• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    造山带板内洋岛-海山残片的识别及地质意义

    范建军 李才 牛耀龄 解超明 王明

    范建军, 李才, 牛耀龄, 解超明, 王明, 2021. 造山带板内洋岛-海山残片的识别及地质意义. 地球科学, 46(2): 381-404. doi: 10.3799/dqkx.2020.348
    引用本文: 范建军, 李才, 牛耀龄, 解超明, 王明, 2021. 造山带板内洋岛-海山残片的识别及地质意义. 地球科学, 46(2): 381-404. doi: 10.3799/dqkx.2020.348
    Fan Jianjun, Li Cai, Niu Yaoling, Xie Chaoming, Wang Ming, 2021. Identification Method and Geological Significance of Intraplate Ocean Island-Seamount Fragments in Orogenic Belt. Earth Science, 46(2): 381-404. doi: 10.3799/dqkx.2020.348
    Citation: Fan Jianjun, Li Cai, Niu Yaoling, Xie Chaoming, Wang Ming, 2021. Identification Method and Geological Significance of Intraplate Ocean Island-Seamount Fragments in Orogenic Belt. Earth Science, 46(2): 381-404. doi: 10.3799/dqkx.2020.348

    造山带板内洋岛-海山残片的识别及地质意义

    doi: 10.3799/dqkx.2020.348
    基金项目: 

    国家自然科学基金项目 41972236

    第二次青藏高原综合科学考察 2019QZKK0703

    自然资源部东北亚矿产资源评价重点实验室自主课题 DBY-ZZ-18-04

    详细信息
      作者简介:

      范建军(1988-), 男, 副教授, 从事青藏高原大地构造与区域地质研究.ORCID: 0000-0001-5298-7562.E-mail: fanjj03@163.com

    • 中图分类号: P54

    Identification Method and Geological Significance of Intraplate Ocean Island-Seamount Fragments in Orogenic Belt

    • 摘要: 板内洋岛-海山残片是造山带“洋壳残片”的重要组成部分,对恢复造山带所代表的古洋盆的构造演化具有重要意义.然而,如何在造山带中识别板内洋岛-海山残片并通过其恢复古洋盆的构造演化等问题并不清楚.在综述现今板内洋岛-海山的岩石层序、岩浆岩类型、地球化学和同位素特征等的基础上,结合对青藏高原班公湖-怒江缝合带数个板内洋岛-海山残片研究的成果,初步总结了造山带板内洋岛-海山残片的识别标志及其地质意义、时代的确定方法等基础地质问题.板内洋岛-海山记录了丰富的洋盆演化信息,且是大洋俯冲消亡时最易保存的地质体.因此,在古洋盆构造演化的恢复中,对造山带板内洋岛-海山残片的研究至关重要.

       

    • 图  1  现今板内洋岛-海山的遥感影像图(底图来自Google Earth)

      Fig.  1.  Remote sensing images of the modern intraplate ocean island-seamounts(modified from Google Earth)

      图  2  夏威夷型(a)和佛得角型(b)板内洋岛-海山岩石层序模型(据Fan et al., 2021修改)

      Fig.  2.  Schematic illustrations of intraplate ocean island-seamount lithostratigraphic sequence for Hawaii-type (a) and Cape Verde-type (b)(modified from Fan et al., 2021)

      图  3  太平洋和大西洋典型板内洋岛-海山的岩浆岩TAS图解

      图a~d引自Haase et al.(2019);图e~h引自Jeffery and Gertisser(2018)

      Fig.  3.  TAS diagrams of magmatic rocks of intraplate ocean island-seamounts in the Pacific and Atlantic

      图  4  典型板内洋岛-海山的全岩Sr-Nd-Hf同位素特征

      图a数据引自Widom et al. (1997)Elliott et al. (2007)Tanaka et al. (2008)Garapić et al. (2015)Mata et al. (2017). 图b数据引自Elliott et al. (2007)Pfänder et al. (2007)Tanaka et al. (2008)Barker et al. (2009)Martins et al. (2010)Mata et al. (2017)

      Fig.  4.  Whole rock Sr-Nd-Hf isotopic characteristics of intraplate ocean island-seamounts

      图  5  大洋岩石圈“盖层效应”示意图(据Humphreys and Niu, 2009修改)

      Fig.  5.  Schematic diagram showing the "Lid Effect" of oceanic lithosphere(modified from Humphreys and Niu, 2009)

      图  6  青藏高原班公湖-怒江缝合带板内洋岛-海山残片岩石野外照片

      a. 那热洋岛礁灰岩;b. 仲岗洋岛塌积砾岩的礁灰岩砾石;c. 那热洋岛粗面岩;d. 那热洋岛响岩;e. 日土洋岛粗面岩;f. 仲岗洋岛粗安岩

      Fig.  6.  Field photos of rocks from intraplate ocean island fragments in the Bangongco-Nujiang suture zone, Tibetan Plateau

      图  7  大西洋Tristan da Cunha和Gough洋岛岛链

      Hoernle et al.(2015)Jeffery and Gertisser(2018)修改;底图来自Google Earth

      Fig.  7.  Remote sensing image showing the Tristan da Cunha and Gough ocean island chain

      图  8  现今绝对板块运移速度图

      底图引自UNAVCO: http://jules.unavco.org/Voyager/GEM_GSRM;图中箭头代表绝对板块运移速度,红色线代表洋中脊,蓝色线代表俯冲带

      Fig.  8.  Diagram showing the absolute plate motion of the plate

      图  9  青藏高原仲岗洋岛残片地质和遥感影像图

      Fan et al.(2021)修改. a.青藏高原洞错地区地质简图;b.仲岗洋岛残片遥感影像图(底图来自Google Earth);c.仲岗洋岛残片中岩浆岩基底和灰岩盖层组成的双层结构;d.盖层中玄武岩与灰岩的互层.Cz. 新生代; K1q. 下白垩统去申拉组; J3K1s. 上侏罗统-下白垩统沙木罗组; J1-2. 下-中侏罗统海相地层; JM. 木嘎岗日岩群复理石沉积; DO. 洞错蛇绿岩; DG. 洞错花岗岩; OI. 中三叠世-晚侏罗世板内洋岛-海山残片; ZOI. 仲岗洋岛残片; JSS.金沙江缝合带;LSLS.龙木错-双湖-澜沧江缝合带;BNS.班公湖-怒江缝合带;YZS.雅鲁藏布江缝合带

