明, 陈建强, 等, 1999. 海平面变化全球可比性的可靠例证: 上扬子地台东南缘奥陶纪层序地层及海平面变化研究. 沉积学报, 17(3): 345-353. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199903002.htm
      王鸿祯, 史晓颖, 1998. 沉积层序及海平面旋回的分类级别: 旋回周期的成因讨论. 现代地质, 12(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ801.000.htm
      汪啸风, 2016. 中国南方奥陶纪构造古地理及年代与生物地层的划分与对比. 地学前缘, 23(6): 253-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201606026.htm
      许效松, 万方, 尹福光, 等, 2001. 奥陶系宝塔组灰岩的环境相、生态相与成岩相. 矿物岩石, 21(3): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200103009.htm
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  910
    • HTML全文浏览量:  627
    • PDF下载量:  76
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-09-28
    • 网络出版日期:  2021-10-14
    • 刊出日期:  2021-10-14

    目录

      /

      返回文章
      返回