      Fig.  9.  Geological map and remote sensing image of the Zhonggang ocean island fragments in the Tibetan Plateau

      图  10  仲岗洋岛残片野外照片

      Fan et al.(2021)修改. a. 玄武岩与灰岩互层;b. 玄武岩-凝灰岩-灰岩层序;c. 灰岩与凝灰岩互层;d. 玄武岩-粗安岩-灰岩层序;e. 灰岩-粗安岩层序;f. 硅质岩;g. 塌积砾岩;h、i.仲岗洋岛残片与复理石组成的“岩块-基质”的混杂堆积

      Fig.  10.  Field photos of the Zhonggang ocean island fragments

      图  11  仲岗洋岛残片岩石显微照片(正交偏光)

      Fan et al.(2021)修改. a.玄武岩;b.粗安岩;c.灰岩;d.凝灰岩-灰岩互层;e.硅质岩;f.塌积砾岩.Pl. 斜长石;Cal. 方解石;B. 玄武岩;Ls. 灰岩

      Fig.  11.  Photomicrographs of the Zhonggang ocean island fragments in cross-polarized light

      图  12  仲岗洋岛残片玄武岩和粗安岩的稀土、微量元素特征

      Fan et al.(2021)修改. OIB. 洋岛玄武岩;BCC. 全陆壳平均曲线

      Fig.  12.  Chondrite-normalized REE diagrams and primitive mantle-normalized trace element diagrams for the basalt and trachy andesite

    • Ancochea, E., Hernán, F., Huertas, M. J., et al., 2012. A Basic Radial Dike Swarm of Boa Vista (Cape Verde Archipelago): Its Significance in the Evolution of the Island. Journal of Volcanology and Geothermal Research, 243-244: 24-37. https://doi.org/10.1016/j.jvolgeores.2012.06.029
      Ancochea, E., Huertas, M. J., Hernán, F., et al., 2014. A New Felsic Cone-Sheet Swarm in the Central Atlantic Islands: The Cone-Sheet Swarm of Boa Vista (Cape Verde). Journal of Volcanology and Geothermal Research, 274: 1-15. https://doi.org/10.1016/j.jvolgeores.2014.01.010
      Bao, P. S., Xiao, X. C., Su, L., et al., 2007. Tectonic Setting of Dongcuo Ophiolite in Tibet: Petrology, Geochemistry Chemical and Chronological Constraints. Scientia Sinica Terrae, 37(3): 298-307(in Chinese).
      Barker, A. K., Holm, P. M., Peate, D. W., et al., 2009. Geochemical Stratigraphy of Submarine Lavas (3-5 Ma) from the Flamengos Valley, Santiago, Southern Cape Verde Islands. Journal of Petrology, 50(1): 169-193. https://doi.org/10.1093/petrology/egn081
      Beier, C., Haase, K. M., Hansteen, T. H., 2006. Magma Evolution of the Sete Cidades Volcano, Sã o Miguel, Azores. Journal of Petrology, 47(7): 1375-1411. https://doi.org/10.1093/petrology/egl014
      Beier, C., Stracke, A., Haase, K. M., 2007. The Peculiar Geochemical Signatures of Sã o Miguel (Azores) Lavas: Metasomatised or Recycled Mantle Sources? Earth and Planetary Science Letters, 259(1-2): 186-199. https://doi.org/10.1016/j.epsl.2007.04.038
      Bonneville, A., Suavé, R. L., Audin, L., et al., 2002. Arago Seamount: The Missing Hotspot Found in the Austral Islands. Geology, 30(11): 1023-1026. https://doi.org/10.1130/0091-7613(2002)0301023:astmhf>2.0.co;2 doi: 10.1130/0091-7613(2002)0301023:astmhf>2.0.co;2
      Caroff, M., Maury, R. C., Leterrier, J., et al., 1993. Trace Element Behavior in the Alkali Basalt-Comenditic Trachyte Series from Mururoa Atoll, French Polynesia. Lithos, 30(1): 1-22. https://doi.org/10.1016/0024-4937(93)90002-t
      Caroff, M., Maury, R. C., Guille, G., et al., 1997. Partial Melting below Tubuai (Austral Islands, French Polynesia). Contributions to Mineralogy and Petrology, 127(4): 369-382. https://doi.org/10.1007/s004100050286
      Courtillot, V., Davaille, A., Besse, J., et al., 2003. Three Distinct Types of Hotspots in the Earth's Mantle. Earth and Planetary Science Letters, 205(3-4): 295-308. https://doi.org/10.1016/s0012-821x(02)01048-8
      Cousens, B. L., Clague, D. A., Sharp, W. D., 2003. Chronology, Chemistry, and Origin of Trachytes from Hualalai Volcano, Hawaii. Geochemistry, Geophysics, Geosystems, 4(9): 1-27. https://doi.org/10.1029/2003gc000560
      Detrick, R. S., Crough, S. T., 1978. Island Subsidence, Hot Spots, and Lithospheric Thinning. Journal of Geophysical Research: Solid Earth, 83(B3): 1236-1244. https://doi.org/10.1029/jb083iB03p01236
      Dobretsov, N. L., Buslov, M. M., Yu, U., 2004. Fragments of Oceanic Islands in Accretion-Collision Areas of Gorny Altai and Salair, Southern Siberia, Russia: Early Stages of Continental Crustal Growth of the Siberian Continent in Vendian-Early Cambrian Time. Journal of Asian Earth Sciences, 23(5): 673-690. https://doi.org/10.1016/s1367-9120(03)00132-9
      Dominguez, S., Lallemand, S. E., Malavieille, J., et al., 1998. Upper Plate Deformation Associated with Seamount Subduction. Tectonophysics, 293(3-4): 207-224. https://doi.org/10.1016/s0040-1951(98)00086-9
      Dyhr, C. T., Holm, P. M., 2010. A Volcanological and Geochemical Investigation of Boa Vista, Cape Verde Islands; 40Ar/39Ar Geochronology and Field Constraints. Journal of Volcanology and Geothermal Research, 189(1-2): 19-32. https://doi.org/10.1016/j.jvolgeores.2009.10.010
      Eisele, S., Freundt, A., Kutterolf, S., et al., 2015. Stratigraphy of the Pleistocene, Phonolitic Cã o Grande Formation on Santo Antã o, Cape Verde. Journal of Volcanology and Geothermal Research, 301: 204-220. https://doi.org/10.1016/j.jvolgeores.2015.03.012
      Eisele, S., Freundt, A., Kutterolf, S., et al., 2016. Evolution of Magma Chambers Generating the Phonolitic Cã o Grande Formation on Santo Antã o, Cape Verde Archipelago. Journal of Volcanology and Geothermal Research, 327: 436-448. https://doi.org/10.1016/j.jvolgeores.2016.09.016
      Elliott, T., Blichert-Toft, J., Heumann, A., et al., 2007. The Origin of Enriched Mantle beneath Sã o Miguel, Azores. Geochimica et Cosmochimica Acta, 71(1): 219-240. https://doi.org/10.1016/j.gca.2006.07.043
      Fan, J. J., Li, C., Liu, J. H., et al., 2018a. The Middle Triassic Evolution of the Bangong-Nujiang Tethyan Ocean: Evidence from Analyses of OIB-Type Basalts and OIB-Derived Phonolites in Northern Tibet. International Journal of Earth Sciences, 107(5): 1755-1775. https://doi.org/10.1007/s00531-017-1570-x
      Fan, J. J., Li, C., Wang, M., et al., 2018b. Reconstructing in Space and Time the Closure of the Middle and Western Segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau. International Journal of Earth Sciences, 107(1): 231-249. https://doi.org/10.1007/s00531-017-1487-4
      Fan, J. J., Li, C., Wang, M., et al., 2017. Remnants of a Late Triassic Ocean Island in the Gufeng Area, Northern Tibet: Implications for the Opening and Early Evolution of the Bangong-Nujiang Tethyan Ocean. Journal of Asian Earth Sciences, 135: 35-50. https://doi.org/10.1016/j.jseaes.2016.12.015
      Fan, J. J., Li, C., Xie, C. M., et al., 2014. Petrology, Geochemistry, and Geochronology of the Zhonggang Ocean Island, Northern Tibet: Implications for the Evolution of the Banggongco-Nujiang Oceanic Arm of the Neo-Tethys. International Geology Review, 56(12): 1504-1520. https://doi.org/10.1080/00206814.2014.947639
      Fan, J. J., Li, C., Xie, C. M., et al., 2015. Petrology and U-Pb Zircon Geochronology of Bimodal Volcanic Rocks from the Maierze Group, Northern Tibet: Constraints on the Timing of Closure of the Banggong-Nujiang Ocean. Lithos, 227: 148-160. https://doi.org/10.1016/j.lithos.2015.03.021
      Fan, J. J., Niu, Y., Liu, Y. M., et al., 2021. Timing of Closure of the Meso-Tethys Ocean: Constraints from Remnants of a 141-135 Ma Ocean Island within the Bangong-Nujiang Suture Zone, Tibetan Plateau. GSA Bulletin, in Press. https://doi.org/10.1130/b35896.1
      Fan, J. J., Zhang, B. C., Liu, H. Y., et al., 2019. Early-Middle Jurassic Intra-Oceanic Subduction of the Bangong-Nujiang Oceanic Lithosphere: Evidence of the Dong Co Ophiolite. Acta Petrologica Sinica, 35(10): 3048-3064(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.06
      Feraud, G., Gastaud, J., Schmincke, H. U., et al., 1981. New K-Ar Ages, Chemical Analyses and Magnetic Data of Rocks from the Islands of Santa Maria (Azores), Porto Santo and Madeira (Madeira Archipelago) and Gran Canaria (Canary Islands). Bulletin Volcanologique, 44(3): 359-375. https://doi.org/10.1007/bf02600570
      Fletcher, M., Wyman, D. A., 2015. Mantle Plume-Subduction Zone Interactions over the Past 60 Ma. Lithos, 233: 162-173. https://doi.org/10.1016/j.lithos.2015.06.026
      Forsyth, D., Uyeda, S., 1975. On the Relative Importance of the Driving Forces of Plate Motion. Geophysical Journal International, 43(1): 163-200. https://doi.org/10.1111/j.1365-246X.1975.tb00631.x
      French, S. W., Romanowicz, B., 2015. Broad Plumes Rooted at the Base of the Earth's Mantle beneath Major Hotspots. Nature, 525(7567): 95-99. https://doi.org/10.1038/nature14876
      Freundt, A., Schmincke, H. U., 1995. Petrogenesis of Rhyolite-Trachyte-Basalt Composite Ignimbrite P1, Gran Canada, Canary Islands. Journal of Geophysical Research: Solid Earth, 100(B1): 455-474. https://doi.org/10.1029/94jb02478
      Frey, F. A., Coffin, M. F., Wallace, P. J., et al., 2000. Origin and Evolution of a Submarine Large Igneous Province: The Kerguelen Plateau and Broken Ridge, Southern Indian Ocean. Earth and Planetary Science Letters, 176(1): 73-89. https://doi.org/10.1016/s0012-821x(99)00315-5
      Frey, F. A., Weis, D., Borisova, A. Y., et al., 2002. Involvement of Continental Crust in the Formation of the Cretaceous Kerguelen Plateau: New Perspectives from ODP Leg 120 Sites. Journal of Petrology, 43(7): 1207-1239. https://doi.org/10.1093/petrology/43.7.1207
      Frey, F. A., Wise, W. S., Garcia, M. O., et al., 1990. Evolution of Mauna Kea Volcano, Hawaii: Petrologic and Geochemical Constraints on Postshield Volcanism. Journal of Geophysical Research Atmospheres, 95(B2): 1271-1300. https://doi.org/10.1029/jb095ib02p01271
      Garapić, G., Jackson, M. G., Hauri, E. H., et al., 2015. A Radiogenic Isotopic (He-Sr-Nd-Pb-Os) Study of Lavas from the Pitcairn Hotspot: Implications for the Origin of EM-1(Enriched Mantle 1). Lithos, 228-229: 1-11. https://doi.org/10.1016/j.lithos.2015.04.010
      Garcia, M. O., Swinnard, L., Weis, D., et al., 2010. Petrology, Geochemistry and Geochronology of Kaua'I Lavas over 4.5 Myr: Implications for the Origin of Rejuvenated Volcanism and the Evolution of the Hawaiian Plume. Journal of Petrology, 51(7): 1507-1540. https://doi.org/10.1093/petrology/egq027
      Garcia, M. O., Weis, D., Jicha, B. R., et al., 2016. Petrology and Geochronology of Lavas from Ka'Ula Volcano: Implications for Rejuvenated Volcanism of the Hawaiian Mantle Plume. Geochimica et Cosmochimica Acta, 185: 278-301. https://doi.org/10.1016/j.gca.2016.03.025
      Gazel, E., Hoernle, K., Carr, M. J., et al., 2011. Plume-Subduction Interaction in Southern Central America: Mantle Upwelling and Slab Melting. Lithos, 121(1-4): 117-134. https://doi.org/10.1016/j.lithos.2010.10.008
      Geldmacher, J., Hoernle, K., van den Bogaard, P., et al., 2001. Earlier History of the ≥ 70 Ma-Old Canary Hotspot Based on the Temporal and Geochemical Evolution of the Selvagen Archipelago and Neighboring Seamounts in the Eastern North Atlantic. Journal of Volcanology and Geothermal Research, 111(1-4): 55-87. https://doi.org/10.1016/s0377-0273(01)00220-7
      Gill, J., Whelan, P., 1989. Postsubduction Ocean Island Alkali Basalts in Fiji. Journal of Geophysical Research: Solid Earth, 94(B4): 4579-4588. https://doi.org/10.1029/jb094ib04p04579
      Grigg, R. W., 1982. Darwin Point: A Threshold for Atoll Formation. Coral Reefs, 1(1): 29-34. https://doi.org/10.1007/bf00286537
      Gunnarsson, B., Marsh, B. D., Jr Taylor, H. P., 1998. Generation of Icelandic Rhyolites: Silicic Lavas from the Torfajö kull Central Volcano. Journal of Volcanology and Geothermal Research, 83(1-2): 1-45. https://doi.org/10.1016/s0377-0273(98)00017-1
      Haase, K. M., Beier, C., Kemner, F., 2019. A Comparison of the Magmatic Evolution of Pacific Intraplate Volcanoes: Constraints on Melting in Mantle Plumes. Frontiers in Earth Science, 6: 242. https://doi.org/10.3389/feart.2018.00242
      Haase, K. M., Stoffers, P., Garbe-Schö nberg, C. D., 1997. The Petrogenetic Evolution of Lavas from Easter Island and Neighbouring Seamounts, Near-Ridge Hotspot Volcanoes in the SE Pacific. Journal of Petrology, 38(6): 785-813. https://doi.org/10.1093/petroj/38.6.785
      Hanan, B. B., Blichert-Toft, J., Pyle, D. G., et al., 2004. Correction: Corrigendum: Contrasting Origins of the Upper Mantle Revealed by Hafnium and Lead Isotopes from the Southeast Indian Ridge. Nature, 432(7017): 91-94. https://doi.org/10.1038/nature03181
      Hao, L. L., Wang, Q., Wyman, D. A., et al., 2016. Andesitic Crustal Growth via Mélange Partial Melting: Evidence from Early Cretaceous Arc Dioritic/Andesitic Rocks in Southern Qiangtang, Central Tibet. Geochemistry, Geophysics, Geosystems, 17(5): 1641-1659. https://doi.org/10.1002/2016gc006248
      Hao, L. L., Wang, Q., Zhang, C. F., et al., 2019. Oceanic Plateau Subduction during Closure of the Bangong-Nujiang Tethyan Ocean: Insights from Central Tibetan Volcanic Rocks. GSA Bulletin, 131(5-6): 864-880. https://doi.org/10.1130/b32045.1
      Harrison, L. N., Weis, D., Garcia, M. O., 2020. The Multiple Depleted Mantle Components in the Hawaiian-Emperor Chain. Chemical Geology, 532: 119324. https://doi.org/10.1016/j.chemgeo.2019.119324
      Hassler, D. R., Shimizu, N., 1998. Osmium Isotopic Evidence for Ancient Subcontinental Lithospheric Mantle beneath the Kerguelen Islands, Southern Indian Ocean. Science, 280(5362): 418-421. https://doi.org/10.1126/science.280.5362.418
      Hoernle, K., Rohde, J., Hauff, F., et al., 2015. How and When Plume Zonation Appeared during the 132 Myr Evolution of the Tristan Hotspot. Nature Communications, 6: 7799. https://doi.org/10.1038/ncomms8799
      Holm, P. M., Wilson, J. R., Christensen, B. P., et al., 2006. Sampling the Cape Verde Mantle Plume: Evolution of Melt Compositions on Santo Antã o, Cape Verde Islands. Journal of Petrology, 47(1): 145-189. https://doi.org/10.1093/petrology/egi071
      Hu, Y., Niu, Y. L., Li, J. Y., et al., 2016. Petrogenesis and Tectonic Significance of the Late Triassic Mafic Dikes and Felsic Volcanic Rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 245: 205-222. https://doi.org/10.1016/j.lithos.2015.05.004
      Huang, Q. T., Liu, W. L., Xia, B., et al., 2017. Petrogenesis of the Majiari Ophiolite (Western Tibet, China): Implications for Intra-Oceanic Subduction in the Bangong-Nujiang Tethys. Journal of Asian Earth Sciences, 146: 337-351. https://doi.org/10.1016/j.jseaes.2017.06.008
      Humphreys, E. R., Niu, Y. L., 2009. On the Composition of Ocean Island Basalts (OIB): The Effects of Lithospheric Thickness Variation and Mantle Metasomatism. Lithos, 112(1-2): 118-136. https://doi.org/10.1016/j.lithos.2009.04.038
      Jeffery, A. J., Gertisser, R., 2018. Peralkaline Felsic Magmatism of the Atlantic Islands. Frontiers in Earth Science, 6: 145. https://doi.org/10.3389/feart.2018.00145
      Kusky, T. M., Windley, B. F., Safonova, I., et al., 2013. Recognition of Ocean Plate Stratigraphy in Accretionary Orogens through Earth History: A Record of 3.8 Billion Years of Sea Floor Spreading, Subduction, and Accretion. Gondwana Research, 24(2): 501-547. https://doi.org/10.1016/j.gr.2013.01.004
      Lallemand, S., Culotta, R., von Huene, R., 1989. Subduction of the Daiichi Kashima Seamount in the Japan Trench. Tectonophysics, 160(1-4): 231-247. https://doi.org/10.1016/0040-1951(89)90393-4
      Laursen, J., Scholl, D. W., von Huene, R., 2002. Neotectonic Deformation of the Central Chile Margin: Deepwater Forearc Basin Formation in Response to Hot Spot Ridge and Seamount Subduction. Tectonics, 21(5): 2-1-2-27. https://doi.org/10.1029/2001tc901023
      le Roex, A. P., Cliff, R. A., Adair, B. J. I., 1990. Tristan Da Cunha, South Atlantic: Geochemistry and Petrogenesis of a Basanite-Phonolite Lava Series. Journal of Petrology, 31(4): 779-812. https://doi.org/10.1093/petrology/31.4.779
      Lee, C., Lim, C., 2014. Short-Term and Localized Plume-Slab Interaction Explains the Genesis of Abukuma Adakite in Northeastern Japan. Earth and Planetary Science Letters, 396: 116-124. https://doi.org/10.1016/j.epsl.2014.04.009
      Legendre, C., Maury, R. C., Caroff, M., et al., 2005. Origin of Exceptionally Abundant Phonolites on Ua Pou Island (Marquesas, French Polynesia): Partial Melting of Basanites Followed by Crustal Contamination. Journal of Petrology, 46(9): 1925-1962. https://doi.org/10.1093/petrology/egi043
      Li, S., Yin, C. Q., Guilmette, C., et al., 2019. Birth and Demise of the Bangong-Nujiang Tethyan Ocean: A Review from the Gerze Area of Central Tibet. Earth-Science Reviews, 198: 102907. https://doi.org/10.1016/j.earscirev.2019.102907
      Li, S. M., Zhu, D. C., Wang, Q., et al., 2016. Slab-Derived Adakites and Subslab Asthenosphere-Derived OIB-Type Rocks at 156±2 Ma from the North of Gerze, Central Tibet: Records of the Bangong-Nujiang Oceanic Ridge Subduction during the Late Jurassic. Lithos, 262: 456-469. https://doi.org/10.1016/j.lithos.2016.07.029
      Liu, W. L., Xia, B., Zhong, Y., et al., 2014. Age and Composition of the Rebang Co and Julu Ophiolites, Central Tibet: Implications for the Evolution of the Bangong Meso-Tethys. International Geology Review, 56(4): 430-447. https://doi.org/10.1080/00206814.2013.873356
      Ma, A. L., Hu, X. M., Garzanti, E., et al., 2017. Sedimentary and Tectonic Evolution of the Southern Qiangtang Basin: Implications for the Lhasa-Qiangtang Collision Timing. Journal of Geophysical Research: Solid Earth, 122(7): 4790-4813. https://doi.org/10.1002/2017jb014211
      Madureira, P., Mata, J. O., Mattielli, N., et al., 2011. Mantle Source Heterogeneity, Magma Generation and Magmatic Evolution at Terceira Island (Azores Archipelago): Constraints from Elemental and Isotopic (Sr, Nd, Hf, and Pb) Data. Lithos, 126(3-4): 402-418. https://doi.org/10.1016/j.lithos.2011.07.002
      Mahoney, J. J., Frei, R., Tejada, M. L. G., et al., 1998. Tracing the Indian Ocean Mantle Domain through Time: Isotopic Results from Old West Indian, East Tethyan, and South Pacific Seafloor. Journal of Petrology, 39(7): 1285-1306. https://doi.org/10.1093/petroj/39.7.1285
      Mahoney, J. J., Jones, W. B., Frey, F. A., et al., 1995. Geochemical Characteristics of Lavas from Broken Ridge, the Naturaliste Plateau and Southernmost Kerguelen Plateau: Cretaceous Plateau Volcanism in the Southeast Indian Ocean. Chemical Geology, 120(3-4): 315-345. https://doi.org/10.1016/0009-2541(94)00144-w
      Martins, S., Mata, J., Munhá, J., et al., 2010. Chemical and Mineralogical Evidence of the Occurrence of Mantle Metasomatism by Carbonate-Rich Melts in an Oceanic Environment (Santiago Island, Cape Verde). Mineralogy and Petrology, 99(1-2): 43-65. https://doi.org/10.1007/s00710-009-0078-x
      Masson, D. G., Parson, L. M., Milsom, J., et al., 1990. Subduction of Seamounts at the Java Trench: A View with Long-Range Sidescan Sonar. Tectonophysics, 185(1-2): 51-65. https://doi.org/10.1016/0040-1951(90)90404-v
      Mata, J., Martins, S., Mattielli, N., et al., 2017. The 2014-15 Eruption and the Short-Term Geochemical Evolution of the Fogo Volcano (Cape Verde): Evidence for Small-Scale Mantle Heterogeneity. Lithos, 288-289: 91-107. https://doi.org/10.1016/j.lithos.2017.07.001
      Menard, H., Ladd, H., 1963. Oceanic Islands, Seamounts, Guyots and Atolls. The Sea, 3: 365-385. http://www.researchgate.net/publication/284632462_Oceanic_islands_seamounts_guyots_and_atolls/download
      Menard, H. W., 1983. Insular Erosion, Isostasy, and Subsidence. Science, 220(4600): 913-918. https://doi.org/10.1126/science.220.4600.913
      Meyzen, C. M., Ludden, J. N., Humler, E., et al., 2005. New Insights into the Origin and Distribution of the DUPAL Isotope Anomaly in the Indian Ocean Mantle from MORB of the Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 6(11): Q11K11. https://doi.org/10.1029/2005gc000979
      Moine, B. N., Grégoire, M., O'Reilly, S. Y., et al., 2004. Carbonatite Melt in Oceanic Upper Mantle beneath the Kerguelen Archipelago. Lithos, 75(1-2): 239-252. https://doi.org/10.1016/j.lithos.2003.12.019
      Morgan, J. P., Morgan, W. J., Price, E., 1995. Hotspot Melting Generates both Hotspot Volcanism and a Hotspot Swell? Journal of Geophysical Research: Solid Earth, 100(B5): 8045-8062. https://doi.org/10.1029/94jb02887
      Mourã o, C., Mata, J., Doucelance, R., et al., 2012. Geochemical Temporal Evolution of Brava Island Magmatism: Constraints on the Variability of Cape Verde Mantle Sources and on Carbonatite-Silicate Magma Link. Chemical Geology, 334: 44-61. https://doi.org/10.1016/j.chemgeo.2012.09.031
      Mungall, J. E., Martin, R. F., 1995. Petrogenesis of Basalt-Comendite and Basalt-Pantellerite Suites, Terceira, Azores, and Some Implications for the Origin of Ocean-Island Rhyolites. Contributions to Mineralogy and Petrology, 119(1): 43-55. https://doi.org/10.1007/bf00310716
      Niu, Y. L., 2010. Some Basic Concepts and Problems on the Petrogenesis of Intra-Plate Ocean Island Basalts. Chinese Science Bulletin, 55(2): 103-114(in Chinese). doi: 10.1360/csb2010-55-2-103
      Niu, Y. L., 2013. Global Tectonics and Geodynamics: Application Examples of Petrological and Geochemical Approaches. Science Press, Beijing (in Chinese).
      Niu, Y. L., 2018. Geological Understanding of Plate Tectonics: Basic Concepts, Illustrations, Examples and New Perspectives. Global Tectonics and Metallogeny, 10(1): 23-46. https://doi.org/10.1127/gtm/2014/0009
      Niu, Y. L., 2020. On the Cause of Continental Breakup: A Simple Analysis in Terms of Driving Mechanisms of Plate Tectonics and Mantle Plumes. Journal of Asian Earth Sciences, 194: 104367. https://doi.org/10.1016/j.jseaes.2020.104367
      Niu, Y. L., Green, D. H., 2018. The Petrological Control on the Lithosphere-Asthenosphere Boundary (LAB) beneath Ocean Basins. Earth-Science Reviews, 185: 301-307. https://doi.org/10.1016/j.earscirev.2018.06.011
      Niu, Y. L., O'Hara, M. J., Pearce, J. A., 2003. Initiation of Subduction Zones as a Consequence of Lateral Compositional Buoyancy Contrast within the Lithosphere: A Petrological Perspective. Journal of Petrology, 44(5): 851-866. https://doi.org/10.1093/petrology/44.5.851
      Niu, Y. L., Wilson, M., Humphreys, E. R., et al., 2011. The Origin of Intra-Plate Ocean Island Basalts (OIB): The Lid Effect and Its Geodynamic Implications. Journal of Petrology, 52(7-8): 1443-1468. https://doi.org/10.1093/petrology/egr030
      O'Connor, J. M., Duncan, R. A., 1990. Evolution of the Walvis Ridge-Rio Grande Rise Hot Spot System: Implications for African and South American Plate Motions over Plumes. Journal of Geophysical Research: Solid Earth, 95(B11): 17475-17502. https://doi.org/10.1029/jb095ib11p17475
      O'Connor, J. M., Jokat, W., le Roex, A. P., et al., 2012. Hotspot Trails in the South Atlantic Controlled by Plume and Plate Tectonic Processes. Nature Geoscience, 5(10): 735-738. https://doi.org/10.1038/ngeo1583
      Pfä nder, J. A., Münker, C., Stracke, A., et al., 2007. Nb/Ta and Zr/Hf in Ocean Island Basalts-Implications for Crust-Mantle Differentiation and the Fate of Niobium. Earth and Planetary Science Letters, 254(1-2): 158-172. https://doi.org/10.1016/j.epsl.2006.11.027
      Ramalho, R. S., Helffrich, G., Cosca, M., et al., 2010a. Vertical Movements of Ocean Island Volcanoes: Insights from a Stationary Plate Environment. Marine Geology, 275(1-4): 84-95. https://doi.org/10.1016/j.margeo.2010.04.009
      Ramalho, R., Helffrich, G., Schmidt, D. N., et al., 2010b. Tracers of Uplift and Subsidence in the Cape Verde Archipelago. Journal of the Geological Society, 167(3): 519-538. https://doi.org/10.1144/0016-76492009-056
      Ren, J. S., Xu, Q. Q., Zhao, L., et al., 2015. Looking for Submerged Landmasses. Geological Review, 61(5): 969-989(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201505001.htm
      Robertson, A. H. F., 1984. Mesozoic Deep-Water and Tertiary Volcaniclastic Deposition of Maio, Cape Verde Islands: Implications for Atlantic Paleoenvironments and Ocean Island Volcanism. Geological Society of America Bulletin, 95(4): 433-453. https://doi.org/10.1130/0016-7606(1984)95433:mdatvd>2.0.co;2 doi: 10.1130/0016-7606(1984)95433:mdatvd>2.0.co;2
      Rohde, J. K., van den Bogaard, P., Hoernle, K., et al., 2013. Evidence for an Age Progression along the Tristan-Gough Volcanic Track from New 40Ar/39Ar Ages on Phenocryst Phases. Tectonophysics, 604: 60-71. https://doi.org/10.1016/j.tecto.2012.08.026
      Safonova, I. Y., Santosh, M., 2014. Accretionary Complexes in the Asia-Pacific Region: Tracing Archives of Ocean Plate Stratigraphy and Tracking Mantle Plumes. Gondwana Research, 25(1): 126-158. https://doi.org/10.1016/j.gr.2012.10.008
      Samrock, L. K., Wartho, J. A., Hansteen, T. H., 2019. 40Ar-39Ar Geochronology of the Active Phonolitic Cadamosto Seamount, Cape Verde. Lithos, 344-345: 464-481. https://doi.org/10.1016/j.lithos.2019.07.003
      Sano, H., Kanmero, K., 1991. Collapse of Ancient Oceanic Reef Complex: What Happened during Collision of Akiyoshi Reef Complex? Sequence of Collisional Collapse and Generation of Collapse Products. The Journal of the Geological Society of Japan, 97(8): 631-644. https://doi.org/10.5575/geosoc.97.631
      Scoates, J. S., lo Cascio, M., Weis, D., et al., 2006. Experimental Constraints on the Origin and Evolution of Mildly Alkalic Basalts from the Kerguelen Archipelago, Southeast Indian Ocean. Contributions to Mineralogy and Petrology, 151(5): 582-599. https://doi.org/10.1007/s00410-006-0070-y
      Sheppard, S. M. F., Harris, C., 1985. Hydrogen and Oxygen Isotope Geochemistry of Ascension Island Lavas and Granites: Variation with Crystal Fractionation and Interaction with Sea Water. Contributions to Mineralogy and Petrology, 91(1): 74-81. https://doi.org/10.1007/bf00429429
      Shi, R. D., Yang, J. S., Xu, Z. Q., et al., 2008. The Bangong Lake Ophiolite (NW Tibet) and Its Bearing on the Tectonic Evolution of the Bangong-Nujiang Suture Zone. Journal of Asian Earth Sciences, 32(5-6): 438-457. https://doi.org/10.1016/j.jseaes.2007.11.011
      Skolotnev, S. G., Bel'tenev, V. E., Lepekhina, E. N., et al., 2010. Younger and Older Zircons from Rocks of the Oceanic Lithosphere in the Central Atlantic and Their Geotectonic Implications. Geotectonics, 44(6): 462-492. https://doi.org/10.1134/s0016852110060038
      Song, S. G., Yang, L. M., Zhang, Y. Q., et al., 2017. Qi-Qin Accretionary Belt in Central China Orogen: Accretion by Trench Jam of Oceanic Plateau and Formation of Intra-Oceanic Arc in the Early Paleozoic Qin-Qi-Kun Ocean. Science Bulletin, 62(15): 1035-1038. https://doi.org/10.1016/j.scib.2017.07.009
      Staudigel, H., Clague, D. A., 2010. The Geological History of Deep-Sea Volcanoes: Biosphere, Hydrosphere, and Lithosphere Interactions. Oceanography, 23(1): 58-71. https://doi.org/10.5670/oceanog.2010.62
      Storey, M., Saunders, A. D., Tarney, J., et al., 1989. Contamination of Indian Ocean Asthenosphere by the Kerguelen: Heard Mantle Plume. Nature, 338(6216): 574-576. https://doi.org/10.1038/338574a0
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tanaka, R., Makishima, A., Nakamura, E., 2008. Hawaiian Double Volcanic Chain Triggered by an Episodic Involvement of Recycled Material: Constraints from Temporal Sr-Nd-Hf-Pb Isotopic Trend of the Loa-Type Volcanoes. Earth and Planetary Science Letters, 265(3-4): 450-465. https://doi.org/10.1016/j.epsl.2007.10.035
      Tang, Y., Zhai, Q. G., Hu, P. Y., et al., 2018. Petrology, Geochemistry and Geochronology of the Zhongcang Ophiolite, Northern Tibet: Implications for the Evolution of the Bangong-Nujiang Ocean. Geoscience Frontiers, 9(5): 1369-1381. https://doi.org/10.1016/j.gsf.2018.05.007
      Thompson, G. M., Smith, I. E. M., Malpas, J. G., 2001. Origin of Oceanic Phonolites by Crystal Fractionation and the Problem of the Daly Gap: An Example from Rarotonga. Contributions to Mineralogy and Petrology, 142(3): 336-346. https://doi.org/10.1007/s004100100294
      Torsvik, T. H., Amundsen, H., Hartz, E. H., et al., 2013. A Precambrian Microcontinent in the Indian Ocean. Nature Geoscience, 6(3): 223-227. https://doi.org/10.1038/ngeo1736
      Wang, B. D., Wang, L. Q., Chung, S. L., et al., 2016. Evolution of the Bangong-Nujiang Tethyan Ocean: Insights from the Geochronology and Geochemistry of Mafic Rocks within Ophiolites. Lithos, 245: 18-33. https://doi.org/10.1016/j.lithos.2015.07.016
      Wang, Z. H., Wang, Y. S., Xie, Y. H., et al., 2005. The Tarenben Oceanic-Island Basalts in the Middle Part of the Bangong-Nujiang Suture Zone, Xizang and Their Geological Implications. Sedimentary Geology and Tethyan Geology, 25(Suppl. 1): 155-162(in Chinese with English abstract).
      Weaver, B. L., 1990. Geochemistry of Highly-Undersaturated Ocean Island Basalt Suites from the South Atlantic Ocean: Fernando de Noronha and Trindade Islands. Contributions to Mineralogy and Petrology, 105(5): 502-515. https://doi.org/10.1007/bf00302491
      Weis, D., Frey, F. A., 2002. Submarine Basalts of the Northern Kerguelen Plateau: Interaction between the Kerguelen Plume and the Southeast Indian Ridge Revealed at ODP Site 1140. Journal of Petrology, 43(7): 1287-1309. https://doi.org/10.1093/petrology/43.7.1287
      Wendt, J. I., Regelous, M., Collerson, K. D., et al., 1997. Evidence for a Contribution from Two Mantle Plumes to Island-Arc Lavas from Northern Tonga. Geology, 25(7): 611. https://doi.org/10.1130/0091-7613(1997)0250611:efacft>2.3.co;2 doi: 10.1130/0091-7613(1997)0250611:efacft>2.3.co;2
      Wessel, P., Sandwell, D., Kim, S. S., 2010. The Global Seamount Census. Oceanography, 23(1): 24-33. https://doi.org/10.5670/oceanog.2010.60
      Widom, E., Carlson, R. W., Gill, J. B., et al., 1997. Th-Sr-Nd-Pb Isotope and Trace Element Evidence for the Origin of the Sã o Miguel, Azores, Enriched Mantle Source. Chemical Geology, 140(1-2): 49-68. https://doi.org/10.1016/s0009-2541(97)00041-7
      Wu, H., Sun, S. L., Liu, H. Y., et al., 2019. An Early Cretaceous Slab Window beneath Central Tibet, SW China: Evidence from OIB-Like Alkaline Gabbros in the Duolong Area. Terra Nova, 31(1): 67-75. https://doi.org/10.1111/ter.12370
      Xu, W., Li, C., Wang, M., et al., 2017. Subduction of a Spreading Ridge within the Bangong Co-Nujiang Tethys Ocean: Evidence from Early Cretaceous Mafic Dykes in the Duolong Porphyry Cu-Au Deposit, Western Tibet. Gondwana Research, 41: 128-141. https://doi.org/10.1016/j.gr.2015.09.010
      Yan, L. L., Zhang, K. J., 2020. Infant Intra-Oceanic Arc Magmatism Due to Initial Subduction Induced by Oceanic Plateau Accretion: A Case Study of the Bangong Meso-Tethys, Central Tibet, Western China. Gondwana Research, 79: 110-124. https://doi.org/10.1016/j.gr.2019.08.008
      Yang, H. J., Frey, F. A., Weis, D., et al., 1998. Petrogenesis of the Flood Basalts Forming the Northern Kerguelen Archipelago: Implications for the Kerguelen Plume. Journal of Petrology, 39(4): 711-748. https://doi.org/10.1093/petroj/39.4.711
      Yu, Y. P., Hu, P. Y., Li, C., et al., 2016. The Petrology and Geochemistry of Early Cretaceous Ocean Island Volcanic Rocks in the Middle-Western Segment of Bangong Co-Nujiang Suture Zone. Geological Bulletin of China, 35(8): 1281-1290(in Chinese with English abstract). http://www.researchgate.net/publication/323005920_The_petrology_and_geochemistry_of_Early_Cretaceous_ocean_island_volcanic_rocks_in_the_middle-western_segment_of_Bangong_Co-Nujiang_suture_zone
      Yuan, S. H., Pan, G. T., Ren, F., 2020. Review on Geological Research of Oceanic Island-Seamount and Its Significance for Reconstruction of Ocean Plate. Earth Science, 45(8): 2826-2845(in Chinese with English abstract).
      Zeng, Y. C., Chen, J. L., Xu, J. F., et al., 2016. Sediment Melting during Subduction Initiation: Geochronological and Geochemical Evidence from the Darutso High-Mg Andesites within Ophiolite Melange, Central Tibet. Geochemistry, Geophysics, Geosystems, 17(12): 4859-4877. https://doi.org/10.1002/2016gc006456
      Zhang, H. Q., Sun, X. M., Chen, X. B., 1997. Oceanic Island-Seamount Carbonate Sedimentary Feature and Its Paleogeographic Significance. Geological Science and Technology Information, 16(1): 29-33(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ701.005.htm
      Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245: 7-17. https://doi.org/10.1016/j.lithos.2015.06.023
      Zhu, D. C., Pan, G. T., Mo, X. X., et al., 2006. Identification for the Mesozoic OIB-Type Basalts in Central Qinghai-Tibetan Plateau: Geochronology, Geochemistry and Their Tectonic Setting. Acta Geologica Sinica, 80(9): 1312-1328(in Chinese with English abstract). http://www.researchgate.net/publication/279655522_Identification_for_the_Mesozoic_OIB-type_basalts_in_central_Qinghai-Tibetan_Plateau_Geochronology_geochemistry_and_their_tectonic_setting
      鲍佩声, 肖序常, 苏犁, 等, 2007. 西藏洞错蛇绿岩的构造环境: 岩石学、地球化学和年代学制约. 中国科学: 地球科学, 37(3): 298-307. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200703001.htm
      范建军, 张博川, 刘海永, 等, 2019. 班公湖-怒江洋早-中侏罗世洋内俯冲: 来自洞错蛇绿岩的证据. 岩石学报, 35(10): 3048-3064. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201910007.htm
      牛耀龄, 2010. 板内洋岛玄武岩(OIB)成因的一些基本概念和存在的问题. 科学通报, 55(2): 103-114. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201002002.htm
      牛耀龄, 2013. 全球构造与地球动力学: 岩石学与地球化学方法应用实例. 北京: 科学出版社.
      任纪舜, 徐芹芹, 赵磊, 等, 2015. 寻找消失的大陆. 地质论评, 61(5): 969-989. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201505001.htm
      王忠恒, 王永胜, 谢元和, 等, 2005. 西藏班公湖-怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义. 沉积与特提斯地质, 25(增刊1): 155-162. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD2005Z1028.htm
      于云鹏, 胡培远, 李才, 等, 2016. 西藏班公湖-怒江缝合带中西段早白垩世洋岛火山岩岩石学及地球化学特征. 地质通报, 35(8): 1281-1290. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201608009.htm
      袁四化, 潘桂棠, 任飞, 2020. 洋岛-海山研究进展及其对于重建洋板块的意义. 地球科学, 45(8): 2826-2845. doi: 10.3799/dqkx.2020.124
      张海清, 孙晓猛, 陈先兵, 1997. 洋岛、海山碳酸盐岩的沉积特征及其古地理意义. 地质科技情报, 16(1): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ701.005.htm
      朱弟成, 潘桂棠, 莫宣学, 等, 2006. 青藏高原中部中生代OIB型玄武岩的识别: 年代学、地球化学及其构造环境. 地质学报, 80(9): 1312-1328. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200609008.htm
    • 加载中
    图(12)
    计量
    • 文章访问数:  1602
    • HTML全文浏览量:  901
    • PDF下载量:  269
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-12-16
    • 刊出日期:  2021-02-15

    目录

      /

      返回文章
      返